156
Views
0
CrossRef citations to date
0
Altmetric
Research article

Ser/Thr protein kinase Stk1 phosphorylates the key transcriptional regulator AlgR to modulate virulence and resistance in Pseudomonas aeruginosa

, , , , & ORCID Icon
Article: 2367649 | Received 25 Jan 2024, Accepted 09 Jun 2024, Published online: 20 Jun 2024

References

  • Stover CK, Pham XQ, Erwin AL, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000;406(6799):959–14. doi: 10.1038/35023079
  • Hancock RE, Speert DP. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat. 2000;3(4):247–255. doi: 10.1054/drup.2000.0152
  • Lyczak JB, Cannon CL, Pier GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2000;2(9):1051–1060. doi: 10.1016/s1286-4579(00)01259-4
  • Gellatly SL, Hancock RE. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis. 2013;67(3):159–173. doi: 10.1111/2049-632x.12033
  • Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18:318–327. doi: 10.1016/s1473-3099(17)30753-3
  • Vasil ML. Pseudomonas aeruginosa: Biology, mechanisms of virulence, epidemiology. J Pediatr. 1986;108(5):800–805. doi: 10.1016/S0022-3476(86)80748-X
  • Theerthankar D, Jim M. Pseudomonas aeruginosa extracellular secreted molecules have a dominant role in biofilm development and bacterial virulence in cystic fibrosis lung infections, Ch 5. In: Dinesh S, editor. Progress in understanding cystic fibrosis. Rijeka: IntechOpen; 2017. p 5.
  • Meirelles LA, Newman DK. Both toxic and beneficial effects of pyocyanin contribute to the lifecycle of Pseudomonas aeruginosa. Mol Microbiol. 2018;110(6):995–1010. doi: 10.1111/mmi.14132
  • Khan F, Pham DTN, Oloketuyi SF, et al. Regulation and controlling the motility properties of Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 2020;104(1):33–49. doi: 10.1007/s00253-019-10201-w
  • Tuon FF, Dantas LR, Suss PH, et al. Pathogenesis of the Pseudomonas aeruginosa Biofilm: a Review. Pathogens. 2022;11(3):11. doi: 10.3390/pathogens11030300
  • Breidenstein EB, de la Fuente-Núñez C, Hancock REW, et al. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011;19(8):419–426. doi: 10.1016/j.tim.2011.04.005
  • Fernández-Billón M, Llamías-Cabot AE, Jordana-Lluch E, et al. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa biofilms. Biofilm. 2023;5:100129. doi: 10.1016/j.bioflm.2023.100129
  • Wang BX, Cady KC, Oyarce GC, et al. Two-component signaling systems regulate diverse virulence-associated traits in pseudomonas aeruginosa. Appl Environ Microbiol. 2021;87(11):87. doi: 10.1128/aem.03089-20
  • Braun Y, Smirnova AV, Schenk A, et al. Component and protein domain exchange analysis of a thermoresponsive, two-component regulatory system of Pseudomonas syringae. Microbiology (Reading). 2008;154(9):2700–2708. doi: 10.1099/mic.0.2008/018820-0
  • Rodrigue A, Quentin Y, Lazdunski A, et al. Two-component systems in Pseudomonas aeruginosa: why so many? Trends Microbiol. 2000;8(11):498–504. doi: 10.1016/s0966-842x(00)01833-3
  • Francis S VI, Porter EC, Porter, et al. Two-component systems required for virulence in Pseudomonas aeruginosa. FEMS Microbiol Lett. 2017;364(11):364. doi: 10.1093/femsle/fnx104
  • Bleves S, Viarre V, Salacha R, et al. Protein secretion systems in Pseudomonas aeruginosa: a wealth of pathogenic weapons. Int J Med Microbiol. 2010;300:534–543. doi: 10.1016/j.ijmm.2010.08.005
  • Sharma K, D’Souza RC, Tyanova S, et al. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep. 2014;8(5):1583–1594. doi: 10.1016/j.celrep.2014.07.036
  • Yagüe P, Gonzalez-Quiñonez N, Fernánez-García G, et al. Goals and challenges in bacterial phosphoproteomics. Int J Mol Sci. 2019 20;20(22):5678. doi: 10.3390/ijms20225678
  • Ge R, Shan W. Bacterial phosphoproteomic analysis reveals the correlation between protein phosphorylation and bacterial pathogenicity. Genomics Proteomics Bioinf. 2011;9(4–5):119–127. doi: 10.1016/s1672-0229(11)60015-6
  • Beltramini AM, Mukhopadhyay CD, Pancholi V. Modulation of cell wall structure and antimicrobial susceptibility by a staphylococcus aureus eukaryote-like serine/threonine kinase and phosphatase. Infect Immun. 2009;77(4):1406–1416. doi: 10.1128/iai.01499-08
  • Ohlsen K, Donat S. The impact of serine/threonine phosphorylation in Staphylococcus aureus. Int J Med Microbiol. 2010;300(2–3):137–141. doi: 10.1016/j.ijmm.2009.08.016
  • Nováková L, Sasková L, Pallová P, et al. Characterization of a eukaryotic type serine/threonine protein kinase and protein phosphatase of streptococcus pneumoniae and identification of kinase substrates. FEBS J. 2005;272(5):1243–1254. doi: 10.1111/j.1742-4658.2005.04560.x
  • Soufi B, Kumar C, Gnad F, et al. Stable isotope labeling by amino acids in cell culture (SILAC) applied to quantitative proteomics of Bacillus subtilis. J Proteome Res. 2010;9:3638–3646. doi: 10.1021/pr100150w
  • Aranda J, Bardina C, Beceiro A, et al. Acinetobacter baumannii RecA protein in repair of DNA damage, antimicrobial resistance, general stress response, and virulence. J Bacteriol. 2011;193(15):3740–3747. doi: 10.1128/jb.00389-11
  • Pan J, Zha Z, Zhang P, et al. Serine/threonine protein kinase PpkA contributes to the adaptation and virulence in Pseudomonas aeruginosa. Microb Pathog. 2017;113:5–10. doi: 10.1016/j.micpath.2017.10.017
  • Goldová J, Ulrych A, Hercík K, et al. A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence. BMC Genomics. 2011;12(1):437. doi: 10.1186/1471-2164-12-437
  • Sana TG, Hachani A, Bucior I, et al. The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and fur and modulates internalization in epithelial cells. J Biol Chem. 2012;287(32):27095–27105. doi: 10.1074/jbc.M112.376368
  • Mukhopadhyay S, Kapatral V, Xu W, et al. Characterization of a Hank’s type serine/threonine kinase and serine/threonine phosphoprotein phosphatase in Pseudomonas aeruginosa. J Bacteriol. 1999;181(21):6615–6622. doi: 10.1128/jb.181.21.6615-6622.1999
  • Kato J, Misra TK, Chakrabarty AM. AlgR3, a protein resembling eukaryotic histone H1, regulates alginate synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 1990;87(8):2887–2891. doi: 10.1073/pnas.87.8.2887
  • Zhu X, Feng C, Zhou L, et al. Impacts of ser/thr protein kinase stk1 on the proteome, twitching motility, and competitive advantage in pseudomonas aeruginosa. Front Microbiol. 2021;12:738690. doi: 10.3389/fmicb.2021.738690
  • Liang H, Deng X, Li X, et al. Molecular mechanisms of master regulator VqsM mediating quorum-sensing and antibiotic resistance in Pseudomonas aeruginosa. Nucleic Acids Res. 2014;42:10307–10320. doi: 10.1093/nar/gku586
  • Kelley LA, Mezulis S, Yates CM, et al. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10(6):845–858. doi: 10.1038/nprot.2015.053
  • Liu H, Ye C, Fu H, et al. Stk and Stp1 participate in Streptococcus suis serotype 2 pathogenesis by regulating capsule thickness and translocation of certain virulence factors. Microb Pathog. 2021;152:104607. doi: 10.1016/j.micpath.2020.104607
  • Kong W, Zhao J, Kang H, et al. ChIP-seq reveals the global regulator AlgR mediating cyclic di-GMP synthesis in Pseudomonas aeruginosa. Nucleic Acids Res. 2015;43(17):8268–8282. doi: 10.1093/nar/gkv747
  • Imperi F, Tiburzi F, Visca P. Molecular basis of pyoverdine siderophore recycling in Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 2009;106(48):20440–20445. doi: 10.1073/pnas.0908760106
  • Ye C, Ge Y, Zhang Y, et al. Deletion of vp0057, a gene encoding a ser/thr protein kinase, impacts the proteome and promotes iron uptake and competitive advantage in vibrio parahaemolyticus. J Proteome Res. 2021;20(1):250–260. doi: 10.1021/acs.jproteome.0c00361
  • Viollier E, Inglett PW, Hunter K, et al. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl Geochem. 2000;15(6):785–790. doi: 10.1016/S0883-2927(99)00097-9
  • Wu H, Lee B, Yang L, et al. Effects of ginseng on Pseudomonas aeruginosa motility and biofilm formation. FEMS Immunol Med Microbiol. 2011;62(1):49–56. doi: 10.1111/j.1574-695X.2011.00787.x
  • Luo J, Dong B, Wang K, et al. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLOS ONE. 2017;12(4):e0176883. doi: 10.1371/journal.pone.0176883
  • Institute CaLS. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 9th ed, vol. Approved Standard M07-A9. Wayne (PA): Clinical and Laboratory Standards Institute; 2012.
  • Britigan BE, Roeder TL, Rasmussen GT, et al. Interaction of the Pseudomonas aeruginosa secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells. Implications for Pseudomonas-associated tissue injury. J Clin Invest. 1992;90(6):2187–2196. doi: 10.1172/jci116104
  • Lau GW, Ran H, Kong F, et al. Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect Immun. 2004;72(7):4275–4278. doi: 10.1128/iai.72.7.4275-4278.2004
  • Rehm BH. Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol. 2010;8(8):578–592. doi: 10.1038/nrmicro2354
  • Lewis K. Riddle of biofilm resistance. Antimicrob Agents Chemother. 2001;45(4):999–1007. doi: 10.1128/aac.45.4.999-1007.2001
  • Thi MTT, Wibowo D, Rehm BHA. Pseudomonas aeruginosa Biofilms. Int J Mol Sci. 2020;21(22):21. doi: 10.3390/ijms21228671
  • Reig S, Le Gouellec A, Bleves S. What is new in the anti-pseudomonas aeruginosa clinical development pipeline since the 2017 WHO Alert? Front Cell Infect Microbiol. 2022;12:909731. doi: 10.3389/fcimb.2022.909731
  • Rasamiravaka T, Labtani Q, Duez P, et al. The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int. 2015;2015:759348. doi: 10.1155/2015/759348
  • Srinivasan R, Santhakumari S, Poonguzhali P, et al. Bacterial biofilm inhibition: a focused review on recent therapeutic strategies for combating the biofilm mediated infections. Front Microbiol. 2021;12:676458. doi: 10.3389/fmicb.2021.676458
  • Valerius NH, Koch C, Høiby N. Prevention of chronic Pseudomonas aeruginosa colonisation in cystic fibrosis by early treatment. Lancet. 1991;338(8769):725–726. doi: 10.1016/0140-6736(91)91446-2
  • Roudashti S, Zeighami H, Mirshahabi H, et al. Synergistic activity of sub-inhibitory concentrations of curcumin with ceftazidime and ciprofloxacin against Pseudomonas aeruginosa quorum sensing related genes and virulence traits. World J Microbiol Biotechnol. 2017;33(3):50. doi: 10.1007/s11274-016-2195-0
  • Belete B, Lu H, Wozniak DJ. Pseudomonas aeruginosa AlgR regulates type IV pilus biosynthesis by activating transcription of the fimU-pilVWXY1Y2E operon. J Bacteriol. 2008;190(6):2023–2030. doi: 10.1128/jb.01623-07
  • Dieppois G, Ducret V, Caille O, et al. The transcriptional regulator CzcR modulates antibiotic resistance and quorum sensing in Pseudomonas aeruginosa. PLOS ONE. 2012;7(5):e38148. doi: 10.1371/journal.pone.0038148
  • Wozniak DJ, Ohman DE. Transcriptional analysis of the Pseudomonas aeruginosa genes algR, algB, and algD reveals a hierarchy of alginate gene expression which is modulated by algT. J Bacteriol. 1994;176(19):6007–6014. doi: 10.1128/jb.176.19.6007-6014.1994
  • Little AS, Okkotsu Y, Reinhart AA, et al. Pseudomonas aeruginosa Algr phosphorylation status differentially regulates pyocyanin and pyoverdine production. MBio. 2018;9(1):9. doi: 10.1128/mBio.02318-17
  • Nikolskaya AN, Galperin MY. A novel type of conserved DNA-binding domain in the transcriptional regulators of the AlgR/AgrA/LytR family. Nucleic Acids Res. 2002;30(11):2453–2459. doi: 10.1093/nar/30.11.2453
  • Lizewski SE, Lundberg DS, Schurr MJ. The transcriptional regulator AlgR is essential for Pseudomonas aeruginosa pathogenesis. Infect Immun. 2002;70(11):6083–6093. doi: 10.1128/iai.70.11.6083-6093.2002
  • Whitchurch CB, Erova TE, Emery JA, et al. Phosphorylation of the Pseudomonas aeruginosa response regulator AlgR is essential for type IV fimbria-mediated twitching motility. J Bacteriol. 2002;184(16):4544–4554. doi: 10.1128/jb.184.16.4544-4554.2002
  • Marko VA, Kilmury SLN, MacNeil LT, et al. Pseudomonas aeruginosa type IV minor pilins and PilY1 regulate virulence by modulating FimS-AlgR activity. PLOS Pathog. 2018;14(5):e1007074. doi: 10.1371/journal.ppat.1007074
  • Deretic V, Leveau JH, Mohr CD, et al. In vitro phosphorylation of AlgR, a regulator of mucoidy in Pseudomonas aeruginosa, by a histidine protein kinase and effects of small phospho-donor molecules. Mol Microbiol. 1992;6(19):2761–2767. doi: 10.1111/j.1365-2958.1992.tb01455.x
  • Okkotsu Y, Tieku P, Fitzsimmons LF, et al. Pseudomonas aeruginosa AlgR phosphorylation modulates rhamnolipid production and motility. J Bacteriol. 2013;195(24):5499–5515. doi: 10.1128/jb.00726-13
  • Okkotsu Y, Little AS, Schurr MJ. The Pseudomonas aeruginosa AlgZR two-component system coordinates multiple phenotypes. Front Cell Infect Microbiol. 2014;4:82. doi: 10.3389/fcimb.2014.00082
  • Whitchurch CB, Alm RA, Mattick JS. The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 1996;93(18):9839–9843. doi: 10.1073/pnas.93.18.9839
  • Stacey SD, Williams DA, Pritchett CL, et al. The Pseudomonas aeruginosa two-component regulator AlgR directly activates rsma expression in a phosphorylation-independent manner. J Bacteriol. 2017;199(18). doi: 10.1128/jb.00048-17
  • Mattick JS. Type IV pili and twitching motility. Annu Rev Microbiol. 2002;56(1):289–314. doi: 10.1146/annurev.micro.56.012302.160938
  • Comolli JC, Hauser AR, Waite L, et al. Pseudomonas aeruginosa gene products PilT and PilU are required for cytotoxicity in vitro and virulence in a mouse model of acute pneumonia. Infect Immun. 1999;67(7):3625–3630. doi: 10.1128/iai.67.7.3625-3630.1999
  • Mann EE, Wozniak DJ. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev. 2012;36(4):893–916. doi: 10.1111/j.1574-6976.2011.00322.x
  • Pedersen SS, Kharazmi A, Espersen F, et al. Pseudomonas aeruginosa alginate in cystic fibrosis sputum and the inflammatory response. Infect Immun. 1990;58(10):3363–3368. doi: 10.1128/iai.58.10.3363-3368.1990
  • Terry JM, Piña SE, Mattingly SJ. Role of energy metabolism in conversion of nonmucoid Pseudomonas aeruginosa to the mucoid phenotype. Infect Immun. 1992;60(4):1329–1335. doi: 10.1128/iai.60.4.1329-1335.1992
  • Wood LF, Leech AJ, Ohman DE. Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: roles of σ 22 (AlgT) and the AlgW and Prc proteases. Mol Microbiol. 2006;62(2):412–426. doi: 10.1111/j.1365-2958.2006.05390.x
  • Lizewski SE, Schurr JR, Jackson DW, et al. Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis. J Bacteriol. 2004;186(17):5672–5684. doi: 10.1128/jb.186.17.5672-5684.2004