651
Views
5
CrossRef citations to date
0
Altmetric
Commentary

PAK1 regulates inhibitory synaptic function via a novel mechanism mediated by endocannabinoids

, &
Pages 322-326 | Received 25 Jul 2016, Accepted 19 Aug 2016, Published online: 20 Sep 2016

References

  • Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002; 420(6916):629-35; PMID:12478284; https://doi.org/10.1038/nature01148
  • Ba W, van der Raadt J, Kasri NN. Rho GTPase signaling at the synapse: implications for intellectual disability. Exp Cell Res 2013; 319(15):2368-74; PMID:23769912; https://doi.org/10.1016/j.yexcr.2013.05.033
  • Eswaran J, Soundararajan M, Kumar R, Knapp S. UnPAKing the class differences among p21-activated kinases. Trends Biochem Sci 2008; 33(8):394-403; PMID:18639460; https://doi.org/10.1016/j.tibs.2008.06.002
  • Bokoch GM. Biology of the p21-activated kinases. Ann Rev Biochem 2003; 72(1):743-81; PMID:12676796; https://doi.org/10.1146/annurev.biochem.72.121801.161742
  • Zhao Z-S, Manser E. PAK family kinases: Physiological roles and regulation. Cell Logist 2012; 2(2):59-68; PMID:23162738; https://doi.org/10.4161/cl.21912
  • Asrar S, Meng Y, Zhou Z, Todorovski Z, Huang WW, Jia Z. Regulation of hippocampal long-term potentiation by p21-activated protein kinase 1 (PAK1). Neuropharmacology 2009; 56(1):73-80; PMID:18644395; https://doi.org/10.1016/j.neuropharm.2008.06.055
  • Hayashi ML, Choi SY, Rao BS, Jung HY, Lee HK, Zhang D, Chattarji S, Kirkwood A, Tonegawa S. Altered cortical synaptic morphology and impaired memory consolidation in forebrain- specific dominant-negative PAK transgenic mice. Neuron 2004; 42(5):773-87; PMID:15182717; https://doi.org/10.1016/j.neuron.2004.05.003
  • Huang W, Zhou Z, Asrar S, Henkelman M, Xie W, Jia Z. p21-Activated kinases 1 and 3 control brain size through coordinating neuronal complexity and synaptic properties. Mol Cell Biol 2011; 31(3):388-403; PMID:21115725; https://doi.org/10.1128/MCB.00969-10
  • Meng J, Meng Y, Hanna A, Janus C, Jia Z. Abnormal long-lasting synaptic plasticity and cognition in mice lacking the mental retardation gene Pak3. J Neurosci 2005; 25(28):6641-50; PMID:16014725; https://doi.org/10.1523/JNEUROSCI.0028-05.2005
  • Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, Vitkup D. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 2011; 70(5):898-907; PMID:21658583; https://doi.org/10.1016/j.neuron.2011.05.021
  • Hayashi ML, Rao BS, Seo JS, Choi HS, Dolan BM, Choi SY, Chattarji S, Tonegawa S. Inhibition of p21-activated kinase rescues symptoms of fragile X syndrome in mice. Proc Natl Acad Sci U S A 2007; 104(27):11489-94; PMID:17592139; https://doi.org/10.1073/pnas.0705003104
  • Dolan BM, Duron SG, Campbell DA, Vollrath B, Rao BS, Ko HY, Lin GG, Govindarajan A, Choi SY, Tonegawa S. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by the small-molecule PAK inhibitor FRAX486. Proc Natl Acad Sci U S A 2013; 110(14):5671-6; PMID:23509247; https://doi.org/10.1073/pnas.1219383110
  • Molosh AI, Johnson PL, Spence JP, Arendt D, Federici LM, Bernabe C, Janasik SP, Segu ZM, Khanna R, Goswami C, et al. Social learning and amygdala disruptions in Nf1 mice are rescued by blocking p21-activated kinase. Nat Neurosci 2014; 17(11):1583-90; PMID:25242307; https://doi.org/10.1038/nn.3822
  • Hayashi-Takagi A, Araki Y, Nakamura M, Vollrath B, Duron SG, Yan Z, Kasai H, Huganir RL, Campbell DA, Sawa A. PAKs inhibitors ameliorate schizophrenia-associated dendritic spine deterioration in vitro and in vivo during late adolescence. Proc Natl Acad Sci U S A 2014; 111(17):6461-6; PMID:24706880; https://doi.org/10.1073/pnas.1321109111
  • Allen KM, Gleeson JG, Bagrodia S, Partington MW, MacMillan JC, Cerione RA, Mulley JC, Walsh CA. PAK3 mutation in nonsyndromic X-linked mental retardation. Nat Genet 1998; 20(1):25-30; PMID:9731525
  • Eichler SA, Meier JC. EI balance and human diseases-from molecules to networking. Front Mol Neurosci 2008; 1:2; PMID:18946535; https://doi.org/10.3389/neuro.02.002.2008
  • Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y. Endocannabinoid signaling and synaptic function. Neuron 2012; 76(1):70-81; PMID:23040807; https://doi.org/10.1016/j.neuron.2012.09.020
  • Piomelli D. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 2003; 4(11):873-84; PMID:14595399; https://doi.org/10.1038/nrn1247
  • Foldy C, Malenka RC, Sudhof TC. Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling. Neuron 2013; 78(3):498-509; PMID:23583622; https://doi.org/10.1016/j.neuron.2013.02.036
  • Jung K-M, Sepers M, Henstridge CM, Lassalle O, Neuhofer D, Martin H, Ginger M, Frick A, DiPatrizio NV, Mackie K, et al. Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X syndrome. Nat Commun 2012; 3:1080; PMID:23011134; https://doi.org/10.1038/ncomms2045
  • Xia S, Zhou Z, Leung C, Zhu Y, Pan X, Qi J, Morena M, Hill MN, Xie W, Jia Z. p21-activated kinase 1 restricts tonic endocannabinoid signaling in the hippocampus. eLife 2016; 5:e14653; PMID:27296803; https://doi.org/10.7554/eLife.14653
  • Katona I, Freund TF. Multiple functions of endocannabinoid signaling in the brain. Annu Rev Neurosci 2012; 35:529-58; PMID:22524785; https://doi.org/10.1146/annurev-neuro-062111-150420
  • Morena M, Patel S, Bains JS, Hill MN. Neurobiological interactions between stress and the endocannabinoid system. Neuropsychopharmacology 2016; 41(1):80-102; PMID:26068727; https://doi.org/10.1038/npp.2015.166
  • Zanettini C, Panlilio LV, Alicki M, Goldberg SR, Haller J, Yasar S. Effects of endocannabinoid system modulation on cognitive and emotional behavior. Front Behav Neurosci 2011; 5:57; PMID:21949506
  • Parsons LH, Hurd YL. Endocannabinoid signalling in reward and addiction. Nat Rev Neurosci 2015; 16(10):579-94; PMID:26373473
  • Cui Y, Costa RM, Murphy GG, Elgersma Y, Zhu Y, Gutmann DH, Parada LF, Mody I, Silva AJ. Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell 2008; 135(3):549-60; PMID:18984165; https://doi.org/10.1016/j.cell.2008.09.060
  • Olmos-Serrano JL, Paluszkiewicz SM, Martin BS, Kaufmann WE, Corbin JG, Huntsman MM. Defective GABAergic neurotransmission and pharmacological rescue of neuronal hyperexcitability in the amygdala in a mouse model of fragile X syndrome. J Neurosci 2010; 30(29):9929-38; PMID:20660275; https://doi.org/10.1523/JNEUROSCI.1714-10.2010
  • Radhu N, Garcia Dominguez L, Farzan F, Richter MA, Semeralul MO, Chen R, Fitzgerald PB, Daskalakis ZJ. Evidence for inhibitory deficits in the prefrontal cortex in schizophrenia. Brain 2015; 138(2):483-97; PMID:25524710; https://doi.org/10.1093/brain/awu360
  • Chao H-T, Chen H, Samaco RC, Xue M, Chahrour M, Yoo J, Neul JL, Gong S, Lu HC, Heintz N, et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 2010; 468(7321):263-9; PMID:21068835; https://doi.org/10.1038/nature09582
  • Govek EE, Hatten ME, Van Aelst L. The role of Rho GTPase proteins in CNS neuronal migration. Dev Neurobiol 2011; 71(6):528-53; PMID:21557504; https://doi.org/10.1002/dneu.20850

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.