0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Current insights into human pathogenic phenuiviruses and the host immune system

ORCID Icon, , &
Article: 2384563 | Received 22 May 2024, Accepted 18 Jul 2024, Published online: 29 Jul 2024

References

  • Kuhn JH, Adkins S, Agwanda BR, et al. Taxonomic update of phylum negarnaviricota (Riboviria: Orthornavirae), including the large orders bunyavirales and Mononegavirales. Arch Virol. 2021 Dec;166(12):3513–17. doi: 10.1007/s00705-021-05143-6.
  • Daubney R, Hudson J, Garnham P. Enzootic hepatitis or rift valley fever: an undescribed virus disease of sheep, cattle, and man from East Africa. Pathol And Bacteriol. 1931;34(4):545–579. doi: 10.1002/path.1700340418
  • Tigoi C, Sang R, Chepkorir E, et al. High risk for human exposure to rift valley fever virus in communities living along livestock movement routes: a cross-sectional survey in Kenya. PLOS Negl Trop Dis. 2020;14(2):e0007979. doi: 10.1371/journal.pntd.0007979
  • Yu XJ, Liang MF, Zhang SY, et al. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med. 2011;364(16):1523–1532. doi: 10.1056/NEJMoa1010095
  • 2018 annual review of diseases prioritized under the research and development blueprint. WHO Research and Development Blueprint; 2018. Available from: http://www.who.int/emergencies/diseases/2018prioritization-report.pdf
  • Bird BH, Githinji JW, Macharia JM, et al. Multiple virus lineages sharing recent common ancestry were associated with a large rift valley fever outbreak among livestock in Kenya during 2006-2007. J Virol. 2008;82(22):11152–11166. doi: 10.1128/JVI.01519-08
  • Madani TA, Al-Mazrou YY, Al-Jeffri MH, et al. Rift Valley fever epidemic in Saudi Arabia: epidemiological, clinical, and laboratory characteristics. Clin Infect Dis. 2003;37(8):1084–1092. doi: 10.1086/378747
  • Centers for Disease C, Prevention. Outbreak of Rift Valley fever–Saudi Arabia, August-October, MMWR Morb Mortal Wkly Rep. 2000;49(40):905–908.
  • Nicholas DE, Jacobsen KH, Waters NM. Risk factors associated with human rift valley fever infection: systematic review and meta-analysis. Trop Med Int Health. 2014;19(12):1420–1429. doi: 10.1111/tmi.12385
  • Ikegami T, Makino S. The pathogenesis of rift valley fever. Viruses. 2011;3(5):493–519. doi: 10.3390/v3050493
  • Wilson LR, McElroy AK. Rift valley fever virus encephalitis: viral and host determinants of pathogenesis. Annu Rev Virol. 2024. doi: 10.1146/annurev-virology-093022-011544
  • Ebogo-Belobo JT, Kenmoe S, Abanda NN, et al. Contemporary epidemiological data of Rift Valley fever virus in humans, mosquitoes and other animal species in Africa: a systematic review and meta-analysis. Vet Med Sci. 2023;9(5):2309–2328. doi: 10.1002/vms3.1238
  • Sato Y, Mekata H, Sudaryatma PE, et al. Isolation of severe fever with thrombocytopenia syndrome virus from various tick species in area with human severe fever with thrombocytopenia syndrome cases. Vector-Borne Zoonot. 2021;21(5):378–384. doi: 10.1089/vbz.2020.2720
  • Luo LM, Zhao L, Wen HL, et al. Haemaphysalis longicornis ticks as reservoir and vector of severe fever with thrombocytopenia syndrome virus in China. Emerg Infect Dis. 2015;21(10):1770–1776. doi: 10.3201/eid2110.150126
  • Fang LZ, Xiao X, Lei SC, et al. Ticks as a competent vector of severe fever with thrombocytopenia syndrome virus. Ticks Tick-Borne Dis. 2023;14(2):14. doi: 10.1016/j.ttbdis.2022.102100
  • Kim KH, Yi J, Kim G, et al. Severe fever with thrombocytopenia syndrome, South Korea, Emerg Infect Dis 2013; 2012;19(11):1892–1894. doi: 10.3201/eid1911.130792
  • Takahashi T, Maeda K, Suzuki T, et al. The first identification and retrospective study of severe fever with thrombocytopenia syndrome in Japan. J Infect Dis. 2014;209(6):816–827. doi: 10.1093/infdis/jit603
  • Tran XC, Yun Y, Van an L, et al. Endemic severe fever with thrombocytopenia syndrome, Vietnam. Emerg Infect Dis. 2019;25(5):1029–1031. doi: 10.3201/eid2505.181463
  • Ongkittikul S, Watanawong R, Rompho P. Severe fever with thrombocytopenia syndrome virus: the first case report in Thailand. BKK Med J. 2020 Sep 25;16(2):204. doi: 10.31524/bkkmedj.2020.22.001
  • Zohaib A, Zhang J, Saqib M, et al. Serologic evidence of severe fever with thrombocytopenia syndrome virus and related viruses in Pakistan. Emerg Infect Dis. 2020;26(7):1513–1516. doi: 10.3201/eid2607.190611
  • Rainey T, Occi JL, Robbins RG, et al. Discovery of haemaphysalis longicornis (Ixodida: Ixodidae) parasitizing a sheep in New Jersey, United States. J Med Entomol. 2018;55(3):757–759. doi: 10.1093/jme/tjy006
  • Liu Y, Li Q, Hu WF, et al. Person-to-person transmission of severe fever with thrombocytopenia syndrome virus. Vector-Borne Zoonot. 2012;12(2):156–160. doi: 10.1089/vbz.2011.0758
  • Bao CJ, Qi X, Wang H. A novel bunyavirus in China. N Engl J Med. 2011;365:862–863.
  • Zhou C-M, Qi R, Qin X-R, et al. Oral and ocular transmission of severe fever with thrombocytopenia syndrome virus. Infect Med. 2022;1(1):2–6. doi: 10.1016/j.imj.2021.12.002
  • Mo Q, Xu Z, Deng F, et al. Host restriction of emerging high-pathogenic bunyaviruses via MOV10 by targeting viral nucleoprotein and blocking ribonucleoprotein assembly. PLOS Pathog. 2020;16(12):e1009129. doi: 10.1371/journal.ppat.1009129
  • Wichgers Schreur PJ, Kortekaas J, Palese P. Single-molecule FISH reveals non-selective packaging of rift valley fever virus genome segments. PLOS Pathog. 2016;12(8):e1005800. doi: 10.1371/journal.ppat.1005800
  • Liu J, Xu M, Tang B, et al. Single-particle tracking reveals the sequential entry process of the bunyavirus severe fever with thrombocytopenia syndrome virus. Small. 2019;15(6):e1803788. doi: 10.1002/smll.201803788
  • Koch J, Xin Q, Tischler ND, et al. Entry of phenuiviruses into mammalian Host cells. Viruses. 2021;13(2):299. doi: 10.3390/v13020299
  • Albornoz A, Hoffmann AB, Lozach PY, et al. Early bunyavirus-host cell interactions. Viruses. 2016;8(5):143. doi: 10.3390/v8050143
  • Schwarz MM, Price DA, Ganaie SS, et al. Oropouche orthobunyavirus infection is mediated by the cellular host factor Lrp1. Proc Natl Acad Sci USA. 2022;119(33):e2204706119. doi: 10.1073/pnas.2204706119
  • Ganaie SS, Schwarz MM, McMillen CM, et al. Lrp1 is a host entry factor for rift valley fever virus. Cell. 2021;184(20):5163–78 e24. doi: 10.1016/j.cell.2021.09.001
  • Zhang L, Peng X, Wang Q, et al. CCR2 is a host entry receptor for severe fever with thrombocytopenia syndrome virus. Sci Adv. 2023;9(31):eadg6856. doi: 10.1126/sciadv.adg6856
  • Liu T, Li J, Liu Y, et al. SNX11 identified as an essential Host factor for SFTS virus infection by CRISPR knockout screening. Virol Sin. 2019;34(5):508–520. doi: 10.1007/s12250-019-00141-0
  • Sun Y, Li J, Gao GF, et al. Bunyavirales ribonucleoproteins: the viral replication and transcription machinery. Crit Rev Microbiol. 2018;44(5):522–540. doi: 10.1080/1040841X.2018.1446901
  • Lozach PY, Mancini R, Bitto D, et al. Entry of bunyaviruses into mammalian cells. Cell Host & Microbe. 2010;7(6):488–499. doi: 10.1016/j.chom.2010.05.007
  • Garrison AR, Radoshitzky SR, Kota KP, et al. Crimean–Congo hemorrhagic fever virus utilizes a clathrin- and early endosome-dependent entry pathway. Virology. 2013;444(1–2):45–54. doi: 10.1016/j.virol.2013.05.030
  • Harmon B, Schudel BR, Maar D, et al. Rift valley fever virus strain MP-12 enters mammalian host cells via caveola-mediated endocytosis. J Virol. 2012;86(23):12954–12970. doi: 10.1128/JVI.02242-12
  • Shi X, van Mierlo Jt, French A, et al. Visualizing the replication cycle of bunyamwera orthobunyavirus expressing fluorescent protein-tagged gc glycoprotein. J Virol. 2010;84(17):8460–8469. doi: 10.1128/JVI.00902-10
  • Olschewski S, Cusack S, Rosenthal M. The cap-snatching mechanism of bunyaviruses. Trends Microbiol. 2020;28(4):293–303. doi: 10.1016/j.tim.2019.12.006
  • Jiang XM, Xin QL, Liu K, et al. Regulation of the WNT-CTNNB1 signaling pathway by severe fever with thrombocytopenia syndrome virus in a cap-snatching manner. MBio. 2023;14(6):e0168823. doi: 10.1128/mbio.01688-23
  • Uckeley ZM, Moeller R, Kuhn LI, et al. Quantitative proteomics of uukuniemi virus-host cell interactions reveals GBF1 as proviral host factor for phleboviruses. Mol Cell Proteomics. 2019;18(12):2401–2417. doi: 10.1074/mcp.RA119.001631
  • Yan JM, Zhang WK, Yan LN, et al. Bunyavirus SFTSV exploits autophagic flux for viral assembly and egress. Autophagy. 2022;18(7):1–14. doi: 10.1080/15548627.2021.1994296
  • Zhou CM, Yu XJ. Unraveling the underlying interaction mechanism between dabie bandavirus and innate immune response. Front Immunol. 2021;12:676861. doi: 10.3389/fimmu.2021.676861
  • Min YQ, Ning YJ, Wang H, et al. A RIG-I–like receptor directs antiviral responses to a bunyavirus and is antagonized by virus-induced blockade of TRIM25-mediated ubiquitination. J Biol Chem. 2020;295(28):9691–9711. doi: 10.1074/jbc.RA120.013973
  • Mukherjee P, Woods TA, Moore RA, et al. Activation of the innate signaling molecule MAVS by bunyavirus infection upregulates the adaptor protein SARM1, leading to neuronal death. Immunity. 2013;38(4):705–716. doi: 10.1016/j.immuni.2013.02.013
  • Weber M, Gawanbacht A, Habjan M, et al. Incoming RNA virus nucleocapsids containing a 5'-triphosphorylated genome activate rig-I and Antiviral signaling. Cell Host Microbe. 2013;13(3):336–346. doi: 10.1016/j.chom.2013.01.012
  • Spengler JR, Patel JR, Chakrabarti AK, et al. RIG-I mediates an antiviral response to Crimean-Congo hemorrhagic fever virus. J Virol. 2015;89(20):10219–10229. doi: 10.1128/JVI.01643-15
  • Huang C, Kolokoltsova OA, Yun NE, et al. Junín virus infection activates the type I interferon pathway in a RIG-I-Dependent manner. PLOS Negl Trop Dis. 2012;6(5):e1659. doi: 10.1371/journal.pntd.0001659
  • Ermler ME, Yerukhim E, Schriewer J, et al. RNA helicase signaling is critical for type i interferon production and protection against rift valley fever virus during mucosal challenge. J Virol. 2013;87(9):4846–4860. doi: 10.1128/JVI.01997-12
  • Habjan M, Andersson I, Klingstrom J, et al. Processing of genome 5' termini as a strategy of negative-strand RNA viruses to avoid RIG-I-Dependent interferon induction. PLOS ONE. 2008;3(4):e2032. doi: 10.1371/journal.pone.0002032
  • Yamada S, Shimojima M, Narita R, et al. RIG-I-Like receptor and toll-like receptor signaling pathways cause aberrant production of inflammatory Cytokines/Chemokines in a severe fever with thrombocytopenia syndrome virus infection mouse Model. J Virol. 2018;92(13). doi: 10.1128/JVI.02246-17
  • Wu X, Qi X, Liang M, et al. Roles of viroplasm-like structures formed by nonstructural protein NSs in infection with severe fever with thrombocytopenia syndrome virus. FASEB J. 2014;28(6):2504–2516. doi: 10.1096/fj.13-243857
  • Dhir A, Dhir S, Borowski LS, et al. Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature. 2018;560(7717):238–242. doi: 10.1038/s41586-018-0363-0
  • Weber F, Wagner V, Rasmussen SB, et al. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol. 2006;80(10):5059–5064. doi: 10.1128/JVI.80.10.5059-5064.2006
  • Wang H, Vaheri A, Weber F, et al. Old world hantaviruses do not produce detectable amounts of dsRNA in infected cells and the 5' termini of their genomic RNAs are monophosphorylated. Journal Of General Virology. 2011;92(5):1199–1204. doi: 10.1099/vir.0.029405-0
  • O’Brien CA, Hobson-Peters J, Yam AW, et al. Viral RNA intermediates as targets for detection and discovery of novel and emerging mosquito-borne viruses. PLOS Negl Trop Dis. 2015;9(3):e0003629. doi: 10.1371/journal.pntd.0003629
  • Barr JN. Bunyavirus mRNA synthesis is coupled to translation to prevent premature transcription termination. RNA. 2007;13(5):731–736. doi: 10.1261/rna.436607
  • Ermler ME, Traylor Z, Patel K, et al. Rift valley fever virus infection induces activation of the NLRP3 inflammasome. Virology. 2014;449:174–180. doi: 10.1016/j.virol.2013.11.015
  • Li S, Li H, Zhang YL, et al. SFTSV infection induces BAK/BAX-Dependent mitochondrial DNA release to trigger NLRP3 Inflammasome activation. Cell Reports. 2020;30(13):4370–85 e7. doi: 10.1016/j.celrep.2020.02.105
  • Wan Q, Song D, Li H, et al. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal transduction and targeted therapy. Signal Transduct Target Ther. 2020;5(1):125. doi: 10.1038/s41392-020-00233-4
  • Cao L, Liu S, Li Y, et al. The nuclear matrix protein SAFA surveils viral RNA and Facilitates immunity by activating antiviral enhancers and super-enhancers. Cell Host & Microbe. 2019;26:369–84 e8. doi: 10.1016/j.chom.2019.08.010
  • Valente ST, Goff SP. Inhibition of HIV-1 gene expression by a fragment of hnRNP U. Mol Cell. 2006;23(4):597–605. doi: 10.1016/j.molcel.2006.07.021
  • Liu BY, Yu XJ, Zhou CM, et al. SAFA initiates innate immunity against cytoplasmic RNA virus SFTSV infection. PLOS Pathog. 2021;17(11):e1010070. doi: 10.1371/journal.ppat.1010070
  • Zz J, Chu M, Ln Y, et al. SFTSV nucleoprotein mediates DNA sensor cGAS degradation to suppress cGAS-dependent antiviral responses. Microbiol Spectr. 2024;12(6):e0379623. doi: 10.1128/spectrum.03796-23
  • Jia Y, Li F, Liu Z, et al. Interaction between the SFTSV envelope glycoprotein gn and STING inhibits the formation of the STING-TBK1 complex and suppresses the nf-κB signaling pathway. J Virol. 2024;98(3):e0181523. doi: 10.1128/jvi.01815-23
  • Rezelj L VV, Chaudhary P, Elliott V, et al. Differential antagonism of human innate immune responses by tick-borne phlebovirus nonstructural proteins. mSphere. 2017;2(3). doi: 10.1128/mSphere.00234-17
  • Yadani FZ, Kohl A, Prehaud C, et al. The carboxy-terminal acidic domain of rift valley fever virus NSs protein is essential for the formation of filamentous structures but not for the nuclear localization of the protein. J Virol. 1999;73(6):5018–5025. doi: 10.1128/JVI.73.6.5018-5025.1999
  • Billecocq A, Spiegel M, Vialat P, et al. NSs protein of rift valley fever virus blocks interferon production by inhibiting host gene transcription. J Virol. 2004;78(18):9798–9806. doi: 10.1128/JVI.78.18.9798-9806.2004
  • Cyr N, de la Fuente C, Lecoq L, et al. A OmegaXaV motif in the Rift Valley fever virus NSs protein is essential for degrading p62, forming nuclear filaments and virulence. Proc Natl Acad Sci U S A. 2015 May 12;112(19):6021–6026. doi: 10.1073/pnas.1503688112.
  • Bouloy M, Janzen C, Vialat P, et al. Genetic evidence for an interferon-antagonistic function of rift valley fever virus nonstructural protein NSs. J Virol. 2001;75(3):1371–1377. doi: 10.1128/JVI.75.3.1371-1377.2001
  • Vialat P, Billecocq A, Kohl A, et al. The S segment of rift valley fever phlebovirus (bunyaviridae) carries determinants for attenuation and virulence in mice. J Virol. 2000;74(3):1538–1543. doi: 10.1128/JVI.74.3.1538-1543.2000
  • Leger P, Nachman E, Richter K, et al. NSs amyloid formation is associated with the virulence of rift valley fever virus in mice. Nat Commun. 2020;11(1):3281. doi: 10.1038/s41467-020-17101-y
  • Ly HJ, Ikegami T. Rift valley fever virus NSs protein functions and the similarity to other bunyavirus NSs proteins. Virol J. 2016;13(1):118. doi: 10.1186/s12985-016-0573-8
  • Wuerth JD, Weber F. Phleboviruses and the type I interferon response. Viruses. 2016;8(6):174. doi: 10.3390/v8060174
  • Barski M, Brennan B, Miller OK, et al. Rift valley fever phlebovirus NSs protein core domain structure suggests molecular basis for nuclear filaments. Elife. 2017;6:6. doi: 10.7554/eLife.29236
  • Kalveram B, Lihoradova O, Ikegami T. NSs protein of rift valley fever virus promotes posttranslational downregulation of the TFIIH subunit p62. J Virol. 2011;85(13):6234–6243. doi: 10.1128/JVI.02255-10
  • Habjan M, Pichlmair A, Elliott RM, et al. NSs protein of rift valley fever virus induces the specific degradation of the double-stranded RNA-dependent protein kinase. J Virol. 2009;83(9):4365–4375. doi: 10.1128/JVI.02148-08
  • Ikegami T, Narayanan K, Won S, et al. Rift valley fever virus NSs protein promotes post-transcriptional downregulation of protein kinase PKR and Inhibits eIf2α phosphorylation. PLOS Pathog. 2009;5(2):e1000287. doi: 10.1371/journal.ppat.1000287
  • Kainulainen M, Lau S, Samuel CE, et al. NSs virulence factor of rift valley fever virus engages the F-Box proteins FBXW11 and β-TRCP1 to degrade the antiviral protein kinase PKR. J Virol. 2016;90(13):6140–6147. doi: 10.1128/JVI.00016-16
  • Mudhasani R, Tran JP, Retterer C, et al. Protein kinase R degradation is essential for rift valley fever virus infection and is regulated by SKP1-CUL1-F-box (SCF)FBXW11-NSs E3 ligase. PLOS Pathog. 2016;12(2):e1005437. doi: 10.1371/journal.ppat.1005437
  • Terasaki K, Ramirez SI, Makino S, et al. Mechanistic insight into the host transcription inhibition function of rift valley fever virus NSs and its importance in virulence. PLOS neglected tropical diseases. PLOS Negl Trop Dis. 2016;10(10):e0005047. doi: 10.1371/journal.pntd.0005047
  • Weill L, Shestakova E, Bonnefoy E. Transcription factor YY1 binds to the murine beta interferon promoter and regulates its transcriptional capacity with a dual activator/repressor role. J Virol. 2003;77(5):2903–2914. doi: 10.1128/JVI.77.5.2903-2914.2003
  • Le May N, Mansuroglu Z, Leger P, et al. A SAP30 complex inhibits ifn-β expression in rift valley fever virus infected cells. PLOS Pathog. 2008;4(1):e13. doi: 10.1371/journal.ppat.0040013
  • Copeland AM, Van Deusen NM, Schmaljohn CS. Rift valley fever virus NSS gene expression correlates with a defect in nuclear mRNA export. Virology. 2015;486:88–93. doi: 10.1016/j.virol.2015.09.003
  • Monteiro GER, Jansen van Vuren P, Wichgers Schreur PJ, et al. Mutation of adjacent cysteine residues in the NSs protein of Rift Valley fever virus results in loss of virulence in mice. Virus Res. 2018;249:31–44. doi: 10.1016/j.virusres.2018.03.005
  • Gori-Savellini G, Valentini M, Cusi MG. Toscana virus NSs protein inhibits the induction of type I interferon by interacting with RIG-I. J Virol. 2013;87(12):6660–6667. doi: 10.1128/JVI.03129-12
  • Kalveram B, Ikegami T. Toscana virus NSs protein promotes degradation of double-stranded RNA-dependent protein kinase. J Virol. 2013;87(7):3710–3718. doi: 10.1128/JVI.02506-12
  • Gori Savellini G, Anichini G, Gandolfo C, et al. Toscana virus non-structural protein NSs acts as E3 ubiquitin ligase promoting RIG-I degradation. PLOS Pathog. 2019;15(12):e1008186. doi: 10.1371/journal.ppat.1008186
  • Moriyama M, Igarashi M, Koshiba T, et al. Two conserved amino acids within the NSs of severe fever with thrombocytopenia syndrome phlebovirus are essential for anti-interferon activity. J Virol. 2018;92(19). doi: 10.1128/JVI.00706-18
  • Santiago FW, Covaleda LM, Sanchez-Aparicio MT, et al. Hijacking of RIG-I signaling proteins into virus-induced cytoplasmic structures correlates with the inhibition of type I interferon responses. J Virol. 2014;88(8):4572–4585. doi: 10.1128/JVI.03021-13
  • Ning YJ, Wang M, Deng M, et al. Viral suppression of innate immunity via spatial isolation of TBK1/IKKε from mitochondrial antiviral platform. Journal Of Molecular Cell Biology. 2014;6(4):324–337. doi: 10.1093/jmcb/mju015
  • Wu X, Qi X, Qu B, et al. Evasion of antiviral immunity through sequestering of TBK1/IKKε/IRF3 into viral inclusion bodies. J Virol. 2014;88(6):3067–3076. doi: 10.1128/JVI.03510-13
  • Hong Y, Bai M, Qi X, et al. Suppression of the ifn-α and -β induction through sequestering IRF7 into viral inclusion bodies by nonstructural protein NSs in severe fever with thrombocytopenia syndrome bunyavirus infection. The Journal Of Immunology. 2019;202(3):841–856. doi: 10.4049/jimmunol.1800576
  • Ning YJ, Feng K, Min YQ, et al. Disruption of type I interferon signaling by the nonstructural protein of severe fever with thrombocytopenia syndrome virus via the hijacking of STAT2 and STAT1 into inclusion bodies. J Virol. 2015;89(8):4227–4236. doi: 10.1128/JVI.00154-15
  • Chaudhary V, Zhang S, Yuen KS, et al. Suppression of type I and type III IFN signalling by NSs protein of severe fever with thrombocytopenia syndrome virus through inhibition of STAT1 phosphorylation and activation. J Gen Virol. 2015;96(11):3204–3211. doi: 10.1099/jgv.0.000280
  • Zhang L, Fu Y, Zhang R, et al. Nonstructural protein NSs hampers cellular antiviral response through LSm14A during severe fever with thrombocytopenia syndrome virus infection. The J Immunol. 2021;207(2):590–601. doi: 10.4049/jimmunol.2100148
  • Liu S, Liu H, Kang J, et al. The severe fever with thrombocytopenia syndrome virus NSs protein interacts with CDK1 to induce G2 cell cycle arrest and positively regulate viral replication. J Virol. 2020;94(6). doi: 10.1128/JVI.01575-19
  • Li ZM, Duan SH, Yu TM, et al. Bunyavirus SFTSV NSs utilizes autophagy to escape the antiviral innate immune response. Autophagy. 2024:1–13. doi: 10.1080/15548627.2024.2356505
  • Feng K, Zhang H, Jiang Z, et al. SFTS bunyavirus NSs protein sequestrates mTOR into inclusion bodies and deregulates mTOR-ULK1 signaling, provoking pro-viral autophagy. J Med Virol. 2023;95(1):e28371. doi: 10.1002/jmv.28371
  • Liu S, Su Y, Lu Z, et al. The SFTSV nonstructural proteins induce autophagy to promote viral replication via interaction with Vimentin. J Virol. 2023;97(4):e0030223. doi: 10.1128/jvi.00302-23
  • McMullan LK, Folk SM, Kelly AJ, et al. A new phlebovirus associated with severe febrile illness in Missouri. N Engl J Med. 2012;367(9):834–841. doi: 10.1056/NEJMoa1203378
  • Feng K, Deng F, Hu Z, et al. Heartland virus antagonizes type I and III interferon antiviral signaling by inhibiting phosphorylation and nuclear translocation of STAT2 and STAT1. J Biol Chem. 2019;294(24):9503–9517. doi: 10.1074/jbc.RA118.006563
  • Ning YJ, Feng K, Min YQ, et al. Heartland virus NSs protein disrupts host defenses by blocking the TBK1 kinase–IRF3 transcription factor interaction and signaling required for interferon induction. Journal Of Biological Chemistry. 2017;292(40):16722–16733. doi: 10.1074/jbc.M117.805127
  • Saikku P. Arboviruses in Finland. 3. Uukuniemi virus antibodies in human, cattle, and reindeer sera. Am J Trop Med Hyg. 1973;22(3):400–403. doi: 10.4269/ajtmh.1973.22.400
  • Rezelj O VV, Elliott AK, Elliott, et al. Generation of mutant uukuniemi viruses lacking the nonstructural protein NSs by reverse genetics indicates that NSs is a weak interferon antagonist. J Virol. 2015;89(9):4849–4856. doi: 10.1128/JVI.03511-14
  • Simons JF, Hellman U, Pettersson RF. Uukuniemi virus S RNA segment: ambisense coding strategy, packaging of complementary strands into virions, and homology to members of the genus phlebovirus. J Virol. 1990;64(1):247–255. doi: 10.1128/jvi.64.1.247-255.1990
  • Shen S, Duan X, Wang B, et al. A novel tick-borne phlebovirus, closely related to severe fever with thrombocytopenia syndrome virus and heartland virus, is a potential pathogen. Emerging Microbes & Infections. 2018;7:95. doi: 10.1038/s41426-018-0093-2
  • Min YQ, Shi C, Yao T, et al. The nonstructural protein of guertu virus disrupts Host defenses by blocking antiviral interferon induction and action. ACS Infect Dis. 2020;6(5):857–870. doi: 10.1021/acsinfecdis.9b00492
  • Zhao C, Zhao W. NLRP3 inflammasome-A key player in antiviral responses. Front Immunol. 2020;11:211. doi: 10.3389/fimmu.2020.00211
  • Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19(8):477–489. doi: 10.1038/s41577-019-0165-0
  • Ye W, Lei Y, Yu M, et al. NLRP3 inflammasome is responsible for hantavirus inducing interleukin-1β in THP-1 cells. International Journal Of Molecular Medicine. 2015;35(6):1633–1640. doi: 10.3892/ijmm.2015.2162
  • Ma R, Zhang X, Shu J, et al. Nlrc3 knockout mice showed renal pathological changes after HTNV infection. Front Immunol. 2021;12:692509. doi: 10.3389/fimmu.2021.692509
  • Sun Y, Jin C, Zhan F, et al. Host cytokine storm is associated with disease severity of severe fever with thrombocytopenia syndrome. J Infect Dis. 2012;206(7):1085–1094. doi: 10.1093/infdis/jis452
  • Liu MM, Lei XY, Yu H, et al. Correlation of cytokine level with the severity of severe fever with thrombocytopenia syndrome. Virol J. 2017;14(1):6. doi: 10.1186/s12985-016-0677-1
  • Liu JW, Chu M, Jiao YJ, et al. SFTSV infection induced Interleukin-1beta secretion through NLRP3 Inflammasome activation. Front Immunol. 2021;12:595140. doi: 10.3389/fimmu.2021.595140
  • Li Z, Hu J, Bao C, et al. Activation of the NLRP3 inflammasome and elevation of interleukin-1β secretion in infection by sever fever with thrombocytopenia syndrome virus. Sci Rep. 2022;12(1):2573. doi: 10.1038/s41598-022-06229-0
  • Choi Y, Park SJ, Sun Y, et al. Severe fever with thrombocytopenia syndrome phlebovirus non-structural protein activates TPL2 signalling pathway for viral immunopathogenesis. Nat Microbiol. 2019;4(3):429–437. doi: 10.1038/s41564-018-0329-x
  • Saha S, Buttari B, Panieri E, et al. An overview of Nrf2 signaling pathway and its role in inflammation. Molecules. 2020;25(22):25. doi: 10.3390/molecules25225474
  • Choi Y, Jiang Z, Shin WJ, et al. Severe fever with thrombocytopenia syndrome virus NSs interacts with TRIM21 to activate the p62-Keap1-Nrf2 pathway. J Virol. 2020;94(6). doi: 10.1128/JVI.01684-19
  • Gao C, Yu Y, Wen C, et al. Nonstructural protein NSs activates inflammasome and pyroptosis through interaction with NLRP3 in human microglial cells infected with severe fever with thrombocytopenia syndrome bandavirus. J Virol. 2022;96(13):e0016722. doi: 10.1128/jvi.00167-22
  • Khalil J, Yamada S, Tsukamoto Y, et al. The nonstructural protein NSs of severe fever with thrombocytopenia syndrome virus causes a Cytokine storm through the hyperactivation of nf-κB. Mol Cell Biol. 2020;41(3). doi: 10.1128/MCB.00542-20
  • Mendoza CA, Yamaoka S, Tsuda Y, et al. The nf-kappaB inhibitor, SC75741, is a novel antiviral against emerging tick-borne bandaviruses. Antiviral Res. 2021;185:104993. doi: 10.1016/j.antiviral.2020.104993
  • Cheng Y, Sun F, Wang L, et al. Virus-induced p38 MAPK activation facilitates viral infection. Theranostics. 2020;10(26):12223–12240. doi: 10.7150/thno.50992
  • Lee HK, Lund JM, Ramanathan B, et al. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science. 2007;315(5817):1398–1401. doi: 10.1126/science.1136880
  • Shoji-Kawata S, Sumpter R, Leveno M, et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature. 2013;494(7436):201–206. doi: 10.1038/nature11866
  • Orvedahl A, MacPherson S, Sumpter R Jr., et al. Autophagy protects against sindbis virus infection of the central nervous system. Cell Host & Microbe. 2010;7(2):115–127. doi: 10.1016/j.chom.2010.01.007
  • Chen YH, Du W, Hagemeijer MC, et al. Phosphatidylserine vesicles enable efficient en bloc transmission of enteroviruses. Cell. 2015;160(4):619–630. doi: 10.1016/j.cell.2015.01.032
  • Corona AK, Saulsbery HM, Velazquez AFC, et al. Enteroviruses remodel Autophagic trafficking through regulation of Host SNARE proteins to promote virus replication and cell exit. Cell Rep. 2018;22(12):3304–3314. doi: 10.1016/j.celrep.2018.03.003
  • Ghosh S, Dellibovi-Ragheb TA, Kerviel A, et al. β-coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway. Cell. 2020;183(6):1520–1535.e14. doi: 10.1016/j.cell.2020.10.039
  • Moy RH, Gold B, Molleston JM, et al. Antiviral autophagy restrictsRift valley fever virus infection and is conserved from flies to mammals. Immunity. 2014;40(1):51–65. doi: 10.1016/j.immuni.2013.10.020
  • Zhu X, Guan Z, Fang Y, et al. Rift valley fever virus nucleoprotein triggers autophagy to dampen antiviral innate immune responses. J Virol. 2023;97(4):e0181422. doi: 10.1128/jvi.01814-22
  • Yan JM, Zhang WK, Li F, et al. Integrated transcriptome profiling in THP-1 macrophages infected with bunyavirus SFTSV. Virus Res. 2021;306:198594. doi: 10.1016/j.virusres.2021.198594
  • Zhang LK, Wang B, Xin Q, et al. Quantitative proteomic analysis reveals unfolded-protein response involved in severe fever with thrombocytopenia syndrome virus infection. J Virol. 2019;93(10). doi: 10.1128/JVI.00308-19
  • Li Z, Shen Y, Song Y, et al. ER stress-related molecules induced by Hantaan virus infection in differentiated THP-1 cells. Cell Stress & Chaperones. 2021;26(1):41–50. doi: 10.1007/s12192-020-01150-9
  • Li XD, Lankinen H, Putkuri N, et al. Tula hantavirus triggers pro-apoptotic signals of ER stress in Vero E6 cells. Virology. 2005;333(1):180–189. doi: 10.1016/j.virol.2005.01.002
  • Silvas JA, Popov VL, Paulucci-Holthauzen A, et al. Extracellular vesicles mediate receptor-independent transmission of novel tick-borne bunyavirus. J Virol. 2016;90(2):873–886. doi: 10.1128/JVI.02490-15
  • Ahsan NA, Sampey GC, Lepene B, et al. Presence of viral RNA and Proteins in exosomes from cellular clones resistant to rift valley fever virus infection. Front Microbiol. 2016;7:139. doi: 10.3389/fmicb.2016.00139
  • Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–257. doi: 10.1038/bjc.1972.33
  • Won S, Ikegami T, Peters CJ, et al. Nsm protein of rift valley fever virus suppresses virus-induced apoptosis. J Virol. 2007;81(24):13335–13345. doi: 10.1128/JVI.01238-07
  • Terasaki K, Won S, Makino S. The C-terminal region of Rift Valley fever virus NSm protein targets the protein to the mitochondrial outer membrane and exerts antiapoptotic function. J Virol. 2013;87(1):676–682. doi: 10.1128/JVI.02192-12
  • Austin D, Baer A, Lundberg L, et al. p53 activation following rift valley fever virus infection contributes to cell death and viral production. PLOS ONE. 2012;7(5):e36327. doi: 10.1371/journal.pone.0036327
  • Popova TG, Turell MJ, Espina V, et al. Reverse-phase phosphoproteome analysis of signaling pathways induced by rift valley fever virus in human small airway epithelial cells. PLOS ONE. 2010;5(11):e13805. doi: 10.1371/journal.pone.0013805
  • Narayanan A, Amaya M, Voss K, et al. Reactive oxygen species activate NFkappaB (p65) and p53 and induce apoptosis in RVFV infected liver cells. Virology. 2014;449:270–286. doi: 10.1016/j.virol.2013.11.023
  • Quellec J, Pedarrieu A, Piro-Megy C, et al. Rift valley fever virus modulates apoptosis and immune response during infection of human astrocytes. Emerg Microbes Infect. 2023;12(1):2207672. doi: 10.1080/22221751.2023.2207672
  • Michaely LM, Rissmann M, Armando F, et al. Rift valley fever virus non-structural protein S is associated with nuclear translocation of active caspase-3 and inclusion body formation. Viruses. 2022;14(11):14. doi: 10.3390/v14112487
  • Qu B, Qi X, Wu X, et al. Suppression of the interferon and nf-κB responses by severe fever with thrombocytopenia syndrome virus. J Virol. 2012;86(16):8388–8401. doi: 10.1128/JVI.00612-12
  • Song P, Zheng N, Liu Y, et al. Deficient humoral responses and disrupted B-cell immunity are associated with fatal SFTSV infection. Nat Commun. 2018;9(1):3328. doi: 10.1038/s41467-018-05746-9
  • Sun Q, Jin C, Zhu L, et al. Host responses and regulation by NFκB signaling in the liver and liver epithelial cells infected with a novel tick-borne bunyavirus. Sci Rep. 2015;5(1):11816. doi: 10.1038/srep11816
  • Xu S, Jiang N, Nawaz W, et al. Infection of humanized mice with a novel phlebovirus presented pathogenic features of severe fever with thrombocytopenia syndrome. PLOS Pathog. 2021;17(5):e1009587. doi: 10.1371/journal.ppat.1009587
  • Liu S, Liu H, Zhang K, et al. Proteasome inhibitor PS-341 effectively blocks infection by the severe fever with thrombocytopenia syndrome virus. Virol Sin. 2019;34(5):572–582. doi: 10.1007/s12250-019-00162-9
  • Lozach PY, Kuhbacher A, Meier R, et al. DC-SIGN as a receptor for phleboviruses. Cell Host & Microbe. 2011;10(1):75–88. doi: 10.1016/j.chom.2011.06.007
  • Wonderlich ER, Caroline AL, McMillen CM, et al. Peripheral blood biomarkers of disease outcome in a monkey Model of rift valley fever encephalitis. J Virol. 2018;92(3). doi: 10.1128/JVI.01662-17
  • Zhang W, Li M, Xiong S, et al. Decreased myeloid dendritic cells indicate a poor prognosis in patients with severe fever with thrombocytopenia syndrome. Int J Infect Dis. 2017;54:113–120. doi: 10.1016/j.ijid.2016.11.418
  • Song P, Zheng N, Zhang L, et al. Downregulation of interferon-β and inhibition of TLR3 expression are associated with fatal outcome of severe fever with thrombocytopenia syndrome. Sci Rep. 2017;7(1):6532. doi: 10.1038/s41598-017-06921-6
  • Harmon JR, Spengler JR, Coleman-McCray JD, et al. CD4 T cells, CD8 T cells, and monocytes coordinate to prevent rift valley fever virus encephalitis. J Virol. 2018;92(24). doi: 10.1128/JVI.01270-18
  • Hum NR, Bourguet FA, Sebastian A, et al. MAVS mediates a protective immune response in the brain to Rift Valley fever virus. PLOS Pathog. 2022;18(5):e1010231. doi: 10.1371/journal.ppat.1010231
  • Lu Q-B, Cui N, Hu J-G, et al. Characterization of immunological responses in patients with severe fever with thrombocytopenia syndrome: a cohort study in China. Vaccine. 2015;33(10):1250–1255. doi: 10.1016/j.vaccine.2015.01.051
  • Li M, Xiong Y, Li M, et al. Depletion but activation of CD56dimCD16+ NK cells in acute infection with severe fever with thrombocytopenia syndrome virus. Virol Sin. 2020;35(5):588–598. doi: 10.1007/s12250-020-00224-3
  • Du J, Li XK, Peng XF, et al. Expansion of granulocytic myeloid‐derived suppressor cells in patients with severe fever with thrombocytopenia syndrome. J Med Virol. 2022;94(9):4329–4337. doi: 10.1002/jmv.27854
  • Huang M, Wang T, Huang Y, et al. The clinical and immunological characteristics in fatal severe fever with thrombocytopenia syndrome virus (SFTSV) infection. Clin Immunol. 2023;248:248. doi: 10.1016/j.clim.2023.109262
  • Sun L, Hu Y, Niyonsaba A, et al. Detection and evaluation of immunofunction of patients with severe fever with thrombocytopenia syndrome. Clin Exp Med. 2013;14(4):389–395. doi: 10.1007/s10238-013-0259-0
  • Dodd KA, Ak M, Jones ME, et al. Rift valley fever virus clearance and protection from neurologic disease are dependent on CD4+ T cell and virus-specific antibody responses. J Virol. 2013;87(11):6161–6171. doi: 10.1128/JVI.00337-13
  • Park A, Park SJ, Jung KL, et al. Molecular signatures of inflammatory profile and B-Cell function in patients with severe fever with thrombocytopenia syndrome. MBio. 2021;12(1):12. doi: 10.1128/mBio.02583-20
  • Zhang J, Yan X, Li Y, et al. Reactive plasmacytosis mimicking multiple myeloma associated with SFTS virus infection: a report of two cases and literature review. BMC Infect Dis. 2018;18(1):18. doi: 10.1186/s12879-018-3431-z
  • Takahashi T, Suzuki T, Hiroshige S, et al. Transient appearance of plasmablasts in the peripheral blood of Japanese patients with severe fever with thrombocytopenia syndrome. J Infect Dis. 2019;220(1):23–27. doi: 10.1093/infdis/jiz054
  • Song P, Zheng N, Liu Y, et al. Deficient humoral responses and disrupted B-cell immunity are associated with fatal SFTSV infection. Nat Commun. 2018;9(1). doi: 10.1038/s41467-018-05746-9
  • Li M-M, Zhang W-J, Weng X-F, et al. CD4 T cell loss and Th2 and Th17 bias are associated with the severity of severe fever with thrombocytopenia syndrome (SFTS). Clin Immunol. 2018;195:8–17. doi: 10.1016/j.clim.2018.07.009
  • Yi X, Li W, Li H, et al. Circulating regulatory T cells in patients with severe fever with thrombocytopenia syndrome. Infect Dis (Auckl). 2015;47(5):294–301. doi: 10.3109/00365548.2014.987812
  • Li XK, Lu QB, Chen WW, et al. Arginine deficiency is involved in thrombocytopenia and immunosuppression in severe fever with thrombocytopenia syndrome. Sci Transl Med. 2018;10(459):10. doi: 10.1126/scitranslmed.aat4162
  • Xu H, Wei Y, Ma H, et al. Alterations of gut microbiome in the patients with severe fever with thrombocytopenia syndrome. Front Microbiol. 2018;9:2315. doi: 10.3389/fmicb.2018.02315
  • Xie J, Li H, Zhang X, et al. Akkermansia muciniphila protects mice against an emerging tick-borne viral pathogen. Nat Microbiol. 2023;8(1):91–106. doi: 10.1038/s41564-022-01279-6
  • Zhang L, Wang D, Shi P, et al. A naturally isolated symbiotic bacterium suppresses flavivirus transmission by Aedes mosquitoes. Science. 2024;384(6693):eadn9524. doi: 10.1126/science.adn9524
  • Sun Y, Chen C, Zeng C, et al. Severe fever with thrombocytopenia syndrome virus infection shapes gut microbiome of the tick vector haemaphysalis longicornis. Parasit Vectors. 2024;17(1):107. doi: 10.1186/s13071-024-06204-w
  • Tchouassi DP, Muturi EJ, Arum SO, et al. Host species and site of collection shape the microbiota of Rift Valley fever vectors in Kenya. PLOS Negl Trop Dis. 2019;13(6):e0007361. doi: 10.1371/journal.pntd.0007361
  • Gowen BB, Hickerson BT. Hemorrhagic fever of bunyavirus etiology: disease models and progress towards new therapies. J Microbiol. 2017;55(3):183–195. doi: 10.1007/s12275-017-7029-8
  • Gai ZT, Zhang Y, Liang MF, et al. Clinical progress and risk factors for death in severe fever with thrombocytopenia syndrome patients. J Infect Dis. 2012;206(7):1095–1102. doi: 10.1093/infdis/jis472
  • Li YH, Wang XH, Huang WW, et al. RETRACTED: severe fever with thrombocytopenia syndrome virus induces platelet activation and apoptosis via a reactive oxygen species-dependent pathway. Redox Biol. 2023;65:102837. doi: 10.1016/j.redox.2023.102837
  • Fang L, Yu S, Tian X, et al. Severe fever with thrombocytopenia syndrome virus replicates in platelets and enhances platelet activation. J Thromb Haemost. 2023;21(5):1336–1351. doi: 10.1016/j.jtha.2023.02.006