3,153
Views
48
CrossRef citations to date
0
Altmetric
Commentary - Commissioned

Arf proteins in cancer cell migration

ORCID Icon, ORCID Icon &
Pages 270-282 | Received 18 Jul 2016, Accepted 19 Aug 2016, Published online: 22 Sep 2016

References

  • Donaldson JG, Jackson CL. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol 2011; 12:362-75; PMID:21587297; http://dx.doi.org/10.1038/nrm3117
  • Gillingham AK, Munro S. The Small G Proteins of the Arf Family and Their Regulators. Annu Rev Cell Dev Biol 2007; 23:579-611; PMID:17506703; http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123209
  • Jackson CL, Bouvet S. Arfs at a glance. J Cell Sci 2014; 127:4103-9; PMID:25146395; http://dx.doi.org/10.1242/jcs.144899
  • Paul NR, Jacquemet G, Caswell PT. Endocytic Trafficking of Integrins in Cell Migration. Curr Biol 2015; 25:R1092-105; PMID:26583903; http://dx.doi.org/10.1016/j.cub.2015.09.049
  • Buccione R, Orth JD, McNiven MA. Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nat Rev Mol Cell Biol 2004; 5:647-57; PMID:15366708; http://dx.doi.org/10.1038/nrm1436
  • Schlienger S, Campbell S, Pasquin S, Gaboury L, Claing A, Schlienger S, Campbell S, Pasquin S, Gaboury L, Claing A. ADP-ribosylation factor 1 expression regulates epithelial-mesenchymal transition and predicts poor clinical outcome in triple-negative breast cancer. Oncotarget 2016; 7:15811-27; PMID:26908458
  • D'Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 2006; 7:347-58; PMID:16633337; http://dx.doi.org/10.1038/nrm1910
  • Morishige M, Hashimoto S, Ogawa E, Toda Y, Kotani H, Hirose M, Wei S, Hashimoto A, Yamada A, Yano H, et al. GEP100 links epidermal growth factor receptor signalling to Arf6 activation to induce breast cancer invasion. Nat Cell Biol 2008; 10:85-92; PMID:18084281; http://dx.doi.org/10.1038/ncb1672
  • Hiroi T, Someya A, Thompson W, Moss J, Vaughan M. GEP100/BRAG2: activator of ADP-ribosylation factor 6 for regulation of cell adhesion and actin cytoskeleton via E-cadherin and alpha-catenin. Proc Natl Acad Sci U S A 2006; 103:10672-7; PMID:16807291; http://dx.doi.org/10.1073/pnas.0604091103
  • Xie C, Wei S, Chen J, Xu X, Cai J, Chen Q, Jia L, Li J, Wientjes M, Au J, et al. Down-regulation of GEP100 causes increase in E-cadherin levels and inhibits pancreatic cancer cell invasion. PLoS One 2012; 7:e37854; PMID:22662237; http://dx.doi.org/10.1371/journal.pone.0037854
  • Luton F, Klein S, Chauvin J-P, Bivic A Le, Bourgoin S, Franco M, Chardin P. EFA6, exchange factor for ARF6, regulates the actin cytoskeleton and associated tight junction in response to E-cadherin engagement. Mol Biol Cell 2004; 15:1134-45; PMID:14668475; http://dx.doi.org/10.1091/mbc.E03-10-0751
  • Kon S, Tanabe K, Watanabe T, Sabe H, Satake M. Clathrin dependent endocytosis of E-cadherin is regulated by the Arf6GAP isoform SMAP1. Exp Cell Res 2008; 314:1415-28; PMID:18331728; http://dx.doi.org/10.1016/j.yexcr.2007.11.006
  • Wozniak MA, Modzelewska K, Kwong L, Keely PJ. Focal adhesion regulation of cell behavior. Biochim Biophys Acta 2004; 1692:103-19; PMID:15246682; http://dx.doi.org/10.1016/j.bbamcr.2004.04.007
  • Schlienger S, Ramirez RAM, Claing A. ARF1 regulates adhesion of MDA-MB-231 invasive breast cancer cells through formation of focal adhesions. Cell Signal 2015; 27:403-15; PMID:25530216; http://dx.doi.org/10.1016/j.cellsig.2014.11.032
  • Liu Y, Loijens JC, Martin KH, Karginov AV, Parsons JT. The association of ASAP1, an ADP ribosylation factor-GTPase activating protein, with focal adhesion kinase contributes to the process of focal adhesion assembly. Mol Biol Cell 2002; 13:2147-56; PMID:12058076; http://dx.doi.org/10.1091/mbc.E02-01-0018
  • Ha VL, Bharti S, Inoue H, Vass WC, Campa F, Nie Z, de Grammont A, Ward Y, Randazzo PA. ASAP3 is a focal adhesion-associated Arf GAP that functions in cell migration and invasion. J. Biol Chem 2008; 283(22): 14914-26; PMID:18400762; http://dx.doi.org/10.1074/jbc.M709717200
  • Zhao ZS, Manser E, Loo TH, Lim L. Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Mol Cell Biol 2000; 20(17):6354-63; PMID:10938112; http://dx.doi.org/10.1128/MCB.20.17.6354-6363.2000
  • Turner CE, Brown MC, Perrotta JA, Riedy MC, Nikolopoulos SN, McDonald AR, Bagrodia S, Thomas S, Leventhal PS. Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling. J Cell Biol 1999; 145(4): 851-63; PMID:10330411; http://dx.doi.org/10.1083/jcb.145.4.851
  • Chen PW, Jian X, Yoon HY, Randazzo PA. ARAP2 signals through Arf6 and Rac1 to control focal adhesion morphology. J Biol Chem 2013; 288(8): 5849-60; PMID:23295182; http://dx.doi.org/10.1074/jbc.M112.415778
  • Zhu Y, Wu Y, Kim JI, Wang Z, Daaka Y, Nie Z. Arf GTPase-activating protein AGAP2 regulates focal adhesion kinase activity and focal adhesion remodeling. J Biol Chem 2009; 284:13489-96; PMID:19318351; http://dx.doi.org/10.1074/jbc.M900469200
  • Kondo A, Hashimoto S, Yano H, Nagayama K, Mazaki Y, Sabe H. A new paxillin-binding protein, PAG3/Papalpha/KIAA0400, bearing an ADP-ribosylation factor GTPase-activating protein activity, is involved in paxillin recruitment to focal adhesions and cell migration. Mol Biol Cell 2000; 11(4):1315-27; PMID:10749932; http://dx.doi.org/10.1091/mbc.11.4.1315
  • Obinata D, Takayama K, Urano T, Murata T, Ikeda K, Horie-Inoue K, Ouchi Y, Takahashi S, Inoue S. ARFGAP3, an androgen target gene, promotes prostate cancer cell proliferation and migration. Int J Cancer 2012; 130:2240-8; PMID:21647875; http://dx.doi.org/10.1002/ijc.26224
  • Huang W-C, Chan S-H, Jang T-H, Chang J-W, Ko Y-C, Yen T-C, Chiang S-L, Chiang W-F, Shieh T-Y, Liao C-T, et al. miRNA-491-5p and GIT1 serve as modulators and biomarkers for oral squamous cell carcinoma invasion and metastasis. Cancer Res 2014; 74:751-64; PMID:24335959; http://dx.doi.org/10.1158/0008-5472.CAN-13-1297
  • Chan S-H, Huang W-C, Chang J-W, Chang K-J, Kuo W-H, Wang M-Y, Lin K-Y, Uen Y-H, Hou M-F, Lin C-M, et al. MicroRNA-149 targets GIT1 to suppress integrin signaling and breast cancer metastasis. Oncogene 2014; 33:4496-507; PMID:24608434; http://dx.doi.org/10.1038/onc.2014.10
  • De Franceschi N, Hamidi H, Alanko J, Sahgal P, Ivaska J. Integrin traffic - the update. J Cell Sci 2015; 128:839-52; PMID:25663697; http://dx.doi.org/10.1242/jcs.161653
  • Boulay P-L, Schlienger S, Lewis-Saravalli S, Vitale N, Ferbeyre G, Claing A. ARF1 controls proliferation of breast cancer cells by regulating the retinoblastoma protein. Oncogene 2011; 30:3846-61; PMID:21478909; http://dx.doi.org/10.1038/onc.2011.100
  • Rainero E, Howe JD, Caswell PT, Jamieson NB, Anderson K, Critchley DR, Machesky L, Norman JC. Ligand-Occupied Integrin Internalization Links Nutrient Signaling to Invasive Migration. Cell Rep 2015; 10:398-413; PMID:25600874; http://dx.doi.org/10.1016/j.celrep.2014.12.037
  • Powelka AM, Sun J, Li J, Gao M, Shaw LM, Sonnenberg A, Hsu VW. Stimulation-dependent recycling of integrin beta1 regulated by ARF6 and Rab11. Traffic 2004; 5:20-36; PMID:14675422; http://dx.doi.org/10.1111/j.1600-0854.2004.00150.x
  • Dunphy JL, Moravec R, Ly K, Lasell TK, Melancon P, Casanova JE. The Arf6 GEF GEP100/BRAG2 regulates cell adhesion by controlling endocytosis of beta1 integrins. Curr Biol 2006; 16:315-20; PMID:16461286; http://dx.doi.org/10.1016/j.cub.2005.12.032
  • Shen X, Hong M-S, Moss J, Vaughan M. BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein, is required for correct glycosylation and function of integrin beta1. Proc Natl Acad Sci U S A 2007; 104:1230-5; PMID:17227842; http://dx.doi.org/10.1073/pnas.0610535104
  • Shen X, Li CC, Aponte AM, Shen R-F, Billings E, Mossa J, Vaughana M. Brefeldin A-inhibited ADP-ribosylation factor activator BIG2 regulates cell migration via integrin beta1 cycling and actin remodeling. Proc Natl Acad Sci U S A 2012; 109:14464-9; PMID:22908276; http://dx.doi.org/10.1073/pnas.1211877109
  • Kolanus W, Nagel W, Schiller B, Zeitlmann L, Godar S, Stockinger H, Seed B. Alpha L beta 2 integrin/LFA-1 binding to ICAM-1 induced by cytohesin-1, a cytoplasmic regulatory molecule. Cell 1996; 86:233-42; PMID:8706128; http://dx.doi.org/10.1016/S0092-8674(00)80095-1
  • Geiger C, Nagel W, Boehm T, Kooyk Y van, Figdor CG, Kremmer E, Hogg N, Zeitlmann L, Dierks H, Weber KSC, et al. Cytohesin-1 regulates beta-2 integrin-mediated adhesion through both ARF-GEF function and interaction with LFA-1. EMBO J 2000; 19:2525-36; PMID:10835351; http://dx.doi.org/10.1093/emboj/19.11.2525
  • Santy LC, Casanova JE. Activation of ARF6 by ARNO stimulates epithelial cell migration through downstream activation of both Rac1 and phospholipase D. J Cell Biol 2001; 154:599-610; PMID:11481345; http://dx.doi.org/10.1083/jcb.200104019
  • Pan T, Sun J, Hu J, Hu Y, Zhou J, Chen Z, Xu D, Xu W, Zheng S, Zhang S, et al. Cytohesins/ARNO: the function in colorectal cancer cells. PLoS One 2014; 9:e90997; PMID:24618737; http://dx.doi.org/10.1371/journal.pone.0090997
  • Oh SJ, Santy LC. Differential effects of cytohesins 2 and 3 on beta1 integrin recycling. J Biol Chem 2010; 285:14610-6; PMID:20223830; http://dx.doi.org/10.1074/jbc.M109.043935
  • Salem JC, Reviriego-Mendoza MM, Santy LC. ARF-GEF cytohesin-2/ARNO regulates R-Ras and alpha5-integrin recycling through an EHD1-positive compartment. Mol Biol Cell 2015; 26:4265-79; PMID:26378252; http://dx.doi.org/10.1091/mbc.E15-05-0278
  • Chen PW, Luo R, Jian X, Randazzo PA. The Arf6 GTPase-activating proteins ARAP2 and ACAP1 define distinct endosomal compartments that regulate integrin alpha5beta1 traffic. J Biol Chem 2014; 289:30237-48; PMID:25225293; http://dx.doi.org/10.1074/jbc.M114.596155
  • Li J, Ballif BA, Powelka AM, Dai J, Gygi SP, Hsu VW. Phosphorylation of ACAP1 by Akt regulates the stimulation-dependent recycling of integrin beta1 to control cell migration. Dev Cell 2005; 9:663-73; PMID:16256741; http://dx.doi.org/10.1016/j.devcel.2005.09.012
  • Yu X, Wang F, Liu H, Adams G, Aikhionbare F, Liu D, Cao X, Fan L, Hu G, Chen Y, et al. ACAP4 protein cooperates with Grb2 protein to orchestrate epidermal growth factor-stimulated integrin beta1 recycling in cell migration. J Biol Chem 2011; 286:43735-47; PMID:22027826; http://dx.doi.org/10.1074/jbc.M111.278770
  • Onodera Y, Nam J-M, Hashimoto A, Norman JC, Shirato H, Hashimoto S, Sabe H. Rab5c promotes AMAP1-PRKD2 complex formation to enhance β1 integrin recycling in EGF-induced cancer invasion. J Cell Biol 2012; 197:983-96; PMID:22734003; http://dx.doi.org/10.1083/jcb.201201065
  • Hoon J-L, Wong W-K, Koh C-G. Functions and regulation of circular dorsal ruffles. Mol Cell Biol 2012; 32:4246-57; PMID:22927640; http://dx.doi.org/10.1128/MCB.00551-12
  • Lewis-Saravalli S, Campbell S, Claig A. Arf1 controls Rac1 signaling to regulate migration of MDA-MB-231 invasive breast cancer cells. Cell Signaling 2013; 25:1813-9; PMID:23707487; http://dx.doi.org/10.1016/j.cellsig.2013.05.011
  • Schlienger S, Campbell S, Claing A. ARF1 regulates the Rho/MLC pathway to control EGF-dependent breast cancer cell invasion. Mol Biol Cell 2014; 25:17-29; PMID:24196838; http://dx.doi.org/10.1091/mbc.E13-06-0335
  • Marchesin V, Montagnac G, Chavrier P. ARF6 promotes the formation of Rac1 and WAVE-dependent ventral F-actin rosettes in breast cancer cells in response to epidermal growth factor. PLoS One 2015; 10:e0121747; PMID:25799492; http://dx.doi.org/10.1371/journal.pone.0121747
  • Hashimoto S, Onodera Y, Hashimoto AJ, Tanaka T, Hamaguchi M, Yamada A, Sabe H. Requirement of Arf6 in breast cancer invasive activities. Proc Natl Acad Sci U S A 2004; 101:6647-52; PMID:15087504; http://dx.doi.org/10.1073/pnas.0401753101
  • Hofmann I, Thompson A, Sanderson CM, Munro S. The Arl4 Family of Small G Proteins Can Recruit the Cytohesin Arf6 Exchange Factors to the Plasma Membrane. Curr Biol 2007; 17: 711-6; PMID:17398095; http://dx.doi.org/10.1016/j.cub.2007.03.007
  • Patel M, Chiang T-C, Tran V, Lee F-JS, Côté J-F. The Arf family GTPase Arl4A complexes with ELMO proteins to promote actin cytoskeleton remodeling and reveals a versatile Ras-binding domain in the ELMO proteins family. J Biol Chem 2011; 286:38969-79; PMID:21930703; http://dx.doi.org/10.1074/jbc.M111.274191
  • Fujii S, Matsumoto S, Nojima S, Morii E, Kikuchi A. Arl4c expression in colorectal and lung cancers promotes tumorigenesis and may represent a novel therapeutic target. Oncogene 2015; 34:4834-44; PMID:25486429; http://dx.doi.org/10.1038/onc.2014.402
  • Li C-C, Chiang T-C, Wu T-S, Pacheco-Rodriguez G, Moss J, Lee F-JS. ARL4D recruits cytohesin-2/ARNO to modulate actin remodeling. Mol Biol Cell 2007; 18:4420-37; PMID:17804820; http://dx.doi.org/10.1091/mbc.E07-02-0149
  • Caspary T, Larkins CE, Anderson K V. The graded response to Sonic Hedgehog depends on cilia architecture. Dev Cell 2007; 12:767-78; PMID:17488627; http://dx.doi.org/10.1016/j.devcel.2007.03.004
  • Larkins CE, Aviles GDG, East MP, Kahn RA, Caspary T. Arl13b regulates ciliogenesis and the dynamic localization of Shh signaling proteins. Mol Biol Cell 2011; 22:4694-703; PMID:21976698; http://dx.doi.org/10.1091/mbc.E10-12-0994
  • Hui M, Cazet A, Nair R, Watkins DN, O'Toole SA, Swarbrick A. The Hedgehog signalling pathway in breast development, carcinogenesis and cancer therapy. Breast Cancer Res 2013; 15:203; PMID:23547970; http://dx.doi.org/10.1186/bcr3401
  • Casalou C, Seixas C, Portelinha A, Pintado P, Barros M, Ramalho JS, Lopes SS, Barral DC. Arl13b and the non-muscle myosin heavy chain IIA are required for circular dorsal ruffle formation and cell migration. J Cell Sci 2014; 127:2709-22; PMID:24777479; http://dx.doi.org/10.1242/jcs.143446
  • Bouschet T, Martin S, Kanamarlapudi V, Mundell S, Henley JM. The calcium-sensing receptor changes cell shape via a beta-arrestin-1 ARNO ARF6 ELMO protein network. J Cell Sci 2007; 120:2489-97; PMID:17623778; http://dx.doi.org/10.1242/jcs.03469
  • Frank SR, Hatfield JC, Casanova JE. Remodeling of the actin cytoskeleton is coordinately regulated by protein kinase C and the ADP-ribosylation factor nucleotide exchange factor ARNO. Mol Biol Cell 1998; 9:3133-46; PMID:9802902; http://dx.doi.org/10.1091/mbc.9.11.3133
  • Santy LC, Ravichandran KS, Casanova JE. The DOCK180/Elmo complex couples ARNO-mediated Arf6 activation to the downstream activation of Rac1. Curr Biol 2005; 15:1749-54; PMID:16213822; http://dx.doi.org/10.1016/j.cub.2005.08.052
  • White DT, McShea KM, Attar MA, Santy LC. GRASP and IPCEF promote ARF-to-Rac signaling and cell migration by coordinating the association of ARNO/cytohesin 2 with Dock180. Mol Biol Cell 2010; 21:562-71; PMID:20016009; http://dx.doi.org/10.1091/mbc.E09-03-0217
  • Li CC, Kuo JC, Waterman CM, Kiyama R, Moss J, Vaughan M. Effects of brefeldin A-inhibited guanine nucleotide-exchange (BIG) 1 and KANK1 proteins on cell polarity and directed migration during wound healing. Proc Natl Acad Sci U S A 2011; 108:19228-33; PMID:22084092; http://dx.doi.org/10.1073/pnas.1117011108
  • Le K, Li CC, Ye G, Moss J, Vaughan M. Arf guanine nucleotide-exchange factors BIG1 and BIG2 regulate nonmuscle myosin IIA activity by anchoring myosin phosphatase complex. Proc Natl Acad Sci U S A 2013; 110:E3162-70; PMID:23918382; http://dx.doi.org/10.1073/pnas.1312531110
  • Sabe H, Hashimoto S, Morishige M, Ogawa E, Hashimoto A, Nam J-M, Miura K, Yano H, Onodera Y. The EGFR-GEP100-Arf6-AMAP1 signaling pathway specific to breast cancer invasion and metastasis. Traffic 2009; 10:982-93; PMID:19416474; http://dx.doi.org/10.1111/j.1600-0854.2009.00917.x
  • Hu Z, Du J, Yang L, Zhu Y, Yang Y, Zheng D, Someya A, Gu L, Lu X, Gray A, et al. GEP100/Arf6 is required for epidermal growth factor-induced ERK/Rac1 signaling and cell migration in human hepatoma HepG2 cells. PLoS One 2012; 7:e38777; PMID:22701712; http://dx.doi.org/10.1371/journal.pone.0038777
  • Miura K, Jacques KM, Stauffer S, Kubosaki A, Zhu K, Hirsch DS, Resau J, Zheng Y, Randazzo PA. ARAP1: a point of convergence for Arf and Rho signaling. Mol Cell 2002; 9:109-19; PMID:11804590; http://dx.doi.org/10.1016/S1097-2765(02)00428-8
  • Hasegawa J, Tsujita K, Takenawa T, Itoh T. ARAP1 regulates the ring size of circular dorsal ruffles through Arf1 and Arf5. Mol Biol Cell 2012; 23:2481-9; PMID:22573888; http://dx.doi.org/10.1091/mbc.E12-01-0017
  • Yoon HY, Miura K, Cuthbert EJ, Davis KK, Ahvazi B, Casanova JE, Randazzo PA. ARAP2 effects on the actin cytoskeleton are dependent on Arf6-specific GTPase-activating-protein activity and binding to RhoA-GTP. J Cell Sci 2006; 119:4650-66; PMID:17077126; http://dx.doi.org/10.1242/jcs.03237
  • I STT, Nie Z, Stewart A, Najdovska M, Hall NE, He H, Randazzo PA, Lock P. ARAP3 is transiently tyrosine phosphorylated in cells attaching to fibronectin and inhibits cell spreading in a RhoGAP-dependent manner. J Cell Sci 2004; 117:6071-84; PMID:15546919; http://dx.doi.org/10.1242/jcs.01526
  • Xia C, Ma W, Stafford LJ, Liu C, Gong L, Martin JF, Liu M. GGAPs, a new family of bifunctional GTP-binding and GTPase-activating proteins. Mol Cell Biol 2003; 23:2476-88; PMID:12640130; http://dx.doi.org/10.1128/MCB.23.7.2476-2488.2003
  • Nie Z, Stanley KT, Stauffer S, Jacques KM, Hirsch DS, Takei J, Randazzo PA. AGAP1, an endosome-associated, phosphoinositide-dependent ADP-ribosylation factor GTPase-activating protein that affects actin cytoskeleton. J Biol Chem 2002; 277:48965-75; PMID:12388557; http://dx.doi.org/10.1074/jbc.M202969200
  • Furman C, Short SM, Subramanian RR, Zetter BR, Roberts TM. DEF-1/ASAP1 is a GTPase-activating protein (GAP) for ARF1 that enhances cell motility through a GAP-dependent mechanism. J Biol Chem 2002; 277:7962-9; PMID:11773070; http://dx.doi.org/10.1074/jbc.M109149200
  • Ehlers JP, Worley L, Onken MD, Harbour JW. DDEF1 is located in an amplified region of chromosome 8q and is overexpressed in uveal melanoma. Clin Cancer Res 2005; 11:3609-13; PMID:15897555; http://dx.doi.org/10.1158/1078-0432.CCR-04-1941
  • Liu Y, Yerushalmi GM, Grigera PR, Parsons JT. Mislocalization or reduced expression of Arf GTPase-activating protein ASAP1 inhibits cell spreading and migration by influencing Arf1 GTPase cycling. J Biol Chem 2005; 280:8884-92; PMID:15632162; http://dx.doi.org/10.1074/jbc.M412200200
  • Müller T, Stein U, Poletti A, Garzia L, Rothley M, Plaumann D, Thiele W, Bauer M, Galasso A, Schlag P, et al. ASAP1 promotes tumor cell motility and invasiveness, stimulates metastasis formation in vivo, and correlates with poor survival in colorectal cancer patients. Oncogene 2010; 29:2393-403; PMID:20154719; http://dx.doi.org/10.1038/onc.2010.6
  • Chen P-W, Jian X, Heissler SM, Le K, Luo R, Jenkins LM, Nagy A, Moss J, Sellers JR, Randazzo PA. The Arf GTPase-activating Protein, ASAP1, Binds Non muscle Myosin 2A to Control Remodeling of the Actomyosin Network. J Biol Chem 2016; 291:7517-26; PMID:26893376; http://dx.doi.org/10.1074/jbc.M115.701292
  • Jackson TR, Brown FD, Nie Z, Miura K, Foroni L, Sun J, Hsu VW, Donaldson JG, Randazzo PA. ACAPs are arf6 GTPase-activating proteins that function in the cell periphery. J Cell Biol 2000; 151:627-38; PMID:11062263; http://dx.doi.org/10.1083/jcb.151.3.627
  • Ohashi Y, Iijima H, Yamaotsu N, Yamazaki K, Sato S, Okamura M, Sugimoto K, Dan S, Hirono S, Yamori T. AMF-26, a Novel Inhibitor of the Golgi System, Targeting ADP-ribosylation Factor 1 (Arf1) with Potential for Cancer Therapy. J Biol Chem 2012; 287:3885-97; PMID:22158626; http://dx.doi.org/10.1074/jbc.M111.316125
  • Hongu T, Funakoshi Y, Fukuhara S, Suzuki T, Sakimoto S, Takakura N, Ema M, Takahashi S, Itoh S, Kato M, et al. Arf6 regulates tumour angiogenesis and growth through HGF-induced endothelial β1 integrin recycling. Nat Commun 2015; 6:7925; PMID:26239146; http://dx.doi.org/10.1038/ncomms8925
  • Miao B, Skidan I, Yang J, You Z, Fu X, Famulok M, Schaffhausen B, Torchilin V, Yuan J, Degterev A. Inhibition of cell migration by PITENINs: the role of ARF6. Oncogene 2012; 31:4317-32; PMID:22179837; http://dx.doi.org/10.1038/onc.2011.593
  • Jang SY, Jang S-W, Ko J. Regulation of ADP-ribosylation factor 4 expression by small leucine zipper protein and involvement in breast cancer cell migration. Cancer Lett 2012; 314:185-97; PMID:22004728; http://dx.doi.org/10.1016/j.canlet.2011.09.028
  • Ma W-M, Jiang B, Lai Z-S, Wang X-Y, Geng Y, Han Y-J. Expression and significance of ADP-ribosylation factor 1 (ARF1) in colorectal laterally spreading tumor. Ai Zheng 2005; 24:690-4; PMID:15946480
  • Chen X, Su Z, Wang S, Xu H. Clinical and prognostic significance of Arl4c expression in colorectal cancer. Cancer Biomarkers 2016; 16:253-7; PMID:26756615; http://dx.doi.org/10.3233/CBM-150562
  • Tsai M-M, Lin PY, Cheng W-L, Tsai C-Y, Chi H-C, Chen C-Y, Tseng Y-H, Cheng Y-F, Chen C-D, Liang Y, et al. Overexpression of ADP-ribosylation factor 1 in human gastric carcinoma and its clinicopathological significance. Cancer Sci 2012; 103:1136-44; PMID:22348287; http://dx.doi.org/10.1111/j.1349-7006.2012.02243.x
  • Zhang Y, Du J, Zheng J, Liu J, Xu R, Shen T, Zhu Y, Chang J, Wang H, Zhang Z, et al. EGF-reduced Wnt5a transcription induces epithelial-mesenchymal transition via Arf6-ERK signaling in gastric cancer cells. Oncotarget 2015; 6:7244-61; PMID:25779663; http://dx.doi.org/10.18632/oncotarget.3133
  • Masoudi-Nejad A. Reconstruction of an integrated genome-scale co-expression network reveals key modules involved in lung adenocarcinoma. PLoS One 2013; 8:e67552; PMID:23874428; http://dx.doi.org/10.1371/journal.pone.0067552
  • Oka S, Uramoto H, Shimokawa H, Yamada S, Tanaka F. Epidermal Growth Factor Receptor-GEP100-Arf6 Axis Affects the Prognosis of Lung Adenocarcinoma. Oncology 2014; 86:263-70; PMID:24902879; http://dx.doi.org/10.1159/000360089
  • Bani MR, Nicoletti MI, Alkharouf NW, Ghilardi C, Petersen D, Erba E, Sausville EA, Liu ET, Giavazzi R. Gene expression correlating with response to paclitaxel in ovarian carcinoma xenografts. Mol Cancer Ther 2004; 3:111-21; PMID:14985451
  • Su D, Katsaros D, Xu S, Xu H, Gao Y, Biglia N, Feng J, Ying L, Zhang P, Benedetto C, et al. ADP-ribosylation factor-like 4C (ARL4C), a novel ovarian cancer metastasis suppressor, identified by integrated genomics. Am J Transl Res 2015; 7:242-56; PMID:25901194
  • Taniuchi K, Furihata M, Saibara T. KIF20A-mediated RNA granule transport system promotes the invasiveness of pancreatic cancer cells. Neoplasia 2014; 16:1082-93; PMID:25499221; http://dx.doi.org/10.1016/j.neo.2014.10.007
  • Davis JE, Xie X, Guo J, Huang W, Chu WM, Huang S, Teng Y, Wu G. ARF1 promotes prostate tumorigenesis via targeting oncogenic MAPK signaling. Oncotarget 2016; 7:39834-45; PMID:27213581
  • Morgan C, Lewis PD, Hopkins L, Burnell S, Kynaston H, Doak SH, Donaldson J, Hashimoto S, Onodera Y, Hashimoto A, et al. Increased expression of ARF GTPases in prostate cancer tissue. Springerplus 2015; 4:342; PMID:26185744; http://dx.doi.org/10.1186/s40064-015-1136-y
  • Chi JH, Panner A, Cachola K, Crane CA, Murray J, Pieper RO, James CD, Parsa AT. Increased expression of the glioma-associated antigen ARF4L after loss of the tumor suppressor PTEN. Laboratory investigation. J Neurosurg 2008; 108:299-303; PMID:18240926; http://dx.doi.org/10.3171/JNS/2008/108/2/0299
  • Hu B, Shi B, Jarzynka MJ, Yin J-J, D'Souza-Schorey C, Cheng S-Y. ADP-ribosylation factor 6 regulates glioma cell invasion through the IQ-domain GTPase-activating protein 1-Rac1-mediated pathway. Cancer Res 2009; 69:794-801; PMID:19155310; http://dx.doi.org/10.1158/0008-5472.CAN-08-2110
  • Webster MR, Weeraratna AT, Dunn KJ, Williams BO, Li Y, Pavan WJ, Takeda K, Yasumoto K, Takada R, Takada S, et al. A Wnt-er migration: the confusing role of β-catenin in melanoma metastasis. Sci Signal 2013; 6:pe11; PMID:23532332; http://dx.doi.org/10.1126/scisignal.2004114
  • Muralidharan-Chari V, Hoover H, Clancy J, Schweitzer J, Suckow MA, Schroeder V, Castellino FJ, Schorey JS, D'Souza-Schorey C. ADP-ribosylation factor 6 regulates tumorigenic and invasive properties in vivo. Cancer Res 2009; 69:2201-9; PMID:19276388; http://dx.doi.org/10.1158/0008-5472.CAN-08-1301
  • Hongu T, Yamauchi Y, Funakoshi Y, Katagiri N, Ohbayashi N, Kanaho Y. Pathological functions of the small GTPase Arf6 in cancer progression: Tumor angiogenesis and metastasis. Small GTPases 2016; 7:47-53; PMID:26909552; http://dx.doi.org/10.1080/21541248.2016.1154640
  • Olstad OK, Gautvik VT, Reppe S, Rian E, Jemtland R, Ohlsson C, Bruland OS, Gautvik KM. Molecular heterogeneity in human osteosarcoma demonstrated by enriched mRNAs isolated by directional tag PCR subtraction cloning. Anticancer Res 2003; 23:2201-16; PMID:12894494
  • Kannangai R, Vivekanandan P, Martinez-Murillo F, Choti M, Torbenson M. Fibrolamellar carcinomas show overexpression of genes in the RAS, MAPK, PIK3, and xenobiotic degradation pathways. Hum Pathol 2007; 38:639-44; PMID:17367606; http://dx.doi.org/10.1016/j.humpath.2006.07.019
  • Guo X, Jo VY, Mills AM, Zhu SX, Lee C-H, Espinosa I, Nucci MR, Varma S, Forgó E, Hastie T, et al. Clinically Relevant Molecular Subtypes in Leiomyosarcoma. Clin Cancer Res 2015; 21:3501-11; PMID:25896974; http://dx.doi.org/10.1158/1078-0432.CCR-14-3141
  • Kinoshita R, Nam J-M, Ito YM, Hatanaka KC, Hashimoto A, Handa H, Otsuka Y, Hashimoto S, Onodera Y, Hosoda M, et al. Co-overexpression of GEP100 and AMAP1 proteins correlates with rapid local recurrence after breast conservative therapy. PLoS One 2013; 8:e76791; PMID:24116160; http://dx.doi.org/10.1371/journal.pone.0076791
  • Thomassen M, Tan Q, Kruse TA. Gene expression meta-analysis identifies chromosomal regions and candidate genes involved in breast cancer metastasis. Breast Cancer Res Treat 2009; 113:239-49; PMID:18293085; http://dx.doi.org/10.1007/s10549-008-9927-2
  • Zangari J, Partisani M, Bertucci F, Milanini J, Bidaut G, Berruyer-Pouyet C, Finetti P, Long E, Brau F, Cabaud O, et al. EFA6B antagonizes breast cancer. Cancer Res 2014; 74:5493-506; PMID:25115298; http://dx.doi.org/10.1158/0008-5472.CAN-14-0298
  • Wang Y, Han K-J, Pang X-W, Vaughan HA, Qu W, Dong X-Y, Peng J-R, Zhao H-T, Rui J-A, Leng X-S, et al. Large scale identification of human hepatocellular carcinoma-associated antigens by autoantibodies. J Immunol 2002; 169:1102-9; PMID:12097419; http://dx.doi.org/10.4049/jimmunol.169.2.1102
  • Menju T, Hashimoto S, Hashimoto A, Otsuka Y, Handa H, Ogawa E, Toda Y, Wada H, Date H, Sabe H. Engagement of overexpressed Her2 with GEP100 induces autonomous invasive activities and provides a biomarker for metastases of lung adenocarcinoma. PLoS One 2011; 6:e25301; PMID:21966491; http://dx.doi.org/10.1371/journal.pone.0025301
  • Pils D, Horak P, Gleiss A, Sax C, Fabjani G, Moebus VJ, Zielinski C, Reinthaller A, Zeillinger R, Krainer M. Five genes from chromosomal band 8p22 are significantly down-regulated in ovarian carcinoma: N33 and EFA6R have a potential impact on overall survival. Cancer 2005; 104:2417-29; PMID:16270321; http://dx.doi.org/10.1002/cncr.21538
  • van den Boom J, Wolter M, Blaschke B, Knobbe CB, Reifenberger G. Identification of novel genes associated with astrocytoma progression using suppression subtractive hybridization and real-time reverse transcription-polymerase chain reaction. Int J Cancer 2006; 119:2330-8; PMID:16865689; http://dx.doi.org/10.1002/ijc.22108
  • Park JY, Kim S-A, Chung JW, Bang S, Park SW, Paik Y-K, Song SY. Proteomic analysis of pancreatic juice for the identification of biomarkers of pancreatic cancer. J Cancer Res Clin Oncol 2011; 137:1229-38; PMID:21691750; http://dx.doi.org/10.1007/s00432-011-0992-2
  • Villalva C, Trempat P, Greenland C, Thomas C, Girard JP, Moebius F, Delsol G, Brousset P. Isolation of differentially expressed genes in NPM-ALK-positive anaplastic large cell lymphoma. Br J Haematol 2002; 118:791-8; PMID:12181047; http://dx.doi.org/10.1046/j.1365-2141.2002.03671.x
  • Xu K, Gao J, Yang X, Yao Y, Liu Q. Cytohesin-2 as a novel prognostic marker for hepatocellular carcinoma. Oncol Rep 2013; 29:2211-8; PMID:23545718
  • Fu Y, Li J, Feng M-X, Yang X-M, Wang Y-H, Zhang Y-L, Qin W, Xia Q, Zhang Z-G. Cytohesin-3 is upregulated in hepatocellular carcinoma and contributes to tumor growth and vascular invasion. Int J Clin Exp Pathol 2014; 7:2123-32; PMID:24966920
  • Liu X, Hu Y, Hao C, Rempel SA, Ye K. PIKE-A is a proto-oncogene promoting cell growth, transformation and invasion. Oncogene 2007; 26:4918-27; PMID:17297440; http://dx.doi.org/10.1038/sj.onc.1210290
  • Peng H, Dara L, Li TWH, Zheng Y, Yang H, Tomasi ML, Tomasi I, Giordano P, Mato JM, Lu SC. MAT2B-GIT1 interplay activates MEK1/ERK 1 and 2 to induce growth in human liver and colon cancer. Hepatology 2013; 57:2299-313; PMID:23325601; http://dx.doi.org/10.1002/hep.26258
  • Onodera Y, Hashimoto S, Hashimoto A, Morishige M, Mazaki Y, Yamada A, Ogawa E, Adachi M, Sakurai T, Manabe T, et al. Expression of AMAP1, an ArfGAP, provides novel targets to inhibit breast cancer invasive activities. EMBO J 2005; 24:963-73; PMID:15719014; http://dx.doi.org/10.1038/sj.emboj.7600588
  • Sirirattanakul S, Wannakrairot P, Tencomnao T, Santiyanont R. Gene expression profile in breast cancer comprising predictive markers for metastatic risk. Genet Mol Res 2015; 14:10929-36; PMID:26400320; http://dx.doi.org/10.4238/2015.September.21.3
  • Sangar F, Schreurs AS, Umaña-Diaz C, Clapéron A, Desbois-Mouthon C, Calmel C, Mauger O, Zaanan A, Miquel C, Fléjou JF, Praz. Involvement of small ArfGAP1 (SMAP1), a novel Arf6-specific GTPase-activating protein, in microsatellite instability oncogenesis. Oncogene 2014; 33:2758-67; PMID:23752192; http://dx.doi.org/10.1038/onc.2013.211
  • Yagi R, Tanaka M, Sasaki K, Kamata R, Nakanishi Y, Kanai Y, Sakai R. ARAP3 inhibits peritoneal dissemination of scirrhous gastric carcinoma cells by regulating cell adhesion and invasion. Oncogene 2011; 30:1413-21; PMID:21076469; http://dx.doi.org/10.1038/onc.2010.522
  • Junnila S, Kokkola A, Karjalainen-Lindsberg ML, Puolakkainen P, Monni O. Genome-wide gene copy number and expression analysis of primary gastric tumors and gastric cancer cell lines. BMC Cancer 2010; 10:73; PMID:20187983; http://dx.doi.org/10.1186/1471-2407-10-73
  • Fan C, Tian Y, Miao Y, Lin X, Zhang X, Jiang G, Luan L, Wang E. ASAP3 expression in non-small cell lung cancer: association with cancer development and patients' clinical outcome. Tumour Biol 2014; 35:1489-94; PMID:24078447; http://dx.doi.org/10.1007/s13277-013-1205-1
  • Chang J-S, Su C-Y, Yu W-H, Lee W-J, Liu Y-P, Lai T-C, Jan Y-H, Yang Y-F, Shen C-N, Shew J-Y, et al. GIT1 promotes lung cancer cell metastasis through modulating Rac1/Cdc42 activity and is associated with poor prognosis. Oncotarget 2015; 6:36278-91; PMID:26462147
  • Hou T, Yang C, Tong C, Zhang H, Xiao J, Li J. Overexpression of ASAP1 is associated with poor prognosis in epithelial ovarian cancer. Int J Clin Exp Pathol 2013; 7:280-7; PMID:24427349
  • Willis S, Villalobos VM, Gevaert O, Abramovitz M, Williams C, Sikic BI, Leyland-Jones B, Siegel R, Naishadham D, Jemal A, et al. Single Gene Prognostic Biomarkers in Ovarian Cancer: A Meta-Analysis. PLoS One 2016; 11:e0149183; PMID:26886260; http://dx.doi.org/10.1371/journal.pone.0149183
  • Ahn JY, Rong R, Kroll TG, Van Meir EG, Snyder SH, Ye K. PIKE (phosphatidylinositol 3-kinase enhancer)-A GTPase stimulates Akt activity and mediates cellular invasion. J Biol Chem 2004; 279:16441-51; PMID:14761976; http://dx.doi.org/10.1074/jbc.M312175200
  • Ahn JY, Hu Y, Kroll TG, Allard P, Ye K. PIKE-A is amplified in human cancers and prevents apoptosis by up-regulating Akt. Proc Natl Acad Sci USA 2004; 101:6993-8; PMID:15118108; http://dx.doi.org/10.1073/pnas.0400921101
  • Knobbe CB, Trampe-Kieslich A, Reifenberger G. Genetic alteration and expression of the phosphoinositol-3-kinase/Akt pathway genes PIK3CA and PIKE in human glioblastomas. Neuro applied neurobiol 2005; 31:486-90; PMID:16150119; http://dx.doi.org/10.1111/j.1365-2990.2005.00660.x
  • Xie Z, Jiang Y, Liao E-Y, Chen Y, Pennypacker SD, Peng J, Chang SM. PIKE mediates EGFR proliferative signaling in squamous cell carcinoma cells. Oncogene 2012; 31:5090-8; PMID:22349826; http://dx.doi.org/10.1038/onc.2012.10
  • Cha JD, Kim HJ, Cha IH. Genetic alterations in oral squamous cell carcinoma progression detected by combining array-based comparative genomic hybridization and multiplex ligation-dependent probe amplification. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011; 111:594-607; PMID:21334929; http://dx.doi.org/10.1016/j.tripleo.2010.11.020
  • Sato H, Hatanaka KC, Hatanaka Y, Hatakeyama H, Hashimoto A, Matsuno Y, Fukuda S, Sabe H. High level expression of AMAP1 protein correlates with poor prognosis and survival after surgery of head and neck squamous cell carcinoma patients. Cell Commun Signal 2014; 12:17; PMID:24621372; http://dx.doi.org/10.1186/1478-811X-12-17
  • Li M, Li M, Tian L, Tian L, Yao H, Yao H, Lu J, Lu J, Ge J, Ge J, et al. ASAP1 mediates the invasive phenotype of human laryngeal squamous cell carcinoma to affect survival prognosis. Oncol Rep 2014; 31:2676-82; PMID:24788532
  • Hashimoto S, Mikami S, Sugino H, Yoshikawa A, Hashimoto A, Onodera Y, Furukawa S, Handa H, Oikawa T, Okada Y, et al. Lysophosphatidic acid activates Arf6 to promote the mesenchymal malignancy of renal cancer. Nat Commun 2016; 10656; PMID:26854204; http://dx.doi.org/10.1038/ncomms10656
  • Lu X, Wan F, Zhang H, Shi G, Ye D. ITGA2B and ITGA8 are predictive of prognosis in clear cell renal cell carcinoma patients. Tumour Biol 2016; 37:253-62; PMID:26198048; http://dx.doi.org/10.1007/s13277-015-3792-5
  • Cai Y, Wang J, Li R, Ayala G, Ittmann M, Liu M. GGAP2/PIKE-a directly activates both the Akt and nuclear factor-kappaB pathways and promotes prostate cancer progression. Cancer Res 2009; 69:819-27; PMID:19176382; http://dx.doi.org/10.1158/0008-5472.CAN-08-2537
  • Nalla AK, Williams TF, Collins CP, Rae DT, Trobridge GD. Lentiviral vector-mediated insertional mutagenesis screen identifies genes that influence androgen independent prostate cancer progression and predict clinical outcome. Mol Carcinog 2015; PMID:26512949; http://dx.doi.org/10.1002/mc.22425.
  • Lin D, Watahiki A, Bayani J, Zhang F, Liu L, Ling V, Sadar MD, English J, Fazli L, So A, et al. ASAP1, a gene at 8q24, is associated with prostate cancer metastasis. Cancer Res 2008; 68:4352-9; PMID:18519696; http://dx.doi.org/10.1158/0008-5472.CAN-07-5237
  • Huang C, Sheng Y, Jia J, Chen L. Identification of melanoma biomarkers based on network modules by integrating the human signaling network with microarrays. J Cancer Res Ther 2014; 10(Suppl):C114-24; PMID:25450268
  • Harvey RC, Mullighan CG, Wang X, Dobbin KK, Davidson GS, Bedrick EJ, Chen I-M, Atlas SR, Kang H, Ar K, et al. Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood 2010; 116:4874-84; PMID:20699438; http://dx.doi.org/10.1182/blood-2009-08-239681
  • Yoo SM, Antonyak MA, Cerione RA. The adaptor protein and Arf GTPase-activating protein Cat-1/Git-1 is required for cellular transformation. J Biol Chem 2012; 287:31462-70; PMID:22807447; http://dx.doi.org/10.1074/jbc.M112.353615
  • Okabe H, Furukawa Y, Kato T, Hasegawa S, Yamaoka Y, Nakamura Y. Isolation of development and differentiation enhancing factor-like 1 (DDEFL1) as a drug target for hepatocellular carcinomas. Int J Oncol 2004; 24:43-8; PMID:14654939
  • Chen J, Yang P, Yang J, Wen Z, Zhang B, Zheng X. GIT1 is a novel prognostic biomarker and facilitates tumor progression via activating ERK/MMP9 signaling in hepatocellular carcinoma. Onco Targets Ther 2015; 8:3731-42; PMID:26719701
  • Cai T, Xiao J, Wang ZF, Liu Q, Wu H, Qiu YZ. Identification of differentially coexpressed genes in gonadotrope tumors and normal pituitary using bioinformatics methods. Pathol Oncol Res 2014; 20:375-80; PMID:24198235; http://dx.doi.org/10.1007/s12253-013-9706-1
  • Harada T, Chelala C, Crnogorac-Jurcevic T, Lemoine NR. Genome-Wide Analysis of Pancreatic Cancer Using Microarray-Based Techniques. Pancreatology 2009; 9:13-24; PMID:19077451; http://dx.doi.org/10.1159/000178871