163
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Screening optimal DC-targeting peptide to enhance the immune efficacy of recombinant Lactobacillus expressing RHDV VP60

, , , , , , , , , , , , , , & ORCID Icon show all
Article: 2368080 | Received 07 Feb 2024, Accepted 10 Jun 2024, Published online: 20 Jun 2024

References

  • Marcato PS, Benazzi C, Vecchi G, et al. Clinical and pathological features of viral haemorrhagic disease of rabbits and the European brown hare syndrome. Rev Sci Tech. 1991;10(2):371–15. doi: 10.20506/rst.10.2.560
  • Abrantes J, van der Loo W, Le Pendu J, et al. Rabbit haemorrhagic disease (RHD) and rabbit haemorrhagic disease virus (RHDV): a review. Vet Res. 2012;43(1):12. doi: 10.1186/1297-9716-43-12
  • Oem JK, Lee KN, Roh IS, et al. Identification and characterization of rabbit hemorrhagic disease virus genetic variants isolated in Korea. J Vet Med Sci. 2009;71(11):1519–1523. doi: 10.1292/jvms.001519
  • Parra F, Prieto M. Purification and characterization of a calicivirus as the causative agent of a lethal hemorrhagic disease in rabbits. J Virol. 1990;64(8):4013–4015. doi: 10.1128/jvi.64.8.4013-4015.1990
  • Boga JA, Marín MS, Casais R, et al. In vitro translation of a subgenomic mRNA from purified virions of the Spanish field isolate AST/89 of rabbit hemorrhagic disease virus (RHDV). Virus Res. 1992;26(1):33–40. doi: 10.1016/0168-1702(92)90144-X
  • Torres JM, Ramírez MA, Morales M, et al. Safety evaluation of a recombinant myxoma-RHDV virus inducing horizontal transmissible protection against myxomatosis and rabbit haemorrhagic disease. Vaccine. 2000;19(2–3):174–182. doi: 10.1016/S0264-410X(00)00183-3
  • Zhu J, Miao Q, Tan Y, et al. Inclusion of an arg-Gly-asp receptor-recognition motif into the capsid protein of rabbit hemorrhagic disease virus enables culture of the virus in vitro. J Biol Chem. 2017;292(21):8605–8615. doi: 10.1074/jbc.M117.780924
  • Argüello Villares JL. Viral haemorrhagic disease of rabbits: vaccination and immune response. Rev Sci Tech. 1991;10(2):459–480. doi: 10.20506/rst.10.2.554
  • Boga JA, Casais R, Marin MS, et al. Molecular cloning, sequencing and expression in Escherichia coli of the capsid protein gene from rabbit haemorrhagic disease virus (Spanish isolate AST/89). J Gen Virol. 1994;75(Pt 9):2409–2413. doi: 10.1099/0022-1317-75-9-2409
  • Boga JA, Martín Alonso JM, Casais R, et al. A single dose immunization with rabbit haemorrhagic disease virus major capsid protein produced in Saccharomyces cerevisiae induces protection. J Gen Virol. 1997;78(Pt 9):2315–2318. doi: 10.1099/0022-1317-78-9-2315
  • Farnós O, Boué O, Parra F, et al. High-level expression and immunogenic properties of the recombinant rabbit hemorrhagic disease virus VP60 capsid protein obtained in Pichia pastoris. J Biotechnol. 2005;117(3):215–224. doi: 10.1016/j.jbiotec.2005.01.013
  • Castanon S, Marin MS, Martin-Alonso JM, et al. Immunization with potato plants expressing VP60 protein protects against rabbit hemorrhagic disease virus. J Virol. 1999;73(5):4452–4455. doi: 10.1128/JVI.73.5.4452-4455.1999
  • Fernández-Fernández MR, Mouriño M, Rivera J, et al. Protection of rabbits against rabbit hemorrhagic disease virus by immunization with the VP60 protein expressed in plants with a potyvirus-based vector. Virology. 2001;280(2):283–291. doi: 10.1006/viro.2000.0762
  • Martín-Alonso JM, Castañón S, Alonso P, et al. Oral immunization using tuber extracts from transgenic potato plants expressing rabbit hemorrhagic disease virus capsid protein. Transgenic Res. 2003;12(1):127–130. doi: 10.1023/A:1022112717331
  • Gil F, Titarenko E, Terrada E, et al. Successful oral prime-immunization with VP60 from rabbit haemorrhagic disease virus produced in transgenic plants using different fusion strategies. Plant Biotechnol J. 2006;4(1):135–143. doi: 10.1111/j.1467-7652.2005.00172.x
  • Bertagnoli S, Gelfi J, Le Gall G, et al. Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein. J Virol. 1996;70(8):5061–5066. doi: 10.1128/jvi.70.8.5061-5066.1996
  • Fischer L, Le Gros FX, Mason PW, et al. A recombinant canarypox virus protects rabbits against a lethal rabbit hemorrhagic disease virus (RHDV) challenge. Vaccine. 1997;15(1):90–96. doi: 10.1016/S0264-410X(96)00102-8
  • Nagesha HS, Wang LF, Hyatt AD, et al. Self-assembly, antigenicity, and immunogenicity of the rabbit haemorrhagic disease virus (Czechoslovakian strain V-351) capsid protein expressed in baculovirus. Arch Virol. 1995;140(6):1095–1108. doi: 10.1007/BF01315418
  • Plana-Duran J, Bastons M, Rodriguez MJ, et al. Oral immunization of rabbits with VP60 particles confers protection against rabbit hemorrhagic disease. Arch Virol. 1996;141(8):1423–1436. doi: 10.1007/BF01718245
  • Gromadzka B, Szewczyk B, Konopa G, et al. Recombinant VP60 in the form of virion-like particles as a potential vaccine against rabbit hemorrhagic disease virus. Acta Biochim Pol. 2006;53(2):371–376. doi: 10.18388/abp.2006_3351
  • Wang L, Xia T, Guo T, et al. Recombinant lactobacillus casei expressing capsid protein VP60 can serve as vaccine against rabbit hemorrhagic disease virus in rabbits. Vaccines (Basel). 2019;7(4):7. doi: 10.3390/vaccines7040172
  • Pfeiler EA, Azcarate-Peril MA, Klaenhammer TR. Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus. J Bacteriol. 2007;189(13):4624–4634. doi: 10.1128/JB.00337-07
  • Daniel C, Roussel Y, Kleerebezem M, et al. Recombinant lactic acid bacteria as mucosal biotherapeutic agents. Trends Biotechnol. 2011;29(10):499–508. doi: 10.1016/j.tibtech.2011.05.002
  • Martín V, Maldonado A, Fernández L, et al. Inhibition of human immunodeficiency virus type 1 by lactic acid bacteria from human breastmilk. Breastfeed Med. 2010;5(4):153–158. doi: 10.1089/bfm.2010.0001
  • Mahe MM, Aihara E, Schumacher MA, et al. Establishment of gastrointestinal epithelial organoids. Curr Protoc Mouse Biol. 2013;3(4):217–240. doi: 10.1002/9780470942390.mo130179
  • Wu H, Xie S, Miao J, et al. Lactobacillus reuteri maintains intestinal epithelial regeneration and repairs damaged intestinal mucosa. Gut Microbes. 2020;11(4):997–1014. doi: 10.1080/19490976.2020.1734423
  • Craig K, Dai X, Li A, et al. A lactic acid bacteria (LAB)-based vaccine Candidate for human norovirus. Viruses. 2019;11(3):11. doi: 10.3390/v11030213
  • Eisenbarth SC. Dendritic cell subsets in T cell programming: location dictates function. Nat Rev Immunol. 2019;19(2):89–103. doi: 10.1038/s41577-018-0088-1
  • Ma S, Qiao X, Xu Y, et al. Screening and identification of a chicken dendritic cell binding peptide by using a phage display library. Front Immunol. 2019;10:1853. doi: 10.3389/fimmu.2019.01853
  • Shimizu T, Kawaguchi Y, Ando H, et al. Development of an antigen delivery system for a B cell-targeted vaccine as an alternative to dendritic cell-targeted vaccines. Chem Pharm Bull (Tokyo). 2022;70(5):341–350. doi: 10.1248/cpb.c22-00047
  • Embgenbroich M, Burgdorf S. Current concepts of antigen cross-presentation. Front Immunol. 2018;9:1643. doi: 10.3389/fimmu.2018.01643
  • Théry C, Amigorena S. The cell biology of antigen presentation in dendritic cells. Curr Opin Immunol. 2001;13(1):45–51. doi: 10.1016/S0952-7915(00)00180-1
  • Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18(1):767–811. doi: 10.1146/annurev.immunol.18.1.767
  • Lin J, Wang H, Liu C, et al. Dendritic cells: versatile players in renal transplantation. Front Immunol. 2021;12:654540. doi: 10.3389/fimmu.2021.654540
  • Deliyannis G, Boyle JS, Brady JL, et al. A fusion DNA vaccine that targets antigen-presenting cells increases protection from viral challenge. Proc Natl Acad Sci USA. 2000;97(12):6676–6680. doi: 10.1073/pnas.120162497
  • Lu M, Isogawa M, Xu Y, et al. Immunization with the gene expressing woodchuck hepatitis virus nucleocapsid protein fused to cytotoxic-T-lymphocyte-associated antigen 4 leads to enhanced specific immune responses in mice and woodchucks. J Virol. 2005;79(10):6368–6376. doi: 10.1128/JVI.79.10.6368-6376.2005
  • Rohrbach F, Weth R, Kursar M, et al. Targeted delivery of the ErbB2/HER2 tumor antigen to professional APCs results in effective antitumor immunity. J Immunol. 2005;174(9):5481–5489. doi: 10.4049/jimmunol.174.9.5481
  • Gerstmayer B, Pessara U, Wels W. Construction and expression in the yeast pichia pastoris of functionally active soluble forms of the human costimulatory molecules B7-1 and B7-2 and the B7 counter-receptor CTLA-4. FEBS Lett. 1997;407(1):63–68. doi: 10.1016/S0014-5793(97)00294-9
  • Owen JL, Sahay B, Mohamadzadeh M. New generation of oral mucosal vaccines targeting dendritic cells. Curr Opin Chem Biol. 2013;17(6):918–924. doi: 10.1016/j.cbpa.2013.06.013
  • Mohamadzadeh M, Duong T, Sandwick SJ, et al. Dendritic cell targeting of Bacillus anthracis protective antigen expressed by Lactobacillus acidophilus protects mice from lethal challenge. Proc Natl Acad Sci U S A. 2009;106(11):4331–4336. doi: 10.1073/pnas.0900029106
  • Chen W, Ma C, Wang D, et al. Immune response and protective efficacy of recombinant Enterococcus faecalis displaying dendritic cell–targeting peptide fused with Eimeria tenella 3-1E protein. Poult Sci. 2020;99(6):2967–2975. doi: 10.1016/j.psj.2020.03.014
  • Hou X, Jiang X, Jiang Y, et al. Oral immunization against PEDV with recombinant lactobacillus casei expressing dendritic cell-targeting peptide fusing COE protein of PEDV in Piglets. Viruses. 2018;10(3):10. doi: 10.3390/v10030106
  • Jin YB, Yang WT, Shi CW, et al. Immune responses induced by recombinant Lactobacillus plantarum expressing the spike protein derived from transmissible gastroenteritis virus in piglets. Appl Microbiol Biotechnol. 2018;102(19):8403–8417. doi: 10.1007/s00253-018-9205-0
  • Ma S, Wang L, Huang X, et al. Oral recombinant lactobacillus vaccine targeting the intestinal microfold cells and dendritic cells for delivering the core neutralizing epitope of porcine epidemic diarrhea virus. Microb Cell Fact. 2018;17(1):20. doi: 10.1186/s12934-018-0861-7
  • Xia T, Yang H, Guo Y, et al. Human dendritic cell targeting peptide can be targeted to porcine dendritic cells to improve antigen capture efficiency to stimulate stronger immune response. Front Immunol. 2022;13:950597. doi: 10.3389/fimmu.2022.950597
  • Wang Y, Feng B, Niu C, et al. Dendritic cell targeting of bovine viral diarrhea virus E2 protein expressed by lactobacillus casei effectively induces antigen-specific immune responses via oral vaccination. Viruses. 2019;11(6):11. doi: 10.3390/v11060575
  • Xia T, Wang N, Tang Y, et al. Delivery of antigen to porcine dendritic cells by fusing antigen with porcine dendritic cells targeting peptide. Front Immunol. 2022;13:926279. doi: 10.3389/fimmu.2022.926279
  • Percie du Sert N, Hurst V, Ahluwalia A, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. Br J Pharmacol. 2020;177:3617–3624. doi: 10.1111/bph.15193
  • Guo T, Gao C, Hao J, et al. Strategy of developing oral vaccine candidates against co-infection of porcine diarrhea viruses based on a Lactobacillus delivery system. Front Microbiol. 2022;13:872550. doi: 10.3389/fmicb.2022.872550
  • Reddy ST, Swartz MA, Hubbell JA. Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends Immunol. 2006;27(12):573–579. doi: 10.1016/j.it.2006.10.005
  • Macri C, Jenika D, Ouslinis C, et al. Targeting dendritic cells to advance cross-presentation and vaccination outcomes. Semin Immunol. 2023;68:101762. doi: 10.1016/j.smim.2023.101762
  • Caminschi I, Lahoud MH, Shortman K. Enhancing immune responses by targeting antigen to DC. Eur J Immunol. 2009;39(4):931–938. doi: 10.1002/eji.200839035
  • Wang Z, He Y, Wang W, et al. A novel “prime and pull” strategy mediated by the combination of two dendritic cell-targeting designs induced protective lung tissue-resident memory T cells against H1N1 influenza virus challenge. J Nanobiotechnology. 2023;21(1):479. doi: 10.1186/s12951-023-02229-y
  • Jia F, Sun C, Ge C, et al. Chicken dendritic cell-targeting nanobodies mediated improved protective effects against H9N2 influenza virus challenge in a homologous sequential immunization study. Vet Microbiol. 2023;285:109875. doi: 10.1016/j.vetmic.2023.109875
  • Kim SH, Shim EH, Kim DJ, et al. C5aR+ dendritic cells fine-tune the Peyer’s patch microenvironment to induce antigen-specific CD8+ T cells. NPJ Vaccines. 2023;8(1):120. doi: 10.1038/s41541-023-00720-z
  • Liu X, Xia X, Wang X, et al. Tropomodulin1 expression increases upon maturation in dendritic cells and promotes their maturation and immune functions. Front Immunol. 2020;11:587441. doi: 10.3389/fimmu.2020.587441
  • Ullah MO, Sweet MJ, Mansell A, et al. TRIF-dependent TLR signaling, its functions in host defense and inflammation, and its potential as a therapeutic target. J Leukocyte Biol. 2016;100(1):27–45. doi: 10.1189/jlb.2RI1115-531R
  • Noreen M, Arshad M. Association of TLR1, TLR2, TLR4, TLR6, and TIRAP polymorphisms with disease susceptibility. Immunol Res. 2015;62(2):234–252. doi: 10.1007/s12026-015-8640-6
  • Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat Med. 2005;11(S4):S45–53. doi: 10.1038/nm1213
  • Mantis NJ, Rol N, Corthésy B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 2011;4(6):603–611. doi: 10.1038/mi.2011.41
  • Kurashima Y, Kiyono H. Mucosal ecological network of epithelium and immune cells for gut homeostasis and tissue healing. Annu Rev Immunol. 2017;35(1):119–147. doi: 10.1146/annurev-immunol-051116-052424
  • Perera KD, Johnson D, Lovell S, et al. Potent protease inhibitors of highly pathogenic lagoviruses: rabbit hemorrhagic disease virus and European brown hare syndrome virus. Microbiol Spectr. 2022;10(4):e0014222. doi: 10.1128/spectrum.00142-22
  • Merchán T, Rocha G, Alda F, et al. Detection of rabbit haemorrhagic disease virus (RHDV) in nonspecific vertebrate hosts sympatric to the European wild rabbit (Oryctolagus cuniculus). Infect Genet Evol. 2011;11(6):1469–1474. doi: 10.1016/j.meegid.2011.05.001