418
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Pathogenicity and virulence of African swine fever virus

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2375550 | Received 08 Feb 2024, Accepted 28 Jun 2024, Published online: 07 Jul 2024

References

  • Salguero FJ. Comparative pathology and pathogenesis of African swine fever infection in Swine. Front Vet Sci. 2020;7:282. doi: 10.3389/fvets.2020.00282. Epub 2020/06/09. PubMed PMID: 32509811; PubMed Central PMCID: PMC7248413.
  • Dixon LK, Sun H, Roberts H. African swine fever. Antiviral Res. 2019;165:34–25. doi: 10.1016/j.antiviral.2019.02.018. Epub 2019/03/06. PubMed PMID: 30836106.
  • Ward MP, Tian K, Nowotny N. African swine fever, the forgotten pandemic. Transbound Emerg Dis. 2021;68(5):2637–2639. doi: 10.1111/tbed.14245. Epub 2021/09/10. PubMed PMID: 34499823.
  • Penrith ML. African swine fever: transboundary diseases. Onderstepoort J Vet Res. 2009;76(1):91–95. doi:10.4102/ojvr.v76i1.70. Epub 2009/12/09. PubMed PMID: 19967933
  • Anonymous. WOAH listed diseases. 2024. https://www.woah.org/en/what-we-do/animal-health-and-welfare/animal-diseases/
  • Sánchez-Vizcaíno JM, Mur L, Gomez-Villamandos JC, et al. An update on the epidemiology and pathology of African swine fever. J Comp Pathol. 2015;152(1):9–21. doi: 10.1016/j.jcpa.2014.09.003. Epub 2014/12/03. PubMed PMID: 25443146.
  • Pan IC, Hess WR. Virulence in African swine fever: its measurement and implications. Am J Vet Res. 1984;45(2):361–366. Epub 1984/02/01. PubMed PMID: 6711963.
  • Forth JH, Calvelage S, Fischer M, et al. African swine fever virus – variants on the rise. Emerg Microbes Infect. 2023;12(1):2146537. doi: 10.1080/22221751.2022.2146537. Epub 2022/11/11. PubMed PMID: 36356059; PubMed Central PMCID: PMC9793911.
  • Zhu JJ, Ramanathan P, Bishop EA, et al. Mechanisms of African swine fever virus pathogenesis and immune evasion inferred from gene expression changes in infected swine macrophages. PLOS ONE. 2019;14(11):e0223955. doi: 10.1371/journal.pone.0223955. Epub 2019/11/15. PubMed PMID: 31725732.
  • Blome S, Franzke K, Beer M. African swine fever – a review of current knowledge. Virus Res. 2020;287:198099. doi: 10.1016/j.virusres.2020.198099. Epub 2020/08/07. PubMed PMID: 32755631.
  • Sun E, Huang L, Zhang X, et al. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection. Emerg Microbes Infect. 2021;10(1):2183–2193. doi: 10.1080/22221751.2021.1999779. Epub 2021/10/29. PubMed PMID: 34709128; PubMed Central PMCID: PMC8635679.
  • Sánchez-Cordón PJ, Nunez A, Neimanis A, et al. African swine fever: disease dynamics in wild boar experimentally infected with ASFV isolates belonging to genotype I and II. Viruses. 2019;11(9):852. doi: 10.3390/v11090852. Epub 2019/09/22. PubMed PMID: 31540341; PubMed Central PMCID: PMC6783972.
  • Pikalo J, Zani L, Hühr J, et al. Pathogenesis of African swine fever in domestic pigs and European wild boar–lessons learned from recent animal trials. Virus Res. 2019;271:197614. doi: 10.1016/j.virusres.2019.04.001. Epub 2019/04/07. PubMed PMID: 30953662.
  • Lentz HHK, Bergmann H, Conraths FJ, et al. The diffusion metrics of African swine fever in wild boar. Sci Rep. 2023;13(1):15110. doi: 10.1038/s41598-023-42300-0. Epub 2023/09/14. PubMed PMID: 37704714; PubMed Central PMCID: PMC10499946.
  • Jo YS, Gortázar C. African swine fever in wild boar: assessing interventions in South Korea. Transbound Emerg Dis. 2021;68(5):2878–2889. doi: 10.1111/tbed.14106. Epub 2021/04/13. PubMed PMID: 33844467.
  • Koh EY, Tan AKS, Yeo D, et al. Detection of African swine fever virus from wild boar, Singapore, 2023. Emerg Infect Dis. 2023;29(12):2580–2583. doi: 10.3201/eid2912.230966. Epub 2023/09/15. PubMed PMID: 37708842; PubMed Central PMCID: PMC10683832.
  • Schulz K, Masiulis M, Staubach C, et al. African swine fever and its epidemiological course in Lithuanian wild boar. Viruses. 2021;13(7):1276. doi: 10.3390/v13071276. Epub 2021/07/03. PubMed PMID: 34208894; PubMed Central PMCID: PMC8310040.
  • Rogoll L, Güttner AK, Schulz K, et al. Seasonal occurrence of African swine fever in wild boar and domestic pigs in EU member states. Viruses. 2023;15(9):1955. doi: 10.3390/v15091955. Epub 2023/09/28. PubMed PMID: 37766361; PubMed Central PMCID: PMC10536336.
  • Fekede RJ, HaoNing W, Hein VG, et al. Could wild boar be the trans-Siberian transmitter of African swine fever? Transbound Emerg Dis. 2021;68(3):1465–1475. doi: 10.1111/tbed.13814. Epub 2020/09/01. PubMed PMID: 32866334.
  • Montgomery RE. On a form of swine fever occurring in British East Africa (Kenya colony). J Comp Pathol And Ther. 1921;34:159–191. doi: 10.1016/S0368-1742(21)80031-4.
  • Jori F, Bastos AD. Role of wild suids in the epidemiology of African swine fever. Ecohealth. 2009;6(2):296–310. doi: 10.1007/s10393-009-0248-7. Epub 2009/11/17. PubMed PMID: 19915917.
  • Oberin M, Hillman A, Ward MP, et al. The potential role of wild suids in African swine fever spread in Asia and the pacific region. Viruses. 2022;15(1):61. doi: 10.3390/v15010061. Epub 2023/01/22. PubMed PMID: 36680101; PubMed Central PMCID: PMC9867030.
  • Anderson EC, Hutchings GH, Mukarati N, et al. African swine fever virus infection of the bushpig (potamochoerus porcus) and its significance in the epidemiology of the disease. Vet Microbiol. 1998;62(1):1–15. doi: 10.1016/s0378-1135(98)00187-4. Epub 1998/07/11. PubMed PMID: 9659687.
  • Oura CA, Powell PP, Anderson E, et al. The pathogenesis of African swine fever in the resistant bushpig. J Gen Virol. 1998;79(6):1439–1443. doi: 10.1099/0022-1317-79-6-1439. Epub 1998/06/20. PubMed PMID: 9634086.
  • Penrith ML, Bastos AD, Etter EMC, et al. Epidemiology of African swine fever in Africa today: sylvatic cycle versus socio-economic imperatives. Transbound Emerg Dis. 2019;66(2):672–686. doi: 10.1111/tbed.13117. Epub 2019/01/12. PubMed PMID: 30633851.
  • Jori F, Vial L, Penrith ML, et al. Review of the sylvatic cycle of African swine fever in sub-Saharan Africa and the Indian ocean. Virus Res. 2013;173(1):212–227. doi: 10.1016/j.virusres.2012.10.005. Epub 2012/11/13. PubMed PMID: 23142551.
  • Luskin MS, Meijaard E, Surya S, et al. African swine fever threatens Southeast Asia’s 11 endemic wild pig species. 2021;14(3):e12784. doi: 10.1111/conl.12784.
  • Meijaard E, Erman A, Ancrenaz M, et al. Pig virus imperils food security in borneo. Science. 2024;383(6680):267. doi: 10.1126/science.adn3857.
  • Roger F, Ratovonjato J, Vola P, et al. Ornithodoros porcinus ticks, bushpigs, and African swine fever in madagascar. Exp Appl Acarol. 2001;25(3):263–269. doi: 10.1023/a:1010687502145. Epub 2001/08/29. PubMed PMID: 11523921.
  • Gaudreault NN, Madden DW, Wilson WC, et al. African swine fever virus: an emerging DNA arbovirus. Front Vet Sci. 2020;7:215. doi: 10.3389/fvets.2020.00215. Epub 2020/06/02. PubMed PMID: 32478103; PubMed Central PMCID: PMC7237725.
  • Jori F, Bastos A, Boinas F, et al. An updated review of ornithodoros ticks as reservoirs of African swine fever in sub-Saharan Africa and Madagascar. Pathogens. 2023;12(3):469. doi: 10.3390/pathogens12030469. Epub 2023/03/30. PubMed PMID: 36986391; PubMed Central PMCID: PMC10059854.
  • Kleiboeker SB, Scoles GA. Pathogenesis of African swine fever virus in ornithodoros ticks. Anim Health Res Rev. 2001;2(2):121–128. doi: 10.1079/AHRR200133. Epub 2002/02/08. PubMed PMID: 11831434.
  • Anholt H, Hillman V, Vaughan J, et al. The soft tick ornithodoros moubata and its role in the epidemiology of African swine fever in Central Malawi. J Wildl Dis. 2023;59(3):465–471. doi: 10.7589/jwd-d-22-00090. Epub 2023/05/12. PubMed PMID: 37170355.
  • Basto AP, Nix RJ, Boinas F, et al. Kinetics of African swine fever virus infection in ornithodoros erraticus ticks. J Gen Virol. 2006;87(Pt 7):1863–1871. doi: 10.1099/vir.0.81765-0. Epub 2006/06/09. PubMed PMID: 16760388.
  • Pereira de Oliveira R, Hutet E, Paboeuf F, et al. Comparative vector competence of the Afrotropical soft tick ornithodoros moubata and palearctic species, O. erraticus and O. verrucosus, for African swine fever virus strains circulating in Eurasia. PLOS ONE. 2019;14(11):e0225657. doi: 10.1371/journal.pone.0225657. Epub 2019/11/28. PubMed PMID: 31774871; PubMed Central PMCID: PMC6881060.
  • Kleiboeker SB, Burrage TG, Scoles GA, et al. African swine fever virus infection in the argasid host, ornithodoros porcinus porcinus. J Virol. 1998;72(3):1711–1724. doi: 10.1128/jvi.72.3.1711-1724.1998. Epub 1998/03/14. PubMed PMID: 9499019; PubMed Central PMCID: PMC109458.
  • Guinat C, Gubbins S, Vergne T, et al. Experimental pig-to-pig transmission dynamics for African swine fever virus, Georgia 2007/1 strain. Epidemiol Infect. 2016;144(1):25–34. doi: 10.1017/S0950268815000862. Epub 2015/05/21. PubMed PMID: 25989921; PubMed Central PMCID: PMC4697298.
  • Dixon LK, Stahl K, Jori F, et al. African swine fever epidemiology and control. Annu. Rev. Anim. Biosci. 2020;8(1):221–246. doi: 10.1146/annurev-animal-021419-083741. Epub 2019/11/20. PubMed PMID: 31743062.
  • Juszkiewicz M, Walczak M, Woźniakowski G, et al. African swine fever: transmission, spread, and control through biosecurity and disinfection, including polish trends. Viruses. 2023;15(11):2275. doi: 10.3390/v15112275. Epub 2023/11/25. PubMed PMID: 38005951; PubMed Central PMCID: PMC10674562.
  • Liu Y, Zhang X, Qi W, et al. Prevention and control strategies of African swine fever and progress on pig farm repopulation in China. Viruses. 2021;13(12):2552. doi: 10.3390/v13122552. Epub 2021/12/29. PubMed PMID: 34960821; PubMed Central PMCID: PMC8704102.
  • Main AR, Halasa T, Olesen AS, et al. Estimating transmission dynamics of African swine fever virus from experimental studies. Transbound Emerg Dis. 2022;69(6):3858–3867. doi: 10.1111/tbed.14757. Epub 2022/11/09. PubMed PMID: 36346271; PubMed Central PMCID: PMC10098825.
  • Guinat C, Gogin A, Blome S, et al. Transmission routes of African swine fever virus to domestic pigs: current knowledge and future research directions. Vet Rec. 2016;178(11):262–267. doi: 10.1136/vr.103593. Epub 2016/03/12. PubMed PMID: 26966305; PubMed Central PMCID: PMC4819659.
  • Mutua F, Dione M. The context of application of biosecurity for control of African swine fever in smallholder pig systems: current gaps and recommendations. Front Vet Sci. 2021;8:689811. doi: 10.3389/fvets.2021.689811. Epub 2021/08/20. PubMed PMID: 34409087; PubMed Central PMCID: PMC8364973.
  • Klein L, Hessling-Zeinen S, Adler F, et al. Exploring pig farmers‘ decision-making concerning biosecurity measures against African swine fever. Prev Vet Med. 2023;217:105949. doi: 10.1016/j.prevetmed.2023.105949. Epub 2023/06/08. PubMed PMID: 37285701.
  • Ekakoro JE, Nawatti M, Singler DF, et al. A survey of biosecurity practices of pig farmers in selected districts affected by African swine fever in Uganda. Front Vet Sci. 2023;10:1245754. doi: 10.3389/fvets.2023.1245754. Epub 2023/09/04. PubMed PMID: 37662985; PubMed Central PMCID: PMC10469975.
  • Turlewicz-Podbielska H, Kuriga A, Niemyjski R, et al. African swine fever virus as a difficult opponent in the fight for a vaccine—current data. Viruses. 2021;13(7):1212. doi: 10.3390/v13071212. Epub 2021/07/03. PubMed PMID: 34201761; PubMed Central PMCID: PMC8310326.
  • Urbano AC, Ferreira F. African swine fever control and prevention: an update on vaccine development. Emerg Microbes Infect. 2022;11(1):2021–2033. doi: 10.1080/22221751.2022.2108342. Epub 2022/08/02. PubMed PMID: 35912875; PubMed Central PMCID: PMC9423837.
  • Zhang H, Zhao S, Zhang H, et al. Vaccines for African swine fever: an update. Front Microbiol. 2023;14:1139494. doi: 10.3389/fmicb.2023.1139494. Epub 2023/05/14. PubMed PMID: 37180260; PubMed Central PMCID: PMC10173882.
  • Muñoz-Pérez C, Jurado C, Sánchez-Vizcaíno JM. African swine fever vaccine: turning a dream into reality. Transbound Emerg Dis. 2021;68(5):2657–2668. doi: 10.1111/tbed.14191. Epub 2021/06/18. PubMed PMID: 34137198.
  • Rock DL. Challenges for African swine fever vaccine development-“ … perhaps the end of the beginning”. Vet Microbiol. 2017;206:52–58. doi: 10.1016/j.vetmic.2016.10.003. Epub 2016/10/21. PubMed PMID: 27756505.
  • Tran XH, Le TTP, Nguyen QH, et al. African swine fever virus vaccine candidate ASFV-G-ΔI1s77L efficiently protects European and native pig breeds against circulating Vietnamese field strain. Transbound Emerg Dis. 2022;69(4):e497–e504. doi: 10.1111/tbed.14329. Epub 2021/09/29. PubMed PMID: 34582622.
  • Borca MV, Ramirez-Medina E, Silva E, et al. Development of a highly effective African swine fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic Eurasia strain. J Virol. 2020;94(7). doi: 10.1128/jvi.02017-19. Epub 2020/01/24. PubMed PMID: 31969432; PubMed Central PMCID: PMC7081903.
  • Borca MV, Rai A, Espinoza N, et al. African swine fever vaccine candidate ASFV-G-ΔI177L produced in the swine macrophage-derived cell line IPKM remains genetically stable and protective against homologous virulent challenge. Viruses. 2023;15(10):2064. doi: 10.3390/v15102064. Epub 2023/10/28. PubMed PMID: 37896841; PubMed Central PMCID: PMC10612016.
  • Gladue DP, Ramirez-Medina E, Vuono E, et al. Deletion of the A137R gene from the pandemic strain of African swine fever virus attenuates the strain and offers protection against the virulent pandemic virus. J Virol. 2021;95(21):e0113921. doi: 10.1128/jvi.01139-21. Epub 2021/08/19. PubMed PMID: 34406865; PubMed Central PMCID: PMC8513468.
  • Cadenas-Fernández E, Sánchez-Vizcaíno JM, van den Born E, et al. High doses of inactivated African swine fever virus are safe, but do not confer protection against a virulent challenge. Vaccines (Basel). 2021;9(3):242. doi: 10.3390/vaccines9030242. Epub 2021/04/04. PubMed PMID: 33802021; PubMed Central PMCID: PMC7999564.
  • Goatley LC, Reis AL, Portugal R, et al. A pool of eight virally vectored African swine fever antigens protect pigs against fatal disease. Vaccines (Basel). 2020;8(2):234. doi: 10.3390/vaccines8020234. Epub 2020/05/24. PubMed PMID: 32443536; PubMed Central PMCID: PMC7349991.
  • Revilla Y, Pérez-Núñez D, Richt JA. African swine fever virus biology and vaccine approaches. Adv Virus Res. 2018;100:41–74. doi: 10.1016/bs.aivir.2017.10.002. Epub 2018/03/20. PubMed PMID: 29551143.
  • Sanchez-Vizcaino JM, Mur L, Gomez-Villamandos JC, et al. An update on the epidemiology and pathology of African swine fever. J Comp Pathol. 2015;152(1):9–21. doi: 10.1016/j.jcpa.2014.09.003. Epub 2014/12/03. PubMed PMID: 25443146.
  • Wang F, Zhang H, Hou L, et al. Advance of African swine fever virus in recent years. Res Vet Sci. 2021;136:535–539. doi: 10.1016/j.rvsc.2021.04.004. Epub 2021/04/22. PubMed PMID: 33882382.
  • Bellini S, Casadei G, De Lorenzi G, et al. A review of risk factors of African swine fever incursion in pig farming within the European Union scenario. Pathogens. 2021;10(1):84. doi: 10.3390/pathogens10010084. Epub 2021/01/23. PubMed PMID: 33478169; PubMed Central PMCID: PMC7835761.
  • Penrith ML, Kivaria FM. One hundred years of African swine fever in Africa: where have we been, where are we now, where are we going? Transbound Emerg Dis. 2022;69(5):e1179–e200. doi: 10.1111/tbed.14466. Epub 2022/02/02. PubMed PMID: 35104041.
  • Maurer FD, Griesemer RA. The pathology of African swine fever; a comparison with hog cholera. Am J Vet Res. 1958;19(72):517–539. Epub 1958/07/01. PubMed PMID: 13559600.
  • Salmon DE. The virus of hog cholera. Public health papers and reports. Public Health Pap Rep. 1885;11:73–77. Epub 1885/01/01. PubMed PMID: 19600258; PubMed Central PMCID: PMC2266199.
  • Blome S, Staubach C, Henke J, et al. Classical swine fever—an updated review. Viruses. 2017;9(4):86. doi: 10.3390/v9040086. Epub 2017/04/22. PubMed PMID: 28430168; PubMed Central PMCID: PMC5408692.
  • Gomez-Villamandos JC, Carrasco L, Bautista MJ, et al. African swine fever and classical swine fever: a review of the pathogenesis. Dtsch Tierarztl Wochenschr. 2003;110(4):165–169. Epub 2003/05/22. PubMed PMID: 12756959.
  • Hammond RA, Detray DE. A recent case of African swine fever in Kenya, East Africa. J Am Vet Med Assoc. 1955;126(938):389–391. Epub 1955/05/01. PubMed PMID: 14367196.
  • Sanchez-Vizcaino JM, Mur L, Martinez-Lopez B. African swine fever: an epidemiological update. Transbound Emerg Dis. 2012;59(Suppl 1):27–35. doi: 10.1111/j.1865-1682.2011.01293.x. Epub 2012/01/10. PubMed PMID: 22225967.
  • Biront P, Castryck F, Leunen J. An epizootic of African swine fever in Belgium and its eradication. Vet Rec. 1987;120(18):432–434. doi: 10.1136/vr.120.18.432. Epub 1987/05/02. PubMed PMID: 3603981.
  • Swaney LM, Lyburt F, Mebus CA, et al. Genome analysis of African swine fever virus isolated in Italy in 1983. Vet Microbiol. 1987;14(2):101–104. doi: 10.1016/0378-1135(87)90001-0. Epub 1987/06/01. PubMed PMID: 2821672.
  • Terpstra C, Wensvoort G. African swine fever in the Netherlands. Tijdschr Diergeneeskd. 1986;111(8):389–392. Epub 1986/04/15. PubMed PMID: 3518145.
  • Wilkinson PJ, Wardley RC, Williams SM. African swine fever virus (Malta/78) in pigs. J Comput Pathol. 1981;91(2):277–284. doi: 10.1016/0021-9975(81)90033-5. Epub 1981/04/01. PubMed PMID: 7345110.
  • Korennoy FI, Gulenkin VM, Gogin AE, et al. Estimating the basic reproductive number for African swine fever using the Ukrainian historical epidemic of 1977. Transbound Emerg Dis. 2017;64(6):1858–1866. doi: 10.1111/tbed.12583. Epub 2016/09/27. PubMed PMID: 27667658.
  • [Preliminary report on the African swine fever epizootic in Cuba. Methods of diagnosis and control]. Bull Off Int Epizoot. 1971;75(7):367–437. Epub 1971/07/01. PubMed PMID: 5168939.
  • Alexander FC. Experiences with African swine fever in Haiti. Ann NY Acad Sci. 1992;653(1):251–256. doi: 10.1111/j.1749-6632.1992.tb19654.x. Epub 1992/06/16. PubMed PMID: 1626878.
  • Mebus CA, Dardiri AH, Hamdy FM, et al. Some characteristics of African swine fever viruses isolated from Brazil and the Dominican Republic. Proc Annu Meet U S Anim Health Assoc. 1978;(82):232–236. Epub 1978/01/01. PubMed PMID: 287093.
  • Reichard RE. African swine fever in the Americas. Proc Annu Meet US Anim Health Assoc. 2024;1978(82):226–231. Epub 1978/01/01. PubMed PMID: 287092.
  • DE Paula Lyra LTM, Saraiva VEV, Hermida Lage GR, et al. Eradication of African swine fever from Brazil. Rev Sci Tech. 1986;5(3):771–787. doi: 10.20506/rst.5.3.261. Epub 1986/09/01. PubMed PMID: 32736448.
  • Laddomada A, Rolesu S, Loi F, et al. Surveillance and control of African swine fever in free-ranging pigs in Sardinia. Transbound Emerg Dis. 2019;66(3):1114–1119. doi: 10.1111/tbed.13138. Epub 2019/02/05. PubMed PMID: 30715791; PubMed Central PMCID: PMC6849606.
  • Penrith ML, Vosloo W. Review of African swine fever: transmission, spread and control. J S Afr Vet Assoc. 2009;80(2):58–62. doi: 10.4102/jsava.v80i2.172. Epub 2009/10/17. PubMed PMID: 19831264.
  • Costard S, Wieland B, de Glanville W, et al. African swine fever: how can global spread be prevented? Philos Trans R Soc Lond B Biol Sci. 2009;364(1530):2683–2696. doi: 10.1098/rstb.2009.0098. Epub 2009/08/19. PubMed PMID: 19687038; PubMed Central PMCID: PMC2865084.
  • Rowlands RJ, Michaud V, Heath L, et al. African swine fever virus isolate, Georgia, 2007. Emerg Infect Dis. 2008;14(12):1870–1874. doi: 10.3201/eid1412.080591. Epub 2008/12/03. PubMed PMID: 19046509; PubMed Central PMCID: PMC2634662.
  • Oganesyan AS, Petrova ON, Korennoy FI, et al. African swine fever in the Russian federation: spatio-temporal analysis and epidemiological overview. Virus Res. 2013;173(1):204–211. doi: 10.1016/j.virusres.2012.12.009. Epub 2013/01/01. PubMed PMID: 23274108.
  • Sánchez-Vizcaíno JM, Mur L, Martínez-López B. African swine fever (ASF): five years around Europe. Vet Microbiol. 2013;165(1–2):45–50. doi: 10.1016/j.vetmic.2012.11.030. Epub 2012/12/26. PubMed PMID: 23265248.
  • Sargsyan MA, Voskanyan HE, Karalova EM. Third wave of African swine fever infection in Armenia: Virus demonstrates the reduction of pathogenicity. Vet World. 2018;11(1):5–9. doi: 10.14202/vetworld.2018.5-9. Epub 2018/02/27. PubMed PMID: 29479149; PubMed Central PMCID: PMC5813512.
  • Bezymennyi M, Tarasov O, Kyivska GV, et al. Epidemiological characterization of African swine fever dynamics in Ukraine, 2012–2023. Vaccines (Basel). 2023;11(7):1145. doi: 10.3390/vaccines11071145. Epub 2023/07/29. PubMed PMID: 37514961; PubMed Central PMCID: PMC10384127.
  • Kolbasov D, Titov I, Tsybanov S, et al. African swine fever virus, Siberia, Russia, 2017. Emerg Infect Dis. 2018;24(4):796–798. doi: 10.3201/eid2404.171238. Epub 2018/03/20. PubMed PMID: 29553323; PubMed Central PMCID: PMC5875268.
  • Rahimi P, Sohrabi A, Ashrafihelan J, et al. Emergence of African swine fever virus, northwestern Iran. Emerg Infect Dis. 2010;16(12):1946–1948. doi: 10.3201/eid1612.100378. Epub 2010/12/03. PubMed PMID: 21122227; PubMed Central PMCID: PMC3294588.
  • Chapman David AG, Darby AC, Da Silva M, et al. Genomic analysis of highly virulent Georgia 2007/1 isolate of African swine fever virus. Emerg Infect Dis. 2011;17(4):599–605. doi: 10.3201/eid1704.101283. Epub 2011/04/08. PubMed PMID: 21470447; PubMed Central PMCID: PMC3379899.
  • Cwynar P, Stojkov J, Wlazlak K. African swine fever status in Europe. Viruses. 2019;11(4):310. doi: 10.3390/v11040310. Epub 2019/04/03. PubMed PMID: 30935026; PubMed Central PMCID: PMC6521326.
  • Gallardo C, Fernandez-Pinero J, Pelayo V, et al. Genetic variation among African swine fever genotype II viruses, eastern and central Europe. Emerg Infect Dis. 2014;20(9):1544–1547. doi: 10.3201/eid2009.140554. Epub 2014/08/26. PubMed PMID: 25148518; PubMed Central PMCID: PMC4178389.
  • Olsevskis E, Guberti V, Serzants M, et al. African swine fever virus introduction into the EU in 2014: experience of Latvia. Res Vet Sci. 2016;105:28–30. doi: 10.1016/j.rvsc.2016.01.006. Epub 2016/04/02. PubMed PMID: 27033903.
  • Nurmoja I, Motus K, Kristian M, et al. Epidemiological analysis of the 2015-2017 African swine fever outbreaks in Estonia. Prev Vet Med. 2020;181. doi: 10.1016/j.prevetmed.2018.10.001. Epub 2018/11/30. PubMed PMID: 30482617.
  • Ungur A, Cazan CD, Panait LC, et al. Genotyping of African swine fever virus (ASFV) isolates in Romania with the first report of genotype II in symptomatic pigs. Vet Sci. 2021;8(12):290. doi: 10.3390/vetsci8120290. Epub 2021/12/24. PubMed PMID: 34941817; PubMed Central PMCID: PMC8706303.
  • Martínez-Avilés M, Iglesias I, De La Torre A. Evolution of the ASF infection stage in wild boar within the EU (2014-2018). Front Vet Sci. 2020;7:155. doi: 10.3389/fvets.2020.00155. Epub 2020/04/17. PubMed PMID: 32296720; PubMed Central PMCID: PMC7141172.
  • Zhou L, Yu EYW, Wang S, et al. African swine fever epidemic in China. Veterinary Record. 2019;184(23):713. doi: 10.1136/vr.l4026. Epub 2019/06/09. PubMed PMID: 31175249.
  • Li X, Tian K. African swine fever in China. Vet Rec. 2018;183(9):300–301. doi: 10.1136/vr.k3774. Epub 2018/09/09. PubMed PMID: 30194128.
  • Le VP, Jeong DG, Yoon SW, et al. Outbreak of African swine fever, Vietnam, 2019. Emerg Infect Dis. 2019;25(7):1433–1435. doi: 10.3201/eid2507.190303. Epub 2019/05/11. PubMed PMID: 31075078; PubMed Central PMCID: PMC6590755.
  • Shao Q, Li R, Han Y, et al. Temporal and spatial evolution of the African swine fever epidemic in Vietnam. Int J Environ Res Public Health. 2022;19(13):8001. doi: 10.3390/ijerph19138001. Epub 2022/07/10. PubMed PMID: 35805660; PubMed Central PMCID: PMC9265385.
  • Mighell E, Ward MP. African swine fever spread across Asia, 2018-2019. Transbound Emerg Dis. 2021;68(5):2722–2732. doi: 10.1111/tbed.14039. Epub 2021/02/19. PubMed PMID: 33599077.
  • Tran HTT, Truong AD, Dang AK, et al. Genetic characterization of African swine fever viruses circulating in North Central region of Vietnam. Transbound Emerg Dis. 2021;68(3):1697–1699. doi: 10.1111/tbed.13835. Epub 2020/09/18. PubMed PMID: 32939964.
  • Nga BTT, Padungtod P, Depner K, et al. Implications of partial culling on African swine fever control effectiveness in Vietnam. Front Vet Sci. 2022;9:957918. doi: 10.3389/fvets.2022.957918. Epub 2022/09/20. PubMed PMID: 36118335; PubMed Central PMCID: PMC9479321.
  • Nga BTT, Tran Anh Dao B, Nguyen Thi L, et al. Clinical and pathological study of the first outbreak cases of African swine fever in Vietnam, 2019. Front Vet Sci. 2020;7:392. doi: 10.3389/fvets.2020.00392. Epub 2020/08/01. PubMed PMID: 32733925; PubMed Central PMCID: PMC7360720.
  • Nguyen-Thi T, Pham-Thi-Ngoc L, Nguyen-Ngoc Q, et al. An assessment of the economic impacts of the 2019 African swine fever outbreaks in Vietnam. Front Vet Sci. 2021;8:686038. doi: 10.3389/fvets.2021.686038. Epub 2021/11/12. PubMed PMID: 34760953; PubMed Central PMCID: PMC8573105.
  • Barnes TS, Morais O, Cargill C, et al. First steps in managing the challenge of African swine fever in Timor-Leste. One Health. 2020;10:100151. doi: 10.1016/j.onehlt.2020.100151. Epub 2020/10/30. PubMed PMID: 33117869; PubMed Central PMCID: PMC7582221.
  • Gonzales W, Moreno C, Duran U, et al. African swine fever in the Dominican Republic. Transbound Emerg Dis. 2021;68(6):3018–3019. doi: 10.1111/tbed.14341. Epub 2021/10/06. PubMed PMID: 34609795.
  • Jean-Pierre RP, Hagerman AD, Rich KM. An analysis of African swine fever consequences on rural economies and smallholder swine producers in Haiti. Front Vet Sci. 2022;9:960344. doi: 10.3389/fvets.2022.960344. Epub 2022/11/01. PubMed PMID: 36311651; PubMed Central PMCID: PMC9597192.
  • Ruiz-Saenz J, Diaz A, Bonilla-Aldana DK, et al. African swine fever virus: a re-emerging threat to the swine industry and food security in the Americas. Front Microbiol. 2022;13:1011891. doi: 10.3389/fmicb.2022.1011891. Epub 2022/10/25. PubMed PMID: 36274746; PubMed Central PMCID: PMC9581234.
  • Sykes AL, Galvis JA, O’Hara KC, et al. Estimating the effectiveness of control actions on African swine fever transmission in commercial swine populations in the United States. Preventive Veterinary Medicine. 2023;217:105962. doi: 10.1016/j.prevetmed.2023.105962. Epub 2023/06/25. PubMed PMID: 37354739.
  • Sauter-Louis C, Schulz K, Richter M, et al. African swine fever: Why the situation in Germany is not comparable to that in the Czech Republic or Belgium. Transbound Emerg Dis. 2022;69(4):2201–2208. doi: 10.1111/tbed.14231. Epub 2021/07/12. PubMed PMID: 34247453.
  • Richter M, Schulz K, Elflein T, et al. The first eighteen months of African swine fever in wild boar in Saxony, Germany and Latvia—a comparison. Pathogens. 2023;12(1):87. doi: 10.3390/pathogens12010087. Epub 2023/01/22.PubMed PMID: 36678435; PubMed Central PMCID: PMC9867452.
  • Pavone S, Iscaro C, Dettori A. African swine fever: the state of the art in Italy. Animals (Basel). 2023;13(19):2998. doi: 10.3390/ani13192998. Epub 2023/10/14. PubMed PMID: 37835604; PubMed Central PMCID: PMC10571570.
  • Giammarioli M, Alessandro D, Cammà C, et al. Molecular characterization of the first African swine fever virus genotype II strains identified from Mainland Italy, 2022. Pathogens. 2023;12(3):372. doi: 10.3390/pathogens12030372. Epub 2023/03/30. PubMed PMID: 36986294; PubMed Central PMCID: PMC10055901.
  • Brellou GD, Tassis PD, Apostolopoulou EP, et al. Report on the first African swine fever case in Greece. Vet Sci. 2021;8(8):163. doi: 10.3390/vetsci8080163. Epub 2021/08/27. PubMed PMID: 34437485; PubMed Central PMCID: PMC8402752.
  • Costard S, Mur L, Lubroth J, et al. Epidemiology of African swine fever virus. Virus Res. 2013;173(1):191–197. doi: 10.1016/j.virusres.2012.10.030. Epub 2012/11/06. PubMed PMID: 23123296.
  • Carrascosa JL, Carazo JM, Carrascosa AL, et al. General morphology and capsid fine structure of African swine fever virus particles. Virology. 1984;132(1):160–172. doi: 10.1016/0042-6822(84)90100-4. Epub 1984/01/15. PubMed PMID: 6695498.
  • Andres G, Simon-Mateo C, Vinuela E. Assembly of African swine fever virus: role of polyprotein. J Virol. 1997;71(3):2331–2341. doi: 10.1128/jvi.71.3.2331-2341.1997. Epub 1997/03/01. PubMed PMID: 9032369; PubMed Central PMCID: PMC191342.
  • Salas ML, Andres G. African swine fever virus morphogenesis. Virus Res. 2013;173(1):29–41. doi: 10.1016/j.virusres.2012.09.016. Epub 2012/10/13. PubMed PMID: 23059353.
  • Jia N, Ou Y, Pejsak Z, et al. Roles of African swine fever virus structural proteins in viral infection. J Vet Res. 2017;61(2):135–143. doi: 10.1515/jvetres-2017-0017. Epub 2018/07/07. PubMed PMID: 29978065; PubMed Central PMCID: PMC5894393.
  • Alcami A, Carrascosa AL, Vinuela E. The entry of African swine fever virus into vero cells. Virology. 1989;171(1):68–75. doi: 10.1016/0042-6822(89)90511-4. Epub 1989/07/01. PubMed PMID: 2741349.
  • Alejo A, Matamoros T, Guerra M, et al. A proteomic atlas of the African swine fever virus particle. J Virol. 2018;92(23). doi: 10.1128/JVI.01293-18. Epub 2018/09/07. PubMed PMID: 30185597; PubMed Central PMCID: PMC6232493.
  • Galindo I, Vinuela E, Carrascosa AL. Protein cell receptors mediate the saturable interaction of African swine fever virus attachment protein p12 with the surface of permissive cells. Virus Res. 1997;49(2):193–204. doi: 10.1016/s0168-1702(97)00037-3. Epub 1997/06/01. PubMed PMID: 9213394.
  • Alcami A, Angulo A, Lopez-Otin C, et al. Amino acid sequence and structural properties of protein p12, an African swine fever virus attachment protein. J Virol. 1992;66(6):3860–3868. doi: 10.1128/jvi.66.6.3860-3868.1992. Epub 1992/06/01. PubMed PMID: 1583732; PubMed Central PMCID: PMC241171.
  • Angulo A, Vinuela E, Alcami A. Inhibition of African swine fever virus binding and infectivity by purified recombinant virus attachment protein p12. J Virol. 1993;67(9):5463–5471. doi: 10.1128/jvi.67.9.5463-5471.1993. Epub 1993/09/01. PubMed PMID: 8350406; PubMed Central PMCID: PMC237948
  • Duan X, Ru Y, Yang W, et al. Research progress on the proteins involved in African swine fever virus infection and replication. Front Immunol. 2022;13:947180. doi: 10.3389/fimmu.2022.947180. Epub 2022/08/09. PubMed PMID: 35935977; PubMed Central PMCID: PMC9353306.
  • Zhang K, Li S, Liu S, et al. Spatiotemporally orchestrated interactions between viral and cellular proteins involved in the entry of African swine fever virus. Viruses. 2021;13(12):2495. doi: 10.3390/v13122495. Epub 20211213. PubMed PMID: 34960765; PubMed Central PMCID: PMC8703583.
  • Wang G, Xie M, Wu W, et al. Structures and functional diversities of ASFV proteins. Viruses. 2021;13(11):2124. doi: 10.3390/v13112124. Epub 20211021. PubMed PMID: 34834930; PubMed Central PMCID: PMC8619059.
  • Bastos AD, Penrith ML, Cruciere C, et al. Genotyping field strains of African swine fever virus by partial p72 gene characterisation. Arch Virol. 2003;148(4):693–706. doi: 10.1007/s00705-002-0946-8. Epub 2003/03/29. PubMed PMID: 12664294.
  • Gallardo C. African swine fever virus p72 genotype IX in domestic pigs, Congo, 2009. Emerg Infect Dis. 2011;17(8):1556–1558. doi: 10.3201/eid1708.101877. Epub 2011/08/02. PubMed PMID: 21801650; PubMed Central PMCID: PMC3381578.
  • Gallardo C, Casado N, Soler A, et al. A multi gene-approach genotyping method identifies 24 genetic clusters within the genotype II-European African swine fever viruses circulating from 2007 to 2022. Front Vet Sci. 2023;10:1112850. doi: 10.3389/fvets.2023.1112850. Epub 2023/02/11. PubMed PMID: 36761884; PubMed Central PMCID: PMC9905734.
  • Liu L, Atim S, LeBlanc N, et al. Overcoming the challenges of pen-side molecular diagnosis of African swine fever to support outbreak investigations under field conditions. Transbound Emerg Dis. 2019;66(2):908–914. doi: 10.1111/tbed.13103. Epub 2018/12/17. PubMed PMID: 30554469.
  • Carrasco L, de Lara FC, Martin de las Mulas J, et al. Virus association with lymphocytes in acute African swine fever. Vet Res. 1996;27(3):305–312. Epub 1996/01/01. PubMed PMID: 8767892.
  • Carrasco L, Chacon F, Martin de Las Mulas J, et al. Ultrastructural changes related to the lymph node haemorrhages in acute African swine fever. Res Vet Sci. 1997;62(3):199–204. doi: 10.1016/s0034-5288(97)90190-9. Epub 1997/05/01. PubMed PMID: 9300534.
  • Gomez-Villamandos JC, Hervas J, Mendez A, et al. A pathological study of the perisinusoidal unit of the liver in acute African swine fever. Res Vet Sci. 1995;59(2):146–151. doi: 10.1016/0034-5288(95)90049-7. Epub 1995/09/01. PubMed PMID: 8525104.
  • Sierra MA, Bernabe A, Mozos E, et al. Ultrastructure of the liver in pigs with experimental African swine fever. Vet Pathol. 1987;24(5):460–462. doi: 10.1177/030098588702400516. Epub 1987/09/01. PubMed PMID: 3672813.
  • Gomez-Villamandos JC, Hervas J, Mendez A, et al. Pathological changes in the renal interstitial capillaries of pigs inoculated with two different strains of African swine fever virus. J Comput Pathol. 1995;112(3):283–298. doi: 10.1016/s0021-9975(05)80081-7. Epub 1995/04/01. PubMed PMID: 7560303.
  • Salguero FJ, Gil S, Revilla Y, et al. Cytokine mRNA expression and pathological findings in pigs inoculated with African swine fever virus (E-70) deleted on A238L. Vet Immunol Immunopathol. 2008;124(1–2):107–119. doi: 10.1016/j.vetimm.2008.02.012. Epub 2008/04/04. PubMed PMID: 18384883.
  • Galindo I, Cuesta-Geijo MA, Hlavova K, et al. African swine fever virus infects macrophages, the natural host cells, via clathrin- and cholesterol-dependent endocytosis. Virus Res. 2015;200:45–55. doi: 10.1016/j.virusres.2015.01.022. Epub 2015/02/11. PubMed PMID: 25662020.
  • Chapman DA, Netherton CL, Dixon LK. African swine fever virus replication and genomics. Virus Res. 2013;173(1):3–14. doi: 10.1016/j.virusres.2012.10.020. Epub 2012/11/13. PubMed PMID: 23142553.
  • Simoes M, Martins C, Ferreira F. Early intranuclear replication of African swine fever virus genome modifies the landscape of the host cell nucleus. Virus Res. 2015;210:1–7. doi: 10.1016/j.virusres.2015.07.006. Epub 2015/07/18. PubMed PMID: 26183880.
  • Netherton CL, Shimmon GL, Hui JYK, et al. African Swine Fever Virus Host–Pathogen Interactions. In: Vijayakrishnan S, Y Jiu J Harris, editors. Virus Infected Cells. Cham: Springer International Publishing; 2023. p. 283–331.
  • Galindo I, Alonso C. African swine fever virus: a review. Viruses. 2017;9(5):103. doi: 10.3390/v9050103. Epub 2017/05/11. PubMed PMID: 28489063; PubMed Central PMCID: PMC5454416.
  • Sanchez EG, Perez-Nunez D, Revilla Y. Mechanisms of entry and endosomal pathway of African swine fever virus. Vaccines (Basel). 2017;5(4):42. doi: 10.3390/vaccines5040042. Epub 2017/11/09. PubMed PMID: 29117102; PubMed Central PMCID: PMC5748609.
  • Alcami A, Carrascosa AL, Vinuela E. Interaction of African swine fever virus with macrophages. Virus Res. 1990;17(2):93–104. doi: 10.1016/0168-1702(90)90071-i. Epub 1990/10/01. PubMed PMID: 2291335.
  • Alcami A, Carrascosa AL, Vinuela E. Saturable binding sites mediate the entry of African swine fever virus into vero cells. Virology. 1989;168(2):393–398. doi: 10.1016/0042-6822(89)90281-x. Epub 1989/02/01. PubMed PMID: 2916331.
  • Carrascosa AL, Bustos MJ, Galindo I, et al. Virus-specific cell receptors are necessary, but not sufficient, to confer cell susceptibility to African swine fever virus. Arch Virol. 1999;144(7):1309–1321. doi: 10.1007/s007050050589. Epub 1999/09/11. PubMed PMID: 10481739.
  • Sanchez-Torres C, Gomez-Puertas P, Gomez-Del-Moral M, et al. Expression of porcine CD163 on monocytes/macrophages correlates with permissiveness to African swine fever infection. Arch Virol. 2003;148(12):2307–2323. doi: 10.1007/s00705-003-0188-4. Epub 2003/12/04. PubMed PMID: 14648288.
  • Popescu L, Gaudreault NN, Whitworth KM, et al. Genetically edited pigs lacking CD163 show no resistance following infection with the African swine fever virus isolate, Georgia 2007/1. Virology. 2017;501:102–106. doi: 10.1016/j.virol.2016.11.012. Epub 2016/11/30. PubMed PMID: 27898335.
  • Lithgow P, Takamatsu H, Werling D, et al. Correlation of cell surface marker expression with African swine fever virus infection. Vet Microbiol. 2014;168(2–4):413–419. doi: 10.1016/j.vetmic.2013.12.001. Epub 2014/01/09. PubMed PMID: 24398227; PubMed Central PMCID: PMC3969584.
  • Gao Q, Yang Y, Luo Y, et al. Adaptation of African swine fever virus to porcine kidney cells stably expressing CD163 and Siglec1. Front Immunol. 2022;13:1015224. doi: 10.3389/fimmu.2022.1015224. Epub 2022/11/18. PubMed PMID: 36389805; PubMed Central PMCID: PMC9647134.
  • Pannhorst K, Carlson J, Hölper JE, et al. The non-classical major histocompatibility complex II protein SLA-DM is crucial for African swine fever virus replication. Sci Rep. 2023;13(1):10342. doi: 10.1038/s41598-023-36788-9. Epub 20230821. PubMed PMID: 37604847; PubMed Central PMCID: PMC10442341.
  • Hernaez B, Alonso C. Dynamin- and clathrin-dependent endocytosis in African swine fever virus entry. J Virol. 2010;84(4):2100–2109. doi: 10.1128/JVI.01557-09. Epub 2009/11/27. PubMed PMID: 19939916; PubMed Central PMCID: PMC2812401.
  • Chen X, Zheng J, Li T, et al. Coreceptor AXL facilitates African swine fever virus entry via apoptotic mimicry. J Virol. 2023;97(7):e0061623. doi: 10.1128/jvi.00616-23. Epub 20230629. PubMed PMID: 37382521; PubMed Central PMCID: PMC10373532.
  • Sanchez EG, Quintas A, Perez-Nunez D, et al. African swine fever virus uses macropinocytosis to enter host cells. PLOS Pathog. 2012;8(6):e1002754. doi: 10.1371/journal.ppat.1002754. Epub 2012/06/22. PubMed PMID: 22719252; PubMed Central PMCID: PMC3375293.
  • Basta S, Gerber H, Schaub A, et al. Cellular processes essential for African swine fever virus to infect and replicate in primary macrophages. Vet Microbiol. 2010;140(1–2):9–17. doi: 10.1016/j.vetmic.2009.07.015. Epub 2009/07/28. PubMed PMID: 19632793.
  • Chen X, Zheng J, Liu C, et al. CD1d facilitates African swine fever virus entry into the host cells via clathrin-mediated endocytosis. Emerg Microbes Infect. 2023;12(2):2220575. doi: 10.1080/22221751.2023.2220575. PubMed PMID: 37254454; PubMed Central PMCID: PMC10288936.
  • Andres G, Tsai B. African swine fever virus gets undressed: new insights on the entry pathway. J Virol. 2017;91(4). doi: 10.1128/JVI.01906-16. Epub 2016/12/16. PubMed PMID: 27974557; PubMed Central PMCID: PMC5286891.
  • Colson P, De Lamballerie X, Yutin N, et al. “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch Virol. 2013;158(12):2517–2521. doi: 10.1007/s00705-013-1768-6. Epub 2013/07/03. PubMed PMID: 23812617; PubMed Central PMCID: PMC4066373.
  • Portugal R, Coelho J, Höper D, et al. Related strains of African swine fever virus with different virulence: genome comparison and analysis. J Gen Virol. 2015;96(2):408–419. doi: 10.1099/vir.0.070508-0. Epub 2014/11/20. PubMed PMID: 25406173.
  • Yanez RJ, Rodrı́guez JM, Nogal ML, et al. Analysis of the complete nucleotide sequence of African swine fever virus. Virology. 1995;208(1):249–278. doi: 10.1006/viro.1995.1149. Epub 1995/04/01. PubMed PMID: 11831707.
  • Chapman DAG, Tcherepanov V, Upton C, et al. Comparison of the genome sequences of non-pathogenic and pathogenic African swine fever virus isolates. J Gen Virol. 2008;89(2):397–408. doi: 10.1099/vir.0.83343-0. Epub 2008/01/17. PubMed PMID: 18198370.
  • Zhenzhong W, Chuanxiang Q, Shengqiang G, et al. Genetic variation and evolution of attenuated African swine fever virus strain isolated in the field: a review. Virus Res. 2022;319:198874. doi: 10.1016/j.virusres.2022.198874. Epub 2022/07/26. PubMed PMID: 35872281.
  • Mazloum A, van Schalkwyk A, Chernyshev R, et al. A guide to molecular characterization of genotype II African swine fever virus: essential and alternative genome markers. Microorganisms. 2023;11(3):642. doi: 10.3390/microorganisms11030642. Epub 2023/03/30. PubMed PMID: 36985215; PubMed Central PMCID: PMC10056344.
  • Dinhobl M, Spinard E, Tesler N, et al. Reclassification of ASFV into 7 biotypes using unsupervised machine learning. Viruses. 2023;16(1):67. doi: 10.3390/v16010067. PubMed PMID.
  • Spinard E, Rai A, Osei-Bonsu J, et al. The 2022 outbreaks of African swine fever virus demonstrate the first report of genotype II in Ghana. Viruses. 2023;15(8):1722. doi: 10.3390/v15081722. Epub 2023/08/26. PubMed PMID: 37632064; PubMed Central PMCID: PMC10459280.
  • Zhao D, Sun E, Huang L, et al. Highly lethal genotype I and II recombinant African swine fever viruses detected in pigs. Nat Commun. 2023;14(1):3096. doi: 10.1038/s41467-023-38868-w. Epub 2023/05/30. PubMed PMID: 37248233; PubMed Central PMCID: PMC10226439.
  • Spinard E, Dinhobl M, Tesler N, et al. A re-evaluation of African swine fever genotypes based on p72 sequences reveals the existence of only six distinct p72 groups. Viruses. 2023;15(11):2246. doi: 10.3390/v15112246. Epub 2023/11/25. PubMed PMID: 38005923; PubMed Central PMCID: PMC10675559.
  • Portugal R, Coelho J, Hoper D, et al. Related strains of African swine fever virus with different virulence: genome comparison and analysis. J Gen Virol. 2015;96(Pt 2):408–419. doi: 10.1099/vir.0.070508-0. Epub 2014/11/20. PubMed PMID: 25406173.
  • O’Donnell V, Holinka LG, Krug PW, et al. African swine fever virus Georgia 2007 with a deletion of virulence-associated gene 9GL (B119L), when administered at low doses, leads to virus attenuation in swine and induces an effective protection against homologous challenge. J Virol. 2015;89(16):8556–8566. doi: 10.1128/JVI.00969-15. Epub 2015/06/13. PubMed PMID: 26063424; PubMed Central PMCID: PMC4524225.
  • Liu Y, Shen Z, Xie Z, et al. African swine fever virus I73R is a critical virulence-related gene: a potential target for attenuation. Proc Natl Acad Sci USA. 2023;120(15):e2210808120. doi: 10.1073/pnas.2210808120. Epub 2023/04/07. PubMed PMID: 37023125; PubMed Central PMCID: PMC10104517.
  • Zhang K, Yang B, Shen C, et al. MGF360-9L is a major virulence factor associated with the African swine fever virus by antagonizing the JAK/STAT signaling pathway. MBio. 2022;13(1):e0233021. doi: 10.1128/mbio.02330-21. Epub 2022/01/26. PubMed PMID: 35076286; PubMed Central PMCID: PMC8788333.
  • Yang J, Li S, Feng T, et al. African swine fever virus F317L protein inhibits NF-κB activation to evade host immune response and promote viral replication. mSphere. 2021;6(5):e0065821. doi: 10.1128/mSphere.00658-21. Epub 2021/10/21. PubMed PMID: 34668754; PubMed Central PMCID: PMC8527992.
  • Rathakrishnan A, Connell S, Petrovan V, et al. Differential effect of deleting members of African swine fever virus multigene families 360 and 505 from the genotype II Georgia 2007/1 isolate on virus replication, virulence, and induction of protection. J Virol. 2022;96(6):e0189921. doi: 10.1128/jvi.01899-21. Epub 2022/01/20. PubMed PMID: 35044212; PubMed Central PMCID: PMC8941908.
  • Abrams CC, Dixon LK. Sequential deletion of genes from the African swine fever virus genome using the cre/loxP recombination system. Virology. 2012;433(1):142–148. doi: 10.1016/j.virol.2012.07.021. Epub 2012/08/21. PubMed PMID: 22902236; PubMed Central PMCID: PMC3526793.
  • Borca MV, Carrillo C, Zsak L, et al. Deletion of a CD2-like gene, 8-DR, from African swine fever virus affects viral infection in domestic swine. J Virol. 1998;72(4):2881–2889. Epub 1998/04/03. PubMed PMID: 9525608; PubMed Central PMCID: PMC109733
  • O’Donnell V, Holinka LG, Gladue DP, et al. African swine fever virus Georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus. J Virol. 2015;89(11):6048–6056. doi: 10.1128/JVI.00554-15. Epub 2015/03/27. PubMed PMID: 25810553; PubMed Central PMCID: PMC4442422.
  • Ramirez-Medina E, Vuono E, O’Donnell V, et al. Differential effect of the deletion of African swine fever virus virulence-associated genes in the induction of attenuation of the highly virulent Georgia strain. Viruses. 2019;11(7):599. doi: 10.3390/v11070599. Epub 2019/07/05. PubMed PMID: 31269702; PubMed Central PMCID: PMC6669436.
  • Reis AL, Goatley LC, Jabbar T, et al. Deletion of the African swine fever virus gene DP148R does not reduce virus replication in culture but reduces virus virulence in pigs and induces high levels of protection against challenge. J Virol. 2017;91(24). doi: 10.1128/JVI.01428-17. Epub 2017/10/06. PubMed PMID: 28978700; PubMed Central PMCID: PMC5709585.
  • Sanford B, Holinka LG, O’Donnell V, et al. Deletion of the thymidine kinase gene induces complete attenuation of the Georgia isolate of African swine fever virus. Virus Res. 2016;213:165–171. doi: 10.1016/j.virusres.2015.12.002. Epub 2015/12/15. PubMed PMID: 26656424.
  • Ran Y, Li D, Xiong MG, et al. African swine fever virus I267L acts as an important virulence factor by inhibiting RNA polymerase III-RIG-I-mediated innate immunity. PLOS Pathog. 2022;18(1):e1010270. doi: 10.1371/journal.ppat.1010270. Epub 2022/01/29. PubMed PMID: 35089988; PubMed Central PMCID: PMC8827485.
  • Ramirez-Medina E, Rai A, Espinoza N, et al. Deletion of the H240R gene in African swine fever virus partially reduces virus virulence in swine. Viruses. 2023;15(7):1477. doi: 10.3390/v15071477. Epub 2023/07/29.PubMed PMID: 37515164; PubMed Central PMCID: PMC10384018.
  • Ramirez-Medina E, Vuono E, Rai A, et al. Deletion of E184L, a putative DIVA target from the pandemic strain of African swine fever virus, produces a reduction in virulence and protection against virulent challenge. J Virol. 2022;96(1):e0141921. doi: 10.1128/jvi.01419-21. Epub 2021/10/21. PubMed PMID: 34668772; PubMed Central PMCID: PMC8754217.
  • Qi X, Feng T, Ma Z, et al. Deletion of DP148R, DP71L, and DP96R attenuates African swine fever virus, and the mutant strain confers complete protection against homologous challenges in pigs. J Virol. 2023;97(4):e0024723. doi: 10.1128/jvi.00247-23. Epub 2023/04/06. PubMed PMID: 37017515; PubMed Central PMCID: PMC10134827.
  • Lopez E, Bosch-Camós L, Ramirez-Medina E, et al. Deletion mutants of the attenuated recombinant ASF virus, BA71ΔCD2, show decreased vaccine efficacy. Viruses. 2021;13(9):1678. doi: 10.3390/v13091678. Epub 2021/09/29. PubMed PMID: 34578263; PubMed Central PMCID: PMC8473413.
  • Cadenas-Fernandez E, Sanchez-Vizcaino JM, Pintore A, et al. Free-ranging pig and wild boar interactions in an endemic area of African swine fever. Front Vet Sci. 2019;6:376. doi: 10.3389/fvets.2019.00376. Epub 2019/11/19. PubMed PMID: 31737649; PubMed Central PMCID: PMC6831522.
  • Sauter-Louis C, Forth JH, Probst C, et al. Joining the club: first detection of African swine fever in wild boar in Germany. Transbound Emerg Dis. 2021;68(4):1744–1752. doi: 10.1111/tbed.13890. PubMed PMID: 33085828. Epub 2020/10/22.
  • Migliore S, Hussein HA, Galluzzo P, et al. African swine fever and its control measures in wild boar: a “De Iure Condito” analysis in the European Union. Animals (Basel). 2023;14(1):14. doi: 10.3390/ani14010014. Epub 2024/01/11. PubMed PMID: 38200745; PubMed Central PMCID: PMC10778324.
  • Dixon LK, Islam M, Nash R, et al. African swine fever virus evasion of host defences. Virus Res. 2019;266:25–33. doi: 10.1016/j.virusres.2019.04.002. Epub 2019/04/09. PubMed PMID: 30959069; PubMed Central PMCID: PMC6505686.
  • Netherton CL, Connell S, Benfield CTO, et al. The genetics of life and death: virus-host interactions underpinning resistance to African swine fever, a viral hemorrhagic disease. Front Genet. 2019;10:402. doi: 10.3389/fgene.2019.00402. Epub 2019/05/28. PubMed PMID: 31130984; PubMed Central PMCID: PMC6509158.
  • Penrith ML, Bastos AD, Etter EMC, et al. Epidemiology of African swine fever in Africa today: sylvatic cycle versus socio-economic imperatives. Transbound Emerg Dis. 2019;66(2):672–686. doi: 10.1111/tbed.13117. Epub 2019/01/12. PubMed PMID: 30633851.
  • Thomson GR. The epidemiology of African swine fever: the role of free-living hosts in Africa. Onderstepoort J Vet Res. 1985;52(3):201–209. Epub 1985/09/01. PubMed PMID: 3911134.
  • Thomson GR, Gainaru MD, Van Dellen AF. Experimental infection of warthogs (Phacochoerus aethiopicus) with African swine fever virus. Onderstepoort J Vet Res. 1980;47(1):19–22. Epub 1980/03/01. PubMed PMID: 7454231.
  • Thomson GR, Gainaru MD, van Dellen AF. African swine fever: pathogenicity and immunogenicity of two non-haemadsorbing viruses. Onderstepoort J Vet Res. 1979;46(3):149–154. Epub 1979/09/01. PubMed PMID: 551362.
  • Jori F, Vial L, Penrith ML, et al. Review of the sylvatic cycle of African swine fever in sub-Saharan Africa and the Indian ocean. Virus Res. 2013;173(1):212–227. doi: 10.1016/j.virusres.2012.10.005. Epub 2012/11/13. PubMed PMID: 23142551.
  • Kukielka EA, Jori F, Martinez-Lopez B, et al. Wild and domestic pig interactions at the wildlife-livestock interface of Murchison falls national park, Uganda, and the potential association with African swine fever outbreaks. Front Vet Sci. 2016;3:31. doi: 10.3389/fvets.2016.00031. Epub 2016/05/06. PubMed PMID: 27148545; PubMed Central PMCID: PMC4831202.
  • Heuschele WP, Coggins L. Isolation of African swine fever virus from a giant forest hog. Bull Epizoot Dis Afr. 1965;13(3):255–256. Epub 1965/09/01. PubMed PMID: 4283999.
  • Sanchez-Botija C. African swine fever. New developments. Rev Scientifique et Technique. 1982;4:1065–1094.
  • Plowright W, Parker J, Peirce MA. African swine fever virus in ticks (Ornithodoros moubata, murray) collected from animal burrows in Tanzania. Nature. 1969;221(5185):1071–1073. doi: 10.1038/2211071a0. Epub 1969/03/15. PubMed PMID: 5813153.
  • Plowright W, Perry CT, Peirce MA. Transovarial infection with African swine fever virus in the argasid tick, Ornithodoros moubata porcinus, walton. Res Vet Sci. 1970;11(6):582–584. doi: 10.1016/S0034-5288(18)34259-0. Epub 1970/11/01. PubMed PMID: 5532269.
  • Plowright W, Perry CT, Peirce MA. Experimental infection of the argasid tick, Ornithodoros moubata porcinus, with African swine fever virus. Arch Gesamte Virusforsch. 1970;31(1–2):33–50. doi: 10.1007/bf01241664. Epub 1970/01/01. PubMed PMID: 5475061.
  • Forth JH, Forth LF, Lycett S, et al. Identification of African swine fever virus-like elements in the soft tick genome provides insights into the virus’ evolution. BMC Biol. 2020;18(1):136. doi: 10.1186/s12915-020-00865-6. Epub 2020/10/10. PubMed PMID: 33032594; PubMed Central PMCID: PMC7542975.
  • García-Jiménez WL, Fernández-Llario P, Benítez-Medina JM, et al. Reducing Eurasian wild boar (Sus scrofa) population density as a measure for bovine tuberculosis control: effects in wild boar and a sympatric fallow deer (Dama dama) population in Central Spain. Prev Vet Med. 2013;110(3–4):435–446. doi: 10.1016/j.prevetmed.2013.02.017. Epub 2013/03/16. PubMed PMID: 23490145.
  • Newsome T, Cairncross R, Cunningham CX, et al. Scavenging with invasive species. Biol Rev Camb Philos Soc. 2024;99(2):562–581. doi: 10.1111/brv.13035. Epub 2023/12/27. PubMed PMID: 38148253.
  • Sanchez-Vizcaino JM, Mur L, Martinez-Lopez B. African swine fever (ASF): five years around Europe. Vet Microbiol. 2013;165(1–2):45–50. doi: 10.1016/j.vetmic.2012.11.030. Epub 2012/12/26. PubMed PMID: 23265248.
  • Guinat C, Porphyre T, Gogin A, et al. Inferring within-herd transmission parameters for African swine fever virus using mortality data from outbreaks in the Russian Federation. Transbound Emerg Dis. 2018;65(2):e264–e271. doi: 10.1111/tbed.12748. Epub 2017/11/10. PubMed PMID: 29120101; PubMed Central PMCID: PMC5887875.
  • Penrith ML, Vosloo W, Jori F, et al. African swine fever virus eradication in Africa. Virus Res. 2013;173(1):228–246. doi: 10.1016/j.virusres.2012.10.011. Epub 2012/11/13. PubMed PMID: 23142552.
  • Zhou X, Li N, Luo Y, et al. Emergence of African swine fever in China, 2018. Transbound Emerg Dis. 2018;65(6):1482–1484. doi: 10.1111/tbed.12989. Epub 2018/08/14. PubMed PMID: 30102848.
  • Gogin A, Gerasimov V, Malogolovkin A, et al. African swine fever in the North Caucasus region and the Russian federation in years 2007–2012. Virus Res. 2013;173(1):198–203. doi: 10.1016/j.virusres.2012.12.007. Epub 2012/12/26. PubMed PMID: 23266725.
  • Carrasco L, Nunez A, Salguero FJ, et al. African swine fever: expression of interleukin-1 alpha and tumour necrosis factor-alpha by pulmonary intravascular macrophages. J Comp Pathol. 2002;126(2–3):194–201. doi: 10.1053/jcpa.2001.0543. Epub 2002/04/12. PubMed PMID: 11945008.
  • Sierra MA, Carrasco L, Gomez-Villamandos JC, et al. Pulmonary intravascular macrophages in lungs of pigs inoculated with African swine fever virus of differing virulence. J Comput Pathol. 1990;102(3):323–334. doi: 10.1016/s0021-9975(08)80021-7. Epub 1990/04/01. PubMed PMID: 2365848.
  • Mebus CA, Dardiri AH. Additional characteristics of disease caused by the African swine fever viruses isolated from Brazil and the Dominican Republic. Proc Annu Meet US Anim Health Assoc. 1979;1979(83):227–239. Epub 1979/01/01. PubMed PMID: 298918.
  • Moulton J, Coggins L. Comparison of lesions in acute and chronic African swine fever. Cornell Vet. 1968;58(3):364–388. Epub 1968/07/01. PubMed PMID: 4297621.
  • Carrasco L, Bautista MJ, Gomez-Villamandos JC, et al. Development of microscopic lesions in splenic cords of pigs infected with African swine fever virus. Vet Res. 1997;28(1):93–99. Epub 1997/01/01. PubMed PMID: 9172845.
  • Konno S, Taylor WD, Hess WR, et al. Spleen pathology in African swine fever. Cornell Vet. 1972;62(3):486–506. Epub 1972/07/01. PubMed PMID: 5039613.
  • Salguero FJ, Ruiz-Villamor E, Bautista MJ, et al. Changes in macrophages in spleen and lymph nodes during acute African swine fever: expression of cytokines. Vet Immunol Immunopathol. 2002;90(1–2):11–22. doi: 10.1016/s0165-2427(02)00225-8. Epub 2002/10/31. PubMed PMID: 12406651.
  • Hervas J, Gomez-Villamandos JC, Mendez A, et al. Structural and ultrastructural study of glomerular changes in African swine fever. J Comput Pathol. 1996;115(1):61–75. doi: 10.1016/s0021-9975(96)80028-4. Epub 1996/07/01. PubMed PMID: 8878752.
  • Hervas J, Gomez-Villamandos JC, Mendez A, et al. The lesional changes and pathogenesis in the kidney in African swine fever. Vet Res Commun. 1996;20(3):285–299. doi: 10.1007/bf00366926. Epub 1996/01/01. PubMed PMID: 8739527.
  • Arias ML, Escribano JM, Rueda A, et al. La peste porcina africana. Med Veterinaire. 1986;3:333–350.
  • Giammarioli M, Gallardo C, Oggiano A, et al. Genetic characterisation of African swine fever viruses from recent and historical outbreaks in Sardinia (1978–2009). Virus Genes. 2011;42(3):377–387. doi: 10.1007/s11262-011-0587-7. Epub 2011/03/05. PubMed PMID: 21373994.
  • Goatley LC, Nash RH, Andrews C, et al. Cellular and humoral immune responses after immunisation with low virulent African swine fever virus in the large white inbred babraham line and outbred domestic pigs. Viruses. 2022;14(7):1487. doi: 10.3390/v14071487. Epub 2022/07/28. PubMed PMID: 35891467; PubMed Central PMCID: PMC9322176.
  • Gallardo C, Soler A, Nieto R, et al. Experimental transmission of African swine fever (ASF) low virulent isolate NH/P68 by surviving pigs. Transbound Emerg Dis. 2015;62(6):612–622. doi: 10.1111/tbed.12431. Epub 2015/10/04. PubMed PMID: 26432068.
  • Sánchez-Cordón PJ, Chapman D, Jabbar T, et al. Different routes and doses influence protection in pigs immunised with the naturally attenuated African swine fever virus isolate OURT88/3. Antiviral Res. 2017;138:1–8. doi: 10.1016/j.antiviral.2016.11.021. Epub 2016/12/03. PubMed PMID: 27908827; PubMed Central PMCID: PMC5245086.
  • Martínez Avilés M, Bosch J, Ivorra B, et al. Epidemiological impacts of attenuated African swine fever virus circulating in wild boar populations. Research In Veterinary Science. 2023;162:104964. doi: 10.1016/j.rvsc.2023.104964. Epub 2023/08/03. PubMed PMID: 37531717.
  • Fernandez de Marco M, Salguero FJ, Bautista MJ, et al. An immunohistochemical study of the tonsils in pigs with acute African swine fever virus infection. Res Vet Sci. 2007;83(2):198–203. doi: 10.1016/j.rvsc.2006.11.011. Epub 2007/01/30. PubMed PMID: 17258254.
  • Gomez-Villamandos JC, Bautista MJ, Sanchez-Cordon PJ, et al. Pathology of African swine fever: the role of monocyte-macrophage. Virus Res. 2013;173(1):140–149. doi: 10.1016/j.virusres.2013.01.017. Epub 2013/02/05. PubMed PMID: 23376310.
  • Gomez-Villamandos JC, Hervas J, Mendez A, et al. Experimental African swine fever: apoptosis of lymphocytes and virus replication in other cells. J Gen Virol. 1995;76(Pt 9):2399–2405. doi: 10.1099/0022-1317-76-9-2399. Epub 1995/09/01. PubMed PMID: 7561784.
  • Salguero FJ, Sanchez-Cordon PJ, Nunez A, et al. Proinflammatory cytokines induce lymphocyte apoptosis in acute African swine fever infection. J Comput Pathol. 2005;132(4):289–302. doi: 10.1016/j.jcpa.2004.11.004. Epub 2005/05/17. PubMed PMID: 15893987.
  • Salguero FJ, Sanchez-Cordon PJ, Sierra MA, et al. Apoptosis of thymocytes in experimental African swine fever virus infection. Histol Histopathol. 2004;19(1):77–84. doi: 10.14670/HH-19.77. Epub 2004/01/01. PubMed PMID: 14702174.
  • Carbonnelle C, Moroso M, Pannetier D, et al. Natural history of Sudan ebolavirus to support medical countermeasure development. Vaccines (Basel). 2022;10(6):963. doi: 10.3390/vaccines10060963. Epub 2022/06/25. PubMed PMID: 35746571; PubMed Central PMCID: PMC9228702.
  • Smither SJ, Nelson M, Eastaugh L, et al. Experimental respiratory Marburg virus haemorrhagic fever infection in the common marmoset (Callithrix jacchus). Int J Exp Pathol. 2013;94(2):156–168. doi: 10.1111/iep.12018. Epub 2013/02/28. PubMed PMID: 23441639; PubMed Central PMCID: PMC3607144.
  • Smither SJ, Nelson M, Eastaugh L, et al. Experimental respiratory infection of marmosets (Callithrix jacchus) with Ebola virus kikwit. J Infect Dis. 2015;212(Suppl 2):S336–45. doi: 10.1093/infdis/jiv371. Epub 2015/07/26. PubMed PMID: 26209682.
  • Watson RJ, Tree J, Fotheringham SA, et al. Dose-dependent response to infection with Ebola virus in the ferret model and evidence of viral evolution in the eye. J Virol. 2021;95(24):e0083321. doi: 10.1128/jvi.00833-21. Epub 2021/09/30. PubMed PMID: 34586862; PubMed Central PMCID: PMC8610581.
  • Sanchez-Vizcaino JM, Slauson DO, Ruiz-Gonzalvo F, et al. Lymphocyte function and cell-mediated immunity in pigs with experimentally induced African swine fever. Am J Vet Res. 1981;42(8):1335–1341 Epub 1981/08/01. PubMed PMID: 6975049.
  • Blome S, Gabriel C, Beer M. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res. 2013;173(1):122–130. doi: 10.1016/j.virusres.2012.10.026. Epub 2012/11/10. PubMed PMID: 23137735.
  • Greig A. Pathogenesis of African swine fever in pigs naturally exposed to the disease. J Comput Pathol. 1972;82(1):73–79. doi: 10.1016/0021-9975(72)90028-x. Epub 1972/01/01. PubMed PMID: 4553010.
  • Colgrove GS, Haelterman EO, Coggins L. Pathogenesis of African swine fever in young pigs. Am J Vet Res. 1969;30(8):1343–1359 Epub 1969/08/01. PubMed PMID: 4894999.
  • Heuschele WP. Studies on the pathogenesis of African swine fever I. Quantitative studies on the sequential development of virus in pig tissues. Arch Gesamte Virusforsch. 1967;21(3–4):349–356. doi: 10.1007/bf01241735. Epub 1967/01/01. PubMed PMID: 4300741.
  • Villeda CJ, Williams SM, Wilkinson PJ, et al. Consumption coagulopathy associated with shock in acute African swine fever. Arch Virol. 1993;133(3–4):467–475. doi: 10.1007/bf01313784. Epub 1993/01/01. PubMed PMID: 8257301.
  • Mebus CA. African swine fever. Adv Virus Res. 1988;35:251–269. doi: 10.1016/s0065-3527(08)60714-9. Epub 1988/01/01. PubMed PMID: 3068966.
  • Ramiro-Ibanez F, Ortega A, Escribano JM, et al. Apoptosis: a mechanism of cell killing and lymphoid organ impairment during acute African swine fever virus infection. J Gen Virol. 1996;77(9):2209–2219. doi: 10.1099/0022-1317-77-9-2209. Epub 1996/09/01. PubMed PMID: 8811021.
  • Sierra MA, Quezada M, Fernandez A, et al. Experimental African swine fever: evidence of the virus in interstitial tissues of the kidney. Vet Pathol. 1989;26(2):173–176. doi: 10.1177/030098588902600211. Epub 1989/03/01. PubMed PMID: 2711573.
  • Oura CA, Powell PP, Parkhouse RM. African swine fever: a disease characterized by apoptosis. J Gen Virol. 1998;79(6):1427–1438. doi: 10.1099/0022-1317-79-6-1427. Epub 1998/06/20. PubMed PMID: 9634085.
  • Gomez Del Moral M, Ortuno E, Fernandez-Zapatero P, et al. African swine fever virus infection induces tumor necrosis factor alpha production: implications in pathogenesis. J Virol. 1999;73(3):2173–2180. doi: 10.1128/JVI.73.3.2173-2180.1999. Epub 1999/02/11. PubMed PMID: 9971800; PubMed Central PMCID: PMC104462.
  • Franzoni G, Pedrera M, Sánchez-Cordón PJ. African swine fever virus infection and cytokine response in vivo: an update. Viruses. 2023;15(1):233. doi: 10.3390/v15010233. Epub 2023/01/22. PubMed PMID: 36680273; PubMed Central PMCID: PMC9864779.
  • Zhang F, Hopwood P, Abrams CC, et al. Macrophage transcriptional responses following in vitro infection with a highly virulent African swine fever virus isolate. J Virol. 2006;80(21):10514–10521. doi: 10.1128/JVI.00485-06. Epub 2006/10/17. PubMed PMID: 17041222; PubMed Central PMCID: PMC1641748.
  • Salguero FJ, White AD, Slack GS, et al. Comparison of rhesus and cynomolgus macaques as an infection model for COVID-19. Nat Commun. 2021;12(1):1260. doi: 10.1038/s41467-021-21389-9. Epub 2021/02/26. PubMed PMID: 33627662; PubMed Central PMCID: PMC7904795.
  • Hu B, Huang S, Yin L. The cytokine storm and COVID-19. J med virol. 2021;93(1):250–256. doi: 10.1002/jmv.26232. Epub 2020/06/28. PubMed PMID: 32592501; PubMed Central PMCID: PMC7361342.
  • Zheng Y, Li S, Li SH, et al. Transcriptome profiling in swine macrophages infected with African swine fever virus at single-cell resolution. Proc Natl Acad Sci USA. 2022;119(19):e2201288119. doi: 10.1073/pnas.2201288119. Epub 2022/05/05. PubMed PMID: 35507870; PubMed Central PMCID: PMC9171760.
  • Carrasco L, Bautista MJ, Martin de las Mulas J, et al. Description of a new population of fixed macrophages in the splenic cords of pigs. J Anat. 1995;187(Pt 2):395–402.
  • Gomez-Villamandos JC, Bautista MJ, Hervas J, et al. Subcellular changes in platelets in acute and subacute African swine fever. J Comput Pathol. 1996;115(4):327–341. doi: 10.1016/s0021-9975(96)80069-7. Epub 1996/11/01. PubMed PMID: 9004076.
  • Gomez-Villamandos JC, Hervas J, Mendez A, et al. Ultrastructural study of the renal tubular system in acute experimental African swine fever: virus replication in glomerular mesangial cells and in the collecting ducts. Arch Virol. 1995;140(3):581–589. doi: 10.1007/bf01718433. Epub 1995/01/01. PubMed PMID: 7733828.
  • Villeda CJ, Gomez-Villamandos JC, Williams SM, et al. The role of fibrinolysis in the pathogenesis of the haemorrhagic syndrome produced by virulent isolates of African swine fever virus. Thromb Haemost. 1995;73(1):112–117. doi: 10.1055/s-0038-1653734. Epub 1995/01/01. PubMed PMID: 7740481
  • Bautista MJ, Gomez-Villamandos JC, Carrasco L, et al. Ultrastructural pathology of the bone marrow in pigs inoculated with a moderately virulent strain (DR’78) of African swine fever virus. Histol Histopathol. 1998;13(3):713–720. doi: 10.14670/HH-13.713. Epub 1998/08/05. PubMed PMID: 9690128.
  • Gomez-Villamandos JC, Salguero FJ, Ruiz-Villamor E, et al. Classical swine fever: pathology of bone marrow. Vet Pathol. 2003;40(2):157–163. doi: 10.1354/vp.40-2-157. Epub 2003/03/15. PubMed PMID: 12637755.
  • Carrasco L, de Lara FC, Gómez-Villamandos JC, et al. The pathogenic role of pulmonary intravascular macrophages in acute African swine fever. Res Vet Sci. 1996;61(3):193–198. doi: 10.1016/s0034-5288(96)90062-4. Epub 1996/11/01. PubMed PMID: 8938846.
  • Carrasco L, Núñez A, Salguero FJ, et al. African swine fever: expression of interleukin-1 alpha and tumour necrosis factor-alpha by pulmonary intravascular macrophages. J Comp Pathol. 2002;126(2–3):194–201. doi: 10.1053/jcpa.2001.0543. Epub 2002/04/12. PubMed PMID: 11945008.
  • Konno S, Taylor WD, Hess WR, et al. Liver pathology in African swine fever. Cornell Vet. 1971;61(1):125–150. Epub 1971/01/01. PubMed PMID: 5540970.
  • Sanchez-Cordon PJ, Romero-Trevejo JL, Pedrera M, et al. Role of hepatic macrophages during the viral haemorrhagic fever induced by African swine fever virus. Histol Histopathol. 2008;23(6):683–691. doi: 10.14670/HH-23.683. Epub 2008/03/28. PubMed PMID: 18366006.
  • Schäfer A, Franzoni G, Netherton CL, et al. Adaptive cellular immunity against African swine fever virus infections. Pathogens. 2022;11(2):274. doi: 10.3390/pathogens11020274. PubMed PMID
  • Schäfer A, Hühr J, Schwaiger T, et al. Porcine invariant natural killer T cells: functional profiling and dynamics in steady state and viral infections. Front Immunol. 2019;10:1380. doi: 10.3389/fimmu.2019.01380. Epub 2019/07/19. PubMed PMID: 31316500; PubMed Central PMCID: PMC6611438.
  • Takamatsu HH, Denyer MS, Lacasta A, et al. Cellular immunity in ASFV responses. Virus Res. 2013;173(1):110–121. doi: 10.1016/j.virusres.2012.11.009. Epub 2012/12/04. PubMed PMID: 23201582.
  • Gómez-Villamandos JC, Carrasco L, Bautista MJ, et al. African swine fever and classical swine fever: a review of the pathogenesis. Dtsch Tierarztl Wochenschr. 2003;110(4):165–169. Epub 2003/05/22. PubMed PMID: 12756959.
  • Sánchez-Cordón PJ, Núñez A, Salguero FJ, et al. Lymphocyte apoptosis and thrombocytopenia in spleen during classical swine fever: role of macrophages and cytokines. Vet Pathol. 2005;42(4):477–488. doi: 10.1354/vp.42-4-477. Epub 2005/07/12. PubMed PMID: 16006607.
  • Sánchez-Cordón PJ, Romanini S, Salguero FJ, et al. Apoptosis of thymocytes related to cytokine expression in experimental classical swine fever. J Comput Pathol. 2002;127(4):239–248. doi: 10.1053/jcpa.2002.0587. Epub 2002/11/22. PubMed PMID: 12443731.
  • Gómez-Villamandos JC, Ruiz-Villamor E, Bautista MJ, et al. Pathogenesis of classical swine fever: renal haemorrhages and erythrodiapedesis. J Comput Pathol. 2000;123(1):47–54. doi: 10.1053/jcpa.2000.0385. Epub 2000/07/25. PubMed PMID: 10906255.
  • Everett H, Salguero FJ, Graham SP, et al. Characterisation of experimental infections of domestic pigs with genotype 2.1 and 3.3 isolates of classical swine fever virus. Vet Microbiol. 2010;142(1–2):26–33. doi: 10.1016/j.vetmic.2009.09.039. Epub 2009/10/31. PubMed PMID: 19875252.
  • An TQ. Highly pathogenic porcine reproductive and respiratory syndrome virus, Asia. Emerg Infect Dis. 2011;17(9):1782–1784. doi: 10.3201/eid1709.110411. Epub 2011/09/06. PubMed PMID: 21888830; PubMed Central PMCID: PMC3322091.
  • Morgan SB, Graham SP, Salguero FJ, et al. Increased pathogenicity of European porcine reproductive and respiratory syndrome virus is associated with enhanced adaptive responses and viral clearance. Vet Microbiol. 2013;163(1–2):13–22. doi: 10.1016/j.vetmic.2012.11.024. Epub 2013/01/15. PubMed PMID: 23313323.
  • Morgan SB, Frossard JP, Pallares FJ, et al. Pathology and virus distribution in the lung and lymphoid tissues of pigs experimentally inoculated with three distinct type 1 PRRS virus isolates of varying pathogenicity. Transbound Emerg Dis. 2016;63(3):285–295. doi: 10.1111/tbed.12272. Epub 20141110. PubMed PMID: 25382098.
  • Breese SS, Hess WR. Electron microscopy of African swine fever virus hemadsorption. J Bacteriol. 1966;92(1):272–274. doi: 10.1128/jb.92.1.272-274.1966. Epub 1966/07/01. PubMed PMID: 5949565; PubMed Central PMCID: PMC276226.
  • Coggins L. A modified hemadsorption-inhibition test for African swine fever virus. Bull Epizoot Dis Afr. 1968;16(1):61–64. Epub 1968/03/01. PubMed PMID: 5693874.
  • Malmquist WA. Propagation, modification, and hemadsorption of African swine fever virus in cell cultures. Am J Vet Res. 1962;23:241–247. Epub 1962/03/01. PubMed PMID: 14469017.
  • Lim JW, Vu TTH, Le VP, et al. Advanced strategies for developing vaccines and diagnostic tools for African swine fever. Viruses. 2023;15(11):2169. doi: 10.3390/v15112169. Epub 2023/11/25. PubMed PMID: 38005846; PubMed Central PMCID: PMC10674204.
  • Fernández-Pinero J, Gallardo C, Elizalde M, et al. Molecular diagnosis of African swine fever by a new real-time PCR using universal probe library. Transbound Emerg Dis. 2013;60(1):48–58. doi: 10.1111/j.1865-1682.2012.01317.x. Epub 2012/03/08. PubMed PMID: 22394449.
  • King DP, Reid SM, Hutchings GH, et al. Development of a TaqMan PCR assay with internal amplification control for the detection of African swine fever virus. J Virol Methods. 2003;107(1):53–61. doi: 10.1016/s0166-0934(02)00189-1. Epub 2002/11/26. PubMed PMID: 12445938.
  • Agüero M, Fernández J, Romero L, et al. Highly sensitive PCR assay for routine diagnosis of African swine fever virus in clinical samples. J Clin Microbiol. 2003;41(9):4431–4434. doi: 10.1128/jcm.41.9.4431-4434.2003. Epub 2003/09/06. PubMed PMID: 12958285; PubMed Central PMCID: PMC193827.
  • Zhao Y, Chen F, Li Q, et al. Isothermal amplification of nucleic acids. Chem Rev. 2015;115(22):12491–12545. doi: 10.1021/acs.chemrev.5b00428. Epub 2015/11/10. PubMed PMID: 26551336.
  • Reid MS, Le XC, Zhang H. Exponential isothermal amplification of nucleic acids and assays for proteins, cells, small molecules, and enzyme activities: an EXPAR example. Angew Chem (Int Ed In English). 2018;57(37):11856–11866. doi: 10.1002/anie.201712217. Epub 2018/04/29. PubMed PMID: 29704305.
  • Pumford EA, Lu J, Spaczai I, et al. Developments in integrating nucleic acid isothermal amplification and detection systems for point-of-care diagnostics. Biosens Bioelectron. 2020;170:112674. doi: 10.1016/j.bios.2020.112674. Epub 2020/10/10. PubMed PMID: 33035900; PubMed Central PMCID: PMC7529604.
  • Notomi T, Mori Y, Tomita N, et al. Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. J Microbiol. 2015;53(1):1–5. doi: 10.1007/s12275-015-4656-9. Epub 2015/01/06. PubMed PMID: 25557475.
  • Lee H, Lee S, Park C, et al. Rapid visible detection of African swine fever virus using hybridization chain reaction-sensitized magnetic nanoclusters and affinity chromatography. Small. 2023;19(26):e2207117. doi: 10.1002/smll.202207117. Epub 2023/03/25. PubMed PMID: 36960666.
  • James HE, Ebert K, McGonigle R, et al. Detection of African swine fever virus by loop-mediated isothermal amplification. J Virol Methods. 2010;164(1–2):68–74. doi: 10.1016/j.jviromet.2009.11.034. Epub 2009/12/08. PubMed PMID: 19963011.
  • Fan X, Li L, Zhao Y, et al. Clinical validation of two recombinase-based isothermal amplification assays (RPA/RAA) for the rapid detection of African swine fever virus. Front Microbiol. 2020;11:1696. doi: 10.3389/fmicb.2020.01696. Epub 2020/08/15. PubMed PMID: 32793160; PubMed Central PMCID: PMC7385304.
  • Qian S, Chen Y, Peng C, et al. Dipstick-based rapid nucleic acids purification and CRISPR/Cas12a-mediated isothermal amplification for visual detection of African swine fever virus. Talanta. 2022;242:123294. doi: 10.1016/j.talanta.2022.123294. Epub 2022/02/13. PubMed PMID: 35149424.
  • Giménez-Lirola LG, Mur L, Rivera B, et al. Detection of African swine fever virus antibodies in serum and oral fluid specimens using a recombinant protein 30 (p30) dual matrix indirect ELISA. PLOS ONE. 2016;11(9):e0161230. doi: 10.1371/journal.pone.0161230. Epub 2016/09/10. PubMed PMID: 27611939; PubMed Central PMCID: PMC5017782 the research authorship, and/or publication of this article: authors S. Lizano and C. Goodell are employed by IDEXX Laboratories, Inc. The remaining authors declare no conflicting interests with respect to their authorship or the publication of this article. The commercial affiliation above mentioned does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.
  • Aira C, Ruiz T, Dixon L, et al. Bead-based multiplex assay for the simultaneous detection of antibodies to African swine fever virus and classical swine fever virus. Front Vet Sci. 2019;6:306. doi: 10.3389/fvets.2019.00306. Epub 2019/10/02. PubMed PMID: 31572739; PubMed Central PMCID: PMC6753221.
  • Wan Y, Shi Z, Peng G, et al. Development and application of a colloidal-gold dual immunochromatography strip for detecting African swine fever virus antibodies. Appl Microbiol Biotechnol. 2022;106(2):799–810. doi: 10.1007/s00253-021-11706-z. Epub 2021/12/24. PubMed PMID: 34939134.
  • Mur L, Martínez-López B, Martínez-Avilés M, et al. Quantitative risk assessment for the introduction of African swine fever virus into the European Union by legal import of live pigs. Transbound Emerg Dis. 2012;59(2):134–144. doi: 10.1111/j.1865-1682.2011.01253.x. Epub 2011/08/13. PubMed PMID: 21831148.
  • Mur L, Martínez-López B, Sánchez-Vizcaíno JM. Risk of African swine fever introduction into the European Union through transport-associated routes: returning trucks and waste from international ships and planes. BMC Vet Res. 2012;8(1):149. doi: 10.1186/1746-6148-8-149. Epub 2012/09/01. PubMed PMID: 22935221; PubMed Central PMCID: PMC3485109.
  • Mur L, Boadella M, Martínez-López B, et al. Monitoring of African swine fever in the wild boar population of the most recent endemic area of Spain. Transbound Emerg Dis. 2012;59(6):526–531. doi: 10.1111/j.1865-1682.2012.01308.x. Epub 2012/01/18. PubMed PMID: 22248024.
  • Arias M, Jurado C, Gallardo C, et al. Gaps in African swine fever: analysis and priorities. Transbound Emerg Dis. 2018;65(S1):235–247. doi: 10.1111/tbed.12695.
  • WOAH. African swine fever: WOAH warns Veterinary Authorities and pig industry of risk from use of sub-standard vaccines. 2023. https://www.woah.org/en/african-swine-fever-woah-warns-veterinary-authorities-and-pig-industry-of-risk-from-use-of-sub-standard-vaccines/
  • Argilaguet JM, Perez-Martin E, Lopez S, et al. BacMam immunization partially protects pigs against sublethal challenge with African swine fever virus. Antiviral Res. 2013;98(1):61–65. doi: 10.1016/j.antiviral.2013.02.005. Epub 2013/02/23. PubMed PMID: 23428670.
  • Argilaguet JM, Perez-Martin E, Nofrarias M, et al. DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLOS ONE. 2012;7(9):e40942. doi: 10.1371/journal.pone.0040942. Epub 2012/10/11. PubMed PMID: 23049728; PubMed Central PMCID: PMC3458849.
  • Lacasta A, Ballester M, Monteagudo PL, et al. Expression library immunization can confer protection against lethal challenge with African swine fever virus. J Virol. 2014;88(22):13322–13332. doi: 10.1128/JVI.01893-14. Epub 2014/09/12. PubMed PMID: 25210179; PubMed Central PMCID: PMC4249112.
  • Jancovich JK, Chapman D, Hansen DT, et al. Immunization of pigs by DNA prime and recombinant vaccinia virus boost to identify and rank African swine fever virus immunogenic and protective proteins. J Virol. 2018;92(8). doi: 10.1128/JVI.02219-17. Epub 2018/02/02. PubMed PMID: 29386289; PubMed Central PMCID: PMC5874426.
  • Argilaguet J, Pérez-Martín E, Gallardo C, et al. Enhancing DNA immunization by targeting ASFV antigens to SLA-II bearing cells. Vaccine. 2011;29(33):5379–5385. doi: 10.1016/j.vaccine.2011.05.084.
  • Goatley LC, Reis AL, Portugal R, et al. A pool of eight virally vectored African swine fever antigens protect pigs against fatal disease. Vaccines. 2020;8(2):234. doi: 10.3390/vaccines8020234.
  • Chen W, Zhao D, He X, et al. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Sci China Life Sci. 2020;63(5):623–634. doi: 10.1007/s11427-020-1657-9. Epub 2020/03/04. PubMed PMID: 32124180; PubMed Central PMCID: PMC7223596.
  • Deutschmann P, Forth JH, Sehl-Ewert J, et al. Assessment of African swine fever vaccine candidate ASFV-G-∆MGF in a reversion to virulence study. NPJ Vaccines. 2023;8(1):78. doi: 10.1038/s41541-023-00669-z. Epub 2023/05/30. PubMed PMID: 37248243; PubMed Central PMCID: PMC10227017 Zoetis has a commercial license for the vaccine candidate described in the manuscript. The overall project, coordinated by Sandra Blome at the FLI, received funding by Zoetis, including the salary of Paul Deutschmann. All other authors declare no competing interests.
  • Sánchez-Botija CJRo AP, Biology. Modificaciones del virus de la PPA en cultivos celulares. Patogenicidad y propiedades protectivas de las cepas atenuadas. 1963;7:5–23.
  • Manso-Ribeiro J, Nunes-Petisca J, Lopez-Frazao F, et al. Vaccination Against ASF. 1963;60:921–937.
  • Ramirez-Medina E, Velazquez-Salinas L, Rai A, et al. Evaluation of the deletion of the African swine fever virus gene O174L from the genome of the Georgia isolate. Viruses. 2023;15(10):2134. doi: 10.3390/v15102134. Epub 2023/10/28. PubMed PMID: 37896911; PubMed Central PMCID: PMC10612027.
  • Boinas F, Hutchings G, Dixon L, et al. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. Journal of General Virology. 2004;85(8):2177–2187. doi: 10.1099/vir.0.80058-0. PMID: 15269356.
  • Gallardo C, Soler A, Nieto R, Mur L, Pérez C, Pelayo V, editors. Protection of European domestic pigs from Armenia virulent African swine fever virus by experimental immunisation using the attenuated and non-haemadsorbing African swine fever virus isolate ASFV/NH/P68. Proceedings of the 9th Annual ESVV Congress Madrid. Madrid (Spain); 2012.
  • King K, Chapman D, Argilaguet JM, et al. Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunisation. Vaccine. 2011;29(28):4593–4600. doi: 10.1016/j.vaccine.2011.04.052.
  • Leitão A, Cartaxeiro C, Coelho R, et al. The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. J Gen Virol. 2001;82(3):513–523. doi: 10.1099/0022-1317-82-3-513.