1,945
Views
23
CrossRef citations to date
0
Altmetric
Commentary

Guanylate binding protein 5: Impairing virion infectivity by targeting retroviral envelope glycoproteins

, &
Pages 31-37 | Received 26 Apr 2016, Accepted 11 May 2016, Published online: 08 Jun 2016

References

  • Doyle T, Goujon C, Malim MH. HIV-1 and interferons: who's interfering with whom? Nat Rev Micro 2015; 13:403-13; http://dx.doi.org/10.1038/nrmicro3449
  • Kluge SF, Sauter D, Kirchhoff F. SnapShot: antiviral restriction factors. Cell 2015; 163:774-4.e1; PMID:26496613; http://dx.doi.org/10.1016/j.cell.2015.10.019
  • Krupp A, McCarthy KR, Ooms M, Letko M, Morgan JS, Simon V, Johnson WE. APOBEC3G polymorphism as a selective barrier to cross-species transmission and emergence of pathogenic SIV and AIDS in a primate host. PLOS Pathog 2013; 9:e1003641; PMID:24098115; http://dx.doi.org/10.1371/journal.ppat.1003641
  • Kirchhoff F. Immune evasion and counteraction of restriction factors by HIV-1 and other primate lentiviruses. Cell Host Microbe 2010; 8:55-67; PMID:20638642; http://dx.doi.org/10.1016/j.chom.2010.06.004
  • Malim MH, Bieniasz PD. HIV restriction factors and mechanisms of evasion. Cold Spring Harb Perspect Med 2012; 2:a006940; PMID:22553496; http://dx.doi.org/10.1101/cshperspect.a006940
  • Harris RS, Hultquist JF, Evans DT. The restriction factors of human immunodeficiency virus. J Biol Chem 2012; 287:40875-83; PMID:23043100; http://dx.doi.org/10.1074/jbc.R112.416925
  • Daugherty MD, Malik HS. Rules of engagement: molecular insights from host-virus arms races. Annu Rev Genet 2012; 46:677-700; PMID:23145935; http://dx.doi.org/10.1146/annurev-genet-110711-155522
  • McLaren PJ, Gawanbacht A, Pyndiah N, Krapp C, Hotter D, Kluge SF, Götz N, Heilmann J, Mack K, Sauter D, et al. Identification of potential HIV restriction factors by combining evolutionary genomic signatures with functional analyses. Retrovirology 2015; 12:41; PMID:25980612; http://dx.doi.org/10.1186/s12977-015-0165-5
  • Kim B-H, Shenoy AR, Kumar P, Bradfield CJ, MacMicking JD. IFN-inducible GTPases in Host Defense. Cell Host Microbe 2012; 12:432-44; PMID:23084913; http://dx.doi.org/10.1016/j.chom.2012.09.007
  • Haller O. Dynamins Are Forever: MxB Inhibits HIV-1. Cell Host Microbe 2013; 14:371-3; PMID:24139395; http://dx.doi.org/10.1016/j.chom.2013.10.002
  • Kane M, Yadav SS, Bitzegeio J, Kutluay SB, Zang T, Wilson SJ, Schoggins JW, Rice CM, Yamashita M, Hatziioannou T, et al. MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature 2013; 502:563-6; PMID:24121441; http://dx.doi.org/10.1038/nature12653
  • Liu Z, Pan Q, Ding S, Qian J, Xu F, Zhou J, Cen S, Guo F, Liang C. The interferon-inducible MxB protein inhibits HIV-1 infection. Cell Host Microbe 2013; 14:398-410; PMID:24055605; http://dx.doi.org/10.1016/j.chom.2013.08.015
  • Goujon C, Moncorgé O, Bauby H, Doyle T, Ward CC, Schaller T, Hué S, Barclay WS, Schulz R, Malim MH. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 2013; 502:559-62; PMID:24048477; http://dx.doi.org/10.1038/nature12542
  • Opp S, Vieira DASA, Schulte B, Chanda SK, Diaz-Griffero F. MxB Is Not Responsible for the Blocking of HIV-1 Infection Observed in Alpha Interferon-Treated Cells. J Virol 2015; 90:3056-64; PMID:26719253; http://dx.doi.org/10.1128/JVI.03146-15
  • Krapp C, Hotter D, Gawanbacht A, McLaren PJ, Kluge SF, Stürzel CM, Mack K, Reith E, Engelhart S, Ciuffi A, et al. Guanylate Binding Protein (GBP) 5 Is an Interferon-Inducible Inhibitor of HIV-1 Infectivity. Cell Host Microbe 2016; 19:504-14.
  • Checkley MA, Luttge BG, Freed EO. HIV-1 Envelope Glycoprotein Biosynthesis, Trafficking, and Incorporation. J Mol Biol 2011; 410:582-608; PMID:21762802; http://dx.doi.org/10.1016/j.jmb.2011.04.042
  • Hallenberger S, Bosch V, Angliker H, Shaw E, Klenk HD, Garten W. Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature 1992; 360:358-61; PMID:1360148; http://dx.doi.org/10.1038/360358a0
  • Lodermeyer V, Suhr K, Schrott N, Kolbe C, Stürzel CM, Krnavek D, Münch J, Dietz C, Waldmann T, Kirchhoff F, et al. 90K, an interferon-stimulated gene product, reduces the infectivity of HIV-1. Retrovirology 2013; 10:111; PMID:24156545; http://dx.doi.org/10.1186/1742-4690-10-111
  • Tada T, Zhang Y, Koyama T, Tobiume M, Tsunetsugu-Yokota Y, Yamaoka S, Fujita H, Tokunaga K. MARCH8 inhibits HIV-1 infection by reducing virion incorporation of envelope glycoproteins. Nat Med 2015; 21:1502-7; PMID:26523972; http://dx.doi.org/10.1038/nm.3956
  • Goffinet C. Cellular Antiviral Factors that Target Particle Infectivity of HIV-1. Curr HIV Res 2016; 14:211-6; PMID:26674651; http://dx.doi.org/10.2174/1570162X14666151216145521
  • Rotger M, Dang KK, Fellay J, Heinzen EL, Feng S, Descombes P, Shianna KV, Ge D, Günthard HF, Goldstein DB, et al. Genome-wide mRNA expression correlates of viral control in CD4+ T-cells from HIV-1-infected individuals. PLoS Pathog 2010; 6:e1000781; PMID:20195503; http://dx.doi.org/10.1371/journal.ppat.1000781
  • Bol SM, van Remmerden Y, Sietzema JG, Kootstra NA, Schuitemaker H, van 't Wout AB. Donor variation in in vitro HIV-1 susceptibility of monocyte-derived macrophages. Virology 2009; 390:205-11; PMID:19535121; http://dx.doi.org/10.1016/j.virol.2009.05.027
  • Naif HM, Li S, Alali M, Chang J, Mayne C, Sullivan J, Cunningham AL. Definition of the stage of host cell genetic restriction of replication of human immunodeficiency virus type 1 in monocytes and monocyte-derived macrophages by using twins. J Virol 1999; 73:4866-81; PMID:10233948
  • Pesenti E, Pastore C, Lillo F, Siccardi AG, Vercelli D, Lopalco L. Role of CD4 and CCR5 levels in the susceptibility of primary macrophages to infection by CCR5-dependent HIV type 1 isolates. AIDS Res Hum Retroviruses 1999; 15:983-7; PMID:10445810; http://dx.doi.org/10.1089/088922299310494
  • Olszewski MA, Gray J, Vestal DJ. In silico genomic analysis of the human and murine guanylate-binding protein (GBP) gene clusters. J Interferon Cytokine Res 2006; 26:328-52; PMID:16689661; http://dx.doi.org/10.1089/jir.2006.26.328
  • Schwemmle M, Staeheli P. The interferon-induced 67-kDa guanylate-binding protein (hGBP1) is a GTPase that converts GTP to GMP. J Biol Chem 1994; 269:11299-305; PMID:7512561
  • Tripal P, Bauer M, Naschberger E, Mörtinger T, Hohenadl C, Cornali E, Thurau M, Stürzl M. Unique features of different members of the human guanylate-binding protein family. J Interferon Cytokine Res 2007; 27:44-52; PMID:17266443; http://dx.doi.org/10.1089/jir.2007.0086
  • Modiano N, Lu YE, Cresswell P. Golgi targeting of human guanylate-binding protein-1 requires nucleotide binding, isoprenylation, and an IFN-gamma-inducible cofactor. Proc Natl Acad Sci USA 2005; 102:8680-5; PMID:15937107; http://dx.doi.org/10.1073/pnas.0503227102
  • Anderson SL, Carton JM, Lou J, Xing L, Rubin BY. Interferon-induced guanylate binding protein-1 (GBP-1) mediates an antiviral effect against vesicular stomatitis virus and encephalomyocarditis virus. Virology 1999; 256:8-14; PMID:10087221; http://dx.doi.org/10.1006/viro.1999.9614
  • Itsui Y, Sakamoto N, Kakinuma S, Nakagawa M, Sekine-Osajima Y, Tasaka-Fujita M, Nishimura-Sakurai Y, Suda G, Karakama Y, Mishima K, et al. Antiviral effects of the interferon-induced protein guanylate binding protein 1 and its interaction with the hepatitis C virus NS5B protein. Hepatology 2009; 50:1727-37; PMID:19821486; http://dx.doi.org/10.1002/hep.23195
  • Pan W, Zuo X, Feng T, Shi X, Dai J. Guanylate-binding protein 1 participates in cellular antiviral response to dengue virus. Virol J 2012; 9:292; PMID:23186538; http://dx.doi.org/10.1186/1743-422X-9-292
  • Guerrero S, Batisse J, Libre C, Bernacchi S, Marquet R, Paillart J-C. HIV-1 replication and the cellular eukaryotic translation apparatus. Viruses 2015; 7:199-218; PMID:25606970; http://dx.doi.org/10.3390/v7010199
  • Anderson JL, Johnson AT, Howard JL, Purcell DFJ. Both Linear and Discontinuous Ribosome Scanning Are Used for Translation Initiation from Bicistronic Human Immunodeficiency Virus Type 1 env mRNAs. J Virol 2007; 81:4664-76; PMID:17329338; http://dx.doi.org/10.1128/JVI.01028-06
  • Schubert U, Bour S, Willey RL, Strebel K. Regulation of virus release by the macrophage-tropic human immunodeficiency virus type 1 AD8 isolate is redundant and can be controlled by either Vpu or Env. J Virol 1999; 73:887-96; PMID:9882289
  • Sauter D, Hotter D, Van Driessche B, Stürzel CM, Kluge SF, Wildum S, Yu H, Baumann B, Wirth T, Plantier J-C, et al. Differential regulation of NF-κB-mediated proviral and antiviral host gene expression by primate lentiviral Nef and Vpu proteins. Cell Rep 2015; 10:586-99; PMID:25620704; http://dx.doi.org/10.1016/j.celrep.2014.12.047
  • von Bredow B, Arias JF, Heyer LN, Gardner MR, Farzan M, Rakasz EG, Evans DT. Envelope Glycoprotein Internalization Protects Human and Simian Immunodeficiency Virus-Infected Cells from Antibody-Dependent Cell-Mediated Cytotoxicity. J Virol 2015; 89:10648-55; PMID:26269175; http://dx.doi.org/10.1128/JVI.01911-15
  • Thomas ER, Dunfee RL, Stanton J, Bogdan D, Kunstman K, Wolinsky SM, Gabuzda D. High frequency of defective vpu compared with tat and rev genes in brain from patients with HIV type 1-associated dementia. AIDS Res Hum Retroviruses 2007; 23:575-80; PMID:17451348; http://dx.doi.org/10.1089/aid.2006.0246
  • Theodore TS, Englund G, Buckler-White A, Buckler CE, Martin MA, Peden KW. Construction and characterization of a stable full-length macrophage-tropic HIV type 1 molcular clone that directs the production of high titers of progeny virions. AIDS Res Hum Retroviruses 1996; 12:191-4; PMID:8835195; http://dx.doi.org/10.1089/aid.1996.12.191
  • Li Y, Kappes JC, Conway JA, Price RW, Shaw GM, Hahn BH. Molecular characterization of human immunodeficiency virus type 1 cloned directly from uncultured human brain tissue: identification of replication-competent and -defective viral genomes. J Virol 1991; 65:3973-85; PMID:1830110
  • Bannert N, Schenten D, Craig S, Sodroski J. The Level of CD4 Expression Limits Infection of Primary Rhesus Monkey Macrophages by a T-Tropic Simian Immunodeficiency Virus and Macrophagetropic Human Immunodeficiency Viruses. J Virol 2000; 74:10984-93; PMID:11069993; http://dx.doi.org/10.1128/JVI.74.23.10984-10993.2000
  • Jolly C, Booth NJ, Neil SJD. Cell-cell spread of human immunodeficiency virus type 1 overcomes tetherin/BST-2-mediated restriction in T cells. J Virol 2010; 84:12185-99; PMID:20861257; http://dx.doi.org/10.1128/JVI.01447-10
  • Chan JK, Greene WC. Dynamic roles for NF-κB in HTLV-I and HIV-1 retroviral pathogenesis. Immunol Rev 2012; 246:286-310; PMID:22435562; http://dx.doi.org/10.1111/j.1600-065X.2012.01094.x
  • Krummheuer J, Johnson AT, Hauber I, Kammler S, Anderson JL, Hauber J, Purcell DFJ, Schaal H. A minimal uORF within the HIV-1 vpu leader allows efficient translation initiation at the downstream env AUG. Virology 2007; 363:261-71; PMID:17331561; http://dx.doi.org/10.1016/j.virol.2007.01.022
  • Langer SM, Hopfensperger K, Iyer SS, Kreider EF, Learn GH, Lee L-H, Hahn BH, Sauter D. A Naturally Occurring rev1-vpu Fusion Gene Does Not Confer a Fitness Advantage to HIV-1. PLOS One 2015; 10:e0142118; PMID:26554585; http://dx.doi.org/10.1371/journal.pone.0142118
  • Parrish NF, Gao F, Li H, Giorgi EE, Barbian HJ, Parrish EH, Zajic L, Iyer SS, Decker JM, Kumar A, et al. Phenotypic properties of transmitted founder HIV-1. Proc Natl Acad Sci USA 2013; 110:6626-33; PMID:23542380; http://dx.doi.org/10.1073/pnas.1304288110
  • Asmal M, Hellmann I, Liu W, Keele BF, Perelson AS, Bhattacharya T, Gnanakaran S, Daniels M, Haynes BF, Korber BT, et al. A signature in HIV-1 envelope leader peptide associated with transition from acute to chronic infection impacts envelope processing and infectivity. PLoS ONE 2011; 6:e23673; PMID:21876761; http://dx.doi.org/10.1371/journal.pone.0023673
  • Gnanakaran S, Bhattacharya T, Daniels M, Keele BF, Hraber PT, Lapedes AS, Shen T, Gaschen B, Krishnamoorthy M, Li H, et al. Recurrent signature patterns in HIV-1 B clade envelope glycoproteins associated with either early or chronic infections. PLoS Pathog 2011; 7:e1002209; PMID:21980282; http://dx.doi.org/10.1371/journal.ppat.1002209
  • Malim MH, Emerman M. HIV-1 Accessory Proteins—Ensuring Viral Survival in a Hostile Environment. Cell Host & Microbe 2008; 3:388-98; PMID:18541215; http://dx.doi.org/10.1016/j.chom.2008.04.008
  • Mashiba M, Collins DR, Terry VH, Collins KL. Vpr overcomes macrophage-specific restriction of HIV-1 Env expression and virion production. Cell Host Microbe 2014; 16:722-35; PMID:25464830; http://dx.doi.org/10.1016/j.chom.2014.10.014
  • Laguette N, Brégnard C, Hue P, Basbous J, Yatim A, Larroque M, Kirchhoff F, Constantinou A, Sobhian B, Benkirane M. Premature activation of the SLX4 complex by Vpr promotes G2/M arrest and escape from innate immune sensing. Cell 2014; 156:134-45; PMID:24412650; http://dx.doi.org/10.1016/j.cell.2013.12.011