220
Views
0
CrossRef citations to date
0
Altmetric
Research article

NagZ modulates the virulence of E. cloacae by acting through the gene of unknown function, ECL_03795

ORCID Icon, , , , , , , & ORCID Icon show all
Article: 2367652 | Received 19 Feb 2024, Accepted 09 Jun 2024, Published online: 24 Jun 2024

References

  • Wisplinghoff H, Bischoff T, Tallent SM, et al. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004;39(3):309–16. doi: 10.1086/421946
  • Doijad S, Imirzalioglu C, Yao Y, et al. Enterobacter bugandensis sp nov, isolated from neonatal blood. Int J Syst Evol Microbiol. 2016;66(2):968–974. doi: 10.1099/ijsem.0.000821
  • Sutton GG, Brinkac LM, Clarke TH, et al. Enterobacter hormaechei subsp. hoffmannii subsp. nov, Enterobacter hormaechei subsp xiangfangensis comb nov, Enterobacter roggenkampii sp nov, and Enterobacter muelleri is a later heterotypic synonym of Enterobacter asburiae based on computational analysis of sequenced Enterobacter genomes. Version 2. F1000Res. 2018;7:521–544.
  • Wu W, Feng Y, Zong Z. Characterization of a strain representing a new Enterobacter species, Enterobacter chengduensis sp nov. Antonie Van Leeuwenhoek. 2019;112(4):491–500. doi: 10.1007/s10482-018-1180-z
  • Davin-Regli A, Lavigne J-P, Pagès J-M. Enterobacter spp.: update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clin Microbiol Rev. 2019;32(4):00002–00019. doi: 10.1128/CMR.00002-19
  • Da Silva A, Martins A, Nodari C, et al. Carbapenem-heteroresistance among isolates of the Enterobacter cloacae complex: is it a real concern? Eur J Clin Microbiol Infect Dis. 2018;37(1):185–186. doi: 10.1007/s10096-017-3138-x
  • Annavajhala MK, Gomez-Simmonds A, Uhlemann AC. Multidrug-resistant Enterobacter cloacae complex emerging as a global, diversifying threat. Front Microbiol. 2019;10:44. doi: 10.3389/fmicb.2019.00044
  • Totsika M. Benefits and challenges of antivirulence antimicrobials at the dawn of the post-antibiotic era. Curr Med Chem. 2016;6(1):30–37. doi: 10.2174/2210303106666160506120057
  • Maura D, Ballok AE, Rahme LG. Considerations and caveats in anti-virulence drug development. Curr Opin Microbiol. 2016;33:41–46. doi: 10.1016/j.mib.2016.06.001
  • Bragg RR, Meyburgh CM, Lee JY. Potential treatment options in a post-antibiotic era[C]. Infectious Diseases and Nanomedicine III: Second International Conference (ICIDN-2015); 2015 Dec 15–18; Kathmandu, Nepal. Singapore: Springer; 2018. p. 51–61. https://link.springer.com/chapter/10.1007/978-981-10-7572-8_5
  • Ramos JL, Filloux A. Emerging therapies against infections with Pseudomonas aeruginosa. Environ Microbiol. 2019;(23):776–861. doi: 10.1007/978-1-4020-6097-7
  • Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev. 2013;26(2):185–230. doi: 10.1128/CMR.00059-12
  • Juan C, Torrens G, Barceló IM, et al. Interplay between peptidoglycan biology and virulence in gram-negative pathogens. Microbiol Mol Biol Rev. 2018;82(4):00033–00018. doi: 10.1128/MMBR.00033-18
  • Pérez-Gallego M, Torrens G, Castillo-Vera J, et al. Impact of AmpC derepression on fitness and virulence: the mechanism or the pathway? MBio. 2016;7(5):01783–01716. doi: 10.1128/mBio.01783-16
  • Domínguez-Gil T, Molina R, Alcorlo M, et al. Renew or die: The molecular mechanisms of peptidoglycan recycling and antibiotic resistance in gram-negative pathogens. Drug Resist Updat. 2016;28:91–104. doi: 10.1016/j.drup.2016.07.002
  • Asgarali A, Stubbs KA, Oliver A, et al. Inactivation of the glycoside hydrolase NagZ attenuates antipseudomonal β-lactam resistance in pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53(6):2274–2282. doi: 10.1128/AAC.01617-08
  • Huang Y-W, Hu R-M, Lin C-W, et al. NagZ-dependent and NagZ-independent mechanisms for β-lactamase expression in Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 2012;56(4):1936–1941. doi: 10.1128/AAC.05645-11
  • Liu C, Li C, Chen Y, et al. Role of low-molecular-mass penicillin-binding proteins, NagZ and AmpR in AmpC β-lactamase regulation of Yersinia enterocolitica. Front Cell Infect Microbiol. 2017;7:425. doi: 10.3389/fcimb.2017.00425
  • Ho LA, Winogrodzki JL, Debowski AW, et al. A mechanism-based GlcNAc-inspired cyclophellitol inactivator of the peptidoglycan recycling enzyme NagZ reverses resistance to β-lactams in pseudomonas aeruginosa. Chem Comm. 2018;54(75):10630–10633. doi: 10.1039/C8CC05281F
  • Yang X, Zeng J, Zhou Q, et al. Elevating nagZ improves resistance to β-lactam antibiotics via promoting AmpC β-Lactamase in Enterobacter cloacae. Front Microbiol. 2020;11(11):586729. doi: 10.3389/fmicb.2020.586729
  • Bhoopalan SV, Piekarowicz A, Lenz JD, et al. nagZ triggers gonococcal biofilm disassembly. Sci Rep. 2016;6(1):22372. doi: 10.1038/srep22372
  • Barceló IM, Torrens G, Escobar-Salom M, et al. Impact of peptidoglycan recycling blockade and expression of horizontally acquired β-lactamases on pseudomonas aeruginosa virulence. Microbiol Spectr. 2022;10(1):e02019–02021. doi: 10.1128/spectrum.02019-21
  • Luo P, He X, Liu Q, et al. Developing universal genetic tools for rapid and efficient deletion mutation in vibrio species based on suicide T-vectors carrying a novel counterselectable marker, vmi480. PLOS ONE. 2015;10(12):e0144465. doi: 10.1371/journal.pone.0144465
  • Miyoshi-Akiyama T, Hayakawa K, Ohmagari N, et al. Multilocus sequence typing (MLST) for characterization of Enterobacter cloacae. PLOS ONE. 2013;8(6):e66358. doi: 10.1371/journal.pone.0066358
  • Zhang Y-Y, Huang Y-F, Liang J, et al. Improved up-and-down procedure for acute toxicity measurement with reliable LD50 verified by typical toxic alkaloids and modified karber method. BMC Pharmacol Toxicol. 2022;23(1):3. doi: 10.1186/s40360-021-00541-7
  • Piatek M, Sheehan G, Kavanagh K. Utilising galleria mellonella larvae for studying in vivo activity of conventional and novel antimicrobial agents. Pathog Dis. 2020;78(8):ftaa059. doi: 10.1093/femspd/ftaa059
  • Kurien BT, Scofield RH. Western blotting. Methods. 2006;38(4):283–293. doi: 10.1016/j.ymeth.2005.11.007
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Bio. 2014;15(12):1–21. doi: 10.1186/s13059-014-0550-8
  • Wang J, Duncan D, Shi Z, et al. WEB-based gene set analysis toolkit (WebGestalt): update 2013. Nucleic Acids Res. 2013;41(W1):W77–W83. doi: 10.1093/nar/gkt439
  • Wang J, Vasaikar S, Shi Z, et al. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017;45(W1):W130–W137. doi: 10.1093/nar/gkx356
  • Zhang L, Li S, Liu X, et al. Sensing of autoinducer-2 by functionally distinct receptors in prokaryotes. Nat Commun. 2020;11(1):5371. doi: 10.1038/s41467-020-19243-5
  • Jenal U, Reinders A, Lori C. Cyclic di-GMP: second messenger extraordinaire. Nature Rev Microbiol. 2017;15(5):271–284. doi: 10.1038/nrmicro.2016.190
  • Liu X, Cao B, Yang L, et al. Biofilm control by interfering with c-di-GMP metabolism and signaling. Biotechnol Adv. 2022;56:107915. doi: 10.1016/j.biotechadv.2022.107915
  • Martinez-Gil M, Ramos C. Role of cyclic di-GMP in the bacterial virulence and evasion of the plant immunity. Curr Issues Mol Biol. 2018;25(1):199–222. doi: 10.21775/cimb.025.199
  • Folkesson A, Eriksson S, Andersson M, et al. Components of the peptidoglycan‐recycling pathway modulate invasion and intracellular survival of Salmonella enterica serovar typhimurium. Cell Microbiol. 2005;7(1):147–155. doi: 10.1111/j.1462-5822.2004.00443.x
  • Dik DA, Fisher JF, Mobashery S. Cell-wall recycling of the gram-negative bacteria and the nexus to antibiotic resistance. Chem Rev. 2018;118(12):5952–5984. doi: 10.1021/acs.chemrev.8b00277
  • Cabot G, Florit-Mendoza L, Sánchez-Diener I, et al. Deciphering β-lactamase-independent β-lactam resistance evolution trajectories in pseudomonas aeruginosa. J Antimicrob Chemother. 2018;73(12):3322–3331. doi: 10.1093/jac/dky364
  • Torrens G, Sánchez-Diener I, Jordana-Lluch E, et al. In vivo validation of peptidoglycan recycling as a target to disable AmpC-mediated resistance and reduce virulence enhancing the cell-wall–targeting immunity. J Infect Dis. 2019;220(11):1729–1737. doi: 10.1093/infdis/jiz377
  • Choi JY, Sifri CD, Goumnerov BC, et al. Identification of virulence genes in a pathogenic strain of Pseudomonas aeruginosa by representational difference analysis. J Bacteriol. 2002;184(4):952–961. doi: 10.1128/jb.184.4.952-961.2002
  • Yang T-C, Chen T-F, Tsai JJ, et al. NagZ is required for beta-lactamase expression and full pathogenicity in Xanthomonas campestris pv. campestris str 17. Res Microbiol. 2014;165(8):612–619. doi: 10.1016/j.resmic.2014.08.008
  • Elamin AA, Steinicke S, Oehlmann W, et al. Novel drug targets in cell wall biosynthesis exploited by gene disruption in Pseudomonas aeruginosa. PLOS ONE. 2017;12(10):e0186801. doi: 10.1371/journal.pone.0186801
  • Juan C, Torrens G, González-Nicolau M, et al. Diversity and regulation of intrinsic β-lactamases from non-fermenting and other gram-negative opportunistic pathogens. FEMS Microbiol Rev. 2017;41(6):781–815. doi: 10.1093/femsre/fux043
  • Römling U, Galperin MY, Gomelsky M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev. 2013;77(1):1–52. doi: 10.1128/MMBR.00043-12
  • Römling U, Galperin MY. Discovery of the second messenger cyclic di-GMP. In: c-di-GMP signaling: methods and protocols. Vol. 1657. 2017. p. 1–8. https://link.springer.com/protocol/10.1007/978-1-4939-7240-1_1
  • Schirmer T, Jenal U. Structural and mechanistic determinants of c-di-GMP signalling. Nature Rev Microbiol. 2009;7(10):724–735. doi: 10.1038/nrmicro2203
  • Schirmer T. C-di-GMP synthesis: structural aspects of evolution, catalysis and regulation. J Mol Biol. 2016;428(19):3683–3701. doi: 10.1016/j.jmb.2016.07.023
  • Chou S-H, Galperin MY, O’Toole GA. Diversity of cyclic di-GMP-binding proteins and mechanisms. J Bacteriol. 2016;198(1):32–46. doi: 10.1128/JB.00333-15
  • Dahlstrom KM, Giglio KM, Collins AJ, et al. Contribution of physical interactions to signaling specificity between a diguanylate cyclase and its effector. MBio. 2015;6(6):01978–01915. doi: 10.1128/mBio.01978-15
  • Hengge R. Trigger phosphodiesterases as a novel class of c-di-GMP effector proteins. Philos Trans R Soc B. 2016;371(1707):20150498. doi: 10.1098/rstb.2015.0498
  • Dahlstrom KM, O’Toole GA. A symphony of cyclases: specificity in diguanylate cyclase signaling. Annu Rev Microbiol. 2017;71(1):179–195. doi: 10.1146/annurev-micro-090816-093325
  • Hallez R, Delaby M, Sanselicio S, et al. Hit the right spots: cell cycle control by phosphorylated guanosines in alphaproteobacteria. Nature Rev Microbiol. 2017;15(3):137–148. doi: 10.1038/nrmicro.2016.183
  • Hengge R, Galperin MY, Ghigo J-M, et al. Systematic nomenclature for GGDEF and EAL domain-containing cyclic di-GMP turnover proteins of Escherichia coli. J Bacteriol. 2016;198(1):7–11. doi: 10.1128/JB.00424-15
  • Nikolskaya AN, Mulkidjanian AY, Beech IB, et al. MASE1 and MASE2: two novel integral membrane sensory domains. Microb Physiol. 2003;5(1):11–16. doi: 10.1159/000068720
  • Pfiffer V, Sarenko O, Possling A, et al. Genetic dissection of Escherichia coli’s master diguanylate cyclase DgcE: role of the N-terminal MASE1 domain and direct signal input from a GTPase partner system. PLOS Genet. 2019;15(4):e1008059. doi: 10.1371/journal.pgen.1008059