983
Views
14
CrossRef citations to date
0
Altmetric
Review

Rab GTPases regulate the trafficking of channels and transporters – a focus on cystic fibrosis

ORCID Icon & ORCID Icon
Pages 136-144 | Received 28 Sep 2016, Accepted 31 Mar 2017, Published online: 19 May 2017

References

  • Farinha CM, Swiatecka-Urban A, Brautigan DL, Jordan P. Regulatory Crosstalk by Protein Kinases on CFTR Trafficking and Activity. Front Chem 2016; 4:1; PMID:26835446; https://doi.org/10.3389/fchem.2016.00001
  • Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009; 10:513-25; PMID:19603039; https://doi.org/10.1038/nrm2728
  • Schwartz SL, Cao C, Pylypenko O, Rak A, Wandinger-Ness A. Rab GTPases at a glance. J Cell Sci 2007; 120:3905-10; PMID:17989088; https://doi.org/10.1242/jcs.015909
  • Pereira-Leal JB, Seabra MC. Evolution of the Rab family of small GTP-binding proteins. J Mol Biol 2001; 313:889-901; PMID:11697911; https://doi.org/10.1006/jmbi.2001.5072
  • Saxena SK, Kaur S. Regulation of epithelial ion channels by Rab GTPases. Biochem Biophys Res Commun 2006; 351:582-7; PMID:17084813; https://doi.org/10.1016/j.bbrc.2006.10.087
  • Kunzelmann K. The cystic fibrosis transmembrane conductance regulator and its function in epithelial transport. RevPhysiol Biochem Pharmacol 1999; 137:1-70.
  • Frizzell RA. Functions of the cystic fibrosis transmembrane conductance regulator protein. Am J Respir CritCare Med 1995; 151:S54-S8; https://doi.org/10.1164/ajrccm/151.3_Pt_2.S54
  • Riordan JR. The cystic fibrosis transmembrane conductance regulator. Annu Rev Physiol 1993; 55:609-30; PMID:7682047; https://doi.org/10.1146/annurev.ph.55.030193.003141
  • Amaral MD, Kunzelmann K. Molecular targeting of CFTR as a therapeutic approach to cystic fibrosis. Trends Pharmacol Sci 2007; 28:334-41; PMID:17573123; https://doi.org/10.1016/j.tips.2007.05.004
  • Riordan JR. CFTR function and prospects for therapy. Annu Rev Biochem 2008; 77:701-26; PMID:18304008; https://doi.org/10.1146/annurev.biochem.75.103004.142532
  • Guggino WB, Stanton BA. New insights into cystic fibrosis: molecular switches that regulate CFTR. Nat Rev Mol Cell Biol 2006; 7:426-36; PMID:16723978; https://doi.org/10.1038/nrm1949
  • Farinha CM, Matos P, Amaral MD. Control of CFTR membrane trafficking: not just from the ER to the Golgi. FEBS J 2013; 280:4396-406; PMID:23773658; https://doi.org/10.1111/febs.12392
  • Gentzsch M, Chang XB, Cui L, Wu Y, Ozols VV, Choudhury A, Pagano RE, Riordan JR. Endocytic trafficking routes of wild type and DeltaF508 cystic fibrosis transmembrane conductance regulator. Mol Biol Cell 2004; 15:2684-96; PMID:15075371; https://doi.org/10.1091/mbc.E04-03-0176
  • van der Sluijs P, Hull M, Webster P, Male P, Goud B, Mellman I. The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway. Cell 1992; 70:729-40; PMID:1516131; https://doi.org/10.1016/0092-8674(92)90307-X
  • Sheff DR, Daro EA, Hull M, Mellman I. The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J Cell Biol 1999; 145:123-39; PMID:10189373; https://doi.org/10.1083/jcb.145.1.123
  • Farinha CM, Matos P. Repairing the basic defect in cystic fibrosis - one approach is not enough. FEBS J 2016; 283:246-64; PMID:26416076; https://doi.org/10.1111/febs.13531
  • Swiatecka-Urban A, Brown A, Moreau-Marquis S, Renuka J, Coutermarsh B, Barnaby R, Karlson KH, Flotte TR, Fukuda M, Langford GM, et al. The short apical membrane half-life of rescued {Delta}F508-cystic fibrosis transmembrane conductance regulator (CFTR) results from accelerated endocytosis of {Delta}F508-CFTR in polarized human airway epithelial cells. J Biol Chem 2005; 280:36762-72; PMID:16131493; https://doi.org/10.1074/jbc.M508944200
  • Virella-Lowell I, Herlihy JD, Liu B, Lopez C, Cruz P, Muller C, Baker HV, Flotte TR. Effects of CFTR, interleukin-10, and Pseudomonas aeruginosa on gene expression profiles in a CF bronchial epithelial cell Line. Mol Ther 2004; 10:562-73; PMID:15336656; https://doi.org/10.1016/j.ymthe.2004.06.215
  • Swiatecka-Urban A, Talebian L, Kanno E, Moreau-Marquis S, Coutermarsh B, Hansen K, Karlson KH, Barnaby R, Cheney RE, Langford GM, et al. Myosin Vb is required for trafficking of the cystic fibrosis transmembrane conductance regulator in Rab11a-specific apical recycling endosomes in polarized human airway epithelial cells. J Biol Chem 2007; 282:23725-36; PMID:17462998; https://doi.org/10.1074/jbc.M608531200
  • Silvis MR, Bertrand CA, Ameen N, Golin-Bisello F, Butterworth MB, Frizzell RA, Bradbury NA. Rab11b regulates the apical recycling of the cystic fibrosis transmembrane conductance regulator in polarized intestinal epithelial cells. Mol Biol Cell 2009; 20:2337-50; PMID:19244346; https://doi.org/10.1091/mbc.E08-01-0084
  • Lai F, Stubbs L, Artzt K. Molecular analysis of mouse Rab11b: a new type of mammalian YPT/Rab protein. Genomics 1994; 22:610-6; PMID:8001972; https://doi.org/10.1006/geno.1994.1434
  • Holleran JP, Zeng J, Frizzell RA, Watkins SC. Regulated recycling of mutant CFTR is partially restored by pharmacological treatment. J Cell Sci 2013; 126:2692-703; PMID:23572510; https://doi.org/10.1242/jcs.120196
  • Saxena SK, Kaur S, George C. Rab4GTPase modulates CFTR function by impairing channel expression at plasma membrane. Biochem Biophys Res Commun 2006; 341:184-91; PMID:16413502; https://doi.org/10.1016/j.bbrc.2005.12.170
  • Saxena SK, Kaur S. Rab27a negatively regulates CFTR chloride channel function in colonic epithelia: involvement of the effector proteins in the regulatory mechanism. Biochem Biophys Res Commun 2006; 346:259-67; PMID:16762324; https://doi.org/10.1016/j.bbrc.2006.05.102
  • Pohl K, Hayes E, Keenan J, Henry M, Meleady P, Molloy K, Jundi B, Bergin DA, McCarthy C, McElvaney OJ, et al. A neutrophil intrinsic impairment affecting Rab27a and degranulation in cystic fibrosis is corrected by CFTR potentiator therapy. Blood 2014; 124:999-1009; PMID:24934256; https://doi.org/10.1182/blood-2014-02-555268
  • Hanukoglu I, Hanukoglu A. Epithelial sodium channel (ENaC) family: Phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene 2016; 579:95-132; PMID:26772908; https://doi.org/10.1016/j.gene.2015.12.061
  • Mall MA, Galietta LJ. Targeting ion channels in cystic fibrosis. J Cyst Fibros 2015; 14:561-70; PMID:26115565; https://doi.org/10.1016/j.jcf.2015.06.002
  • Mall MA. Role of the amiloride-sensitive epithelial Na+ channel in the pathogenesis and as a therapeutic target for cystic fibrosis lung disease. Exp Physiol 2009; 94:171-4; PMID:19060118; https://doi.org/10.1113/expphysiol.2008.042994
  • Reddy MM, Light MJ, Quinton PM. Activation of the epithelial Na+ channel (ENaC) requires CFTR Cl- channel function. Nature 1999; 402:301-4; PMID:10580502; https://doi.org/10.1038/46297
  • Zhou Z, Duerr J, Johannesson B, Schubert SC, Treis D, Harm M, Graeber SY, Dalpke A, Schultz C, Mall MA. The ENaC-overexpressing mouse as a model of cystic fibrosis lung disease. J Cyst Fibros 2011; 10 Suppl 2:S172-82; PMID:21658636; https://doi.org/10.1016/S1569-1993(11)60021-0
  • Mall M, Grubb BR, Harkema JR, O'Neal WK, Boucher RC. Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nat Med 2004; 10:487-93; PMID:15077107; https://doi.org/10.1038/nm1028
  • Saxena S, Singh M, Engisch K, Fukuda M, Kaur S. Rab proteins regulate epithelial sodium channel activity in colonic epithelial HT-29 cells. Biochem Biophys Res Commun 2005; 337:1219-23; PMID:16236259; https://doi.org/10.1016/j.bbrc.2005.09.186
  • Saxena SK, Singh M, Shibata H, Kaur S, George C. Rab4 GTP/GDP modulates amiloride-sensitive sodium channel (ENaC) function in colonic epithelia. Biochem Biophys Res Commun 2006; 340:726-33; PMID:16389071; https://doi.org/10.1016/j.bbrc.2005.12.036
  • Karpushev AV, Levchenko V, Pavlov TS, Lam VY, Vinnakota KC, Vandewalle A, Wakatsuki T, Staruschenko A. Regulation of ENaC expression at the cell surface by Rab11. Biochem Biophys Res Commun 2008; 377:521-5; PMID:18926797; https://doi.org/10.1016/j.bbrc.2008.10.014
  • Saxena SK, Horiuchi H, Fukuda M. Rab27a regulates epithelial sodium channel (ENaC) activity through synaptotagmin-like protein (SLP-5) and Munc13-4 effector mechanism. Biochem Biophys Res Commun 2006; 344:651-7; PMID:16630545; https://doi.org/10.1016/j.bbrc.2006.03.160
  • Silvis MR, Bertrand CA, Ameen N, Golin-Bisello F, Butterworth MB, Frizzell RA, Bradbury NA. Rab11b regulates the apical recycling of the cystic fibrosis transmembrane conductance regulator in polarized intestinal epithelial cells. Mol Biol Cell 2009; 20:2337-50; PMID:19244346; https://doi.org/10.1091/mbc.E08-01-0084
  • Bhalla V, Daidie D, Li H, Pao AC, LaGrange LP, Wang J, Vandewalle A, Stockand JD, Staub O, Pearce D. Serum- and glucocorticoid-regulated kinase 1 regulates ubiquitin ligase neural precursor cell-expressed, developmentally down-regulated protein 4-2 by inducing interaction with 14-3-3. Mol Endocrinol 2005; 19:3073-84; PMID:16099816; https://doi.org/10.1210/me.2005-0193
  • Klip A, Sun Y, Chiu TT, Foley KP. Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. Am J Physiol Cell Physiol 2014; 306:C879-86; PMID:24598362; https://doi.org/10.1152/ajpcell.00069.2014
  • Wang H, Traub LM, Weixel KM, Hawryluk MJ, Shah N, Edinger RS, Perry CJ, Kester L, Butterworth MB, Peters KW, et al. Clathrin-mediated endocytosis of the epithelial sodium channel. Role of epsin. J Biol Chem 2006; 281:14129-35; PMID:16574660; https://doi.org/10.1074/jbc.M512511200
  • Liang X, Butterworth MB, Peters KW, Frizzell RA. AS160 modulates aldosterone-stimulated epithelial sodium channel forward trafficking. Mol Biol Cell 2010; 21:2024-33; PMID:20410134; https://doi.org/10.1091/mbc.E10-01-0042
  • Di Chiara M, Glaudemans B, Loffing-Cueni D, Odermatt A, Al-Hasani H, Devuyst O, Faresse N, Loffing J. Rab-GAP TBC1D4 (AS160) is dispensable for the renal control of sodium and water homeostasis but regulates GLUT4 in mouse kidney. Am J Physiol Renal Physiol 2015; 309:F779-90; PMID:26336159; https://doi.org/10.1152/ajprenal.00139.2015
  • Zhao W, Jamshidiha M, Lanyon-Hogg T, Recchi C, Cota E, Tate EW. Direct targeting of the Ras GTPase Superfamily through structure- based design. Curr Top Med Chem 2017; 17:16-29; PMID:27530972; https://doi.org/10.2174/1568026616666160719165633
  • Klaver EJ, van der Pouw Kraan TC, Laan LC, Kringel H, Cummings RD, Bouma G, Kraal G, van Die I. Trichuris suis soluble products induce Rab7b expression and limit TLR4 responses in human dendritic cells. Genes Immun 2015; 16:378-87; PMID:25996526; https://doi.org/10.1038/gene.2015.18
  • Kang SM, Nam KY, Jung SY, Song KH, Kho S, No KT, Choi HK, Song JY. Inhibition of cancer cell invasion by new ((3,4-dihydroxy benzylidene)hydrazinyl)pyridine-3-sulfonamide analogs. Bioorg Med Chem Lett 2016; 26:1322-8; PMID:26810259; https://doi.org/10.1016/j.bmcl.2015.12.093
  • Bobrie A, Krumeich S, Reyal F, Recchi C, Moita LF, Seabra MC, Ostrowski M, Théry C. Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res 2012; 72:4920-30; PMID:22865453; https://doi.org/10.1158/0008-5472.CAN-12-0925
  • Li W, Mu D, Tian F, Hu Y, Jiang T, Han Y, Chen J, Han G, Li X. Exosomes derived from Rab27aoverexpressing tumor cells elicit efficient induction of antitumor immunity. Mol Med Rep 2013; 8:1876-82; PMID:24146068
  • Hendrix A, Hume AN. Exosome signaling in mammary gland development and cancer. Int J Dev Biol 2011; 55:879-87; PMID:22161843; https://doi.org/10.1387/ijdb.113391ah
  • Reichhart N, Markowski M, Ishiyama S, Wagner A, Crespo-Garcia S, Schorb T, Ramalho JS, Milenkovic VM, Föckler R, Seabra MC, et al. Rab27a GTPase modulates L-type Ca2+ channel function via interaction with the II-III linker of CaV1.3 subunit. Cell Signal 2015; 27:2231-40; PMID:26235199; https://doi.org/10.1016/j.cellsig.2015.07.023
  • Takata K, Matsuzaki T, Tajika Y, Ablimit A, Hasegawa T. Localization and trafficking of aquaporin 2 in the kidney. Histochem Cell Biol 2008; 130:197-209; PMID:18566824; https://doi.org/10.1007/s00418-008-0457-0
  • Seebohm G, Strutz-Seebohm N, Birkin R, Dell G, Bucci C, Spinosa MR, Baltaev R, Mack AF, Korniychuk G, Choudhury A, et al. Regulation of endocytic recycling of KCNQ1/KCNE1 potassium channels. Circ Res 2007; 100:686-92; PMID:17293474; https://doi.org/10.1161/01.RES.0000260250.83824.8f
  • Balse E, El-Haou S, Dillanian G, Dauphin A, Eldstrom J, Fedida D, Coulombe A, Hatem SN. Cholesterol modulates the recruitment of Kv1.5 channels from Rab11-associated recycling endosome in native atrial myocytes. Proc Natl Acad Sci U S A 2009; 106:14681-6; PMID:19706553; https://doi.org/10.1073/pnas.0902809106
  • Bichet DG. Vasopressin receptor mutations in nephrogenic diabetes insipidus. Semin Nephrol 2008; 28:245-51; PMID:18519085; https://doi.org/10.1016/j.semnephrol.2008.03.005
  • Procino G, Barbieri C, Carmosino M, Tamma G, Milano S, De Benedictis L, Mola MG, Lazo-Fernandez Y, Valenti G, Svelto M. Fluvastatin modulates renal water reabsorption in vivo through increased AQP2 availability at the apical plasma membrane of collecting duct cells. Pflugers Arch 2011; 462:753-66; PMID:21858457; https://doi.org/10.1007/s00424-011-1007-5
  • Cui Z, Zhang S. Regulation of the human ether-a-go-go-related gene (hERG) channel by Rab4 protein through neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2). J Biol Chem 2013; 288:21876-86; PMID:23792956; https://doi.org/10.1074/jbc.M113.461715
  • Pons G, Marchand MC, d'Athis P, Sauvage E, Foucard C, Chaumet-Riffaud P, Sautegeau A, Navarro J, Lenoir G. French multicenter randomized double-blind placebo-controlled trial on nebulized amiloride in cystic fibrosis patients. The Amiloride-AFLM Collaborative Study Group. Pediatr Pulmonol 2000; 30:25-31; PMID:10862159; https://doi.org/10.1002/1099-0496(200007)30:1%3c25::AID-PPUL5%3e3.0.CO;2-C
  • Schoenberger M, Althaus M. Novel small molecule epithelial sodium channel inhibitors as potential therapeutics in cystic fibrosis - a patent evaluation. Expert Opin Ther Pat 2013; 23:1383-9; PMID:23957246; https://doi.org/10.1517/13543776.2013.829454
  • Almaca J, Faria D, Sousa M, Uliyakina I, Conrad C, Sirianant L, Clarke LA, Martins JP, Santos M, Heriché JK, et al. High-content siRNA screen reveals global ENaC regulators and potential cystic fibrosis therapy targets. Cell 2013; 154:1390-400; PMID:24034256; https://doi.org/10.1016/j.cell.2013.08.045
  • O'Riordan TG, Donn KH, Hodsman P, Ansede JH, Newcomb T, Lewis SA, Flitter WD, White VS, Johnson MR, Montgomery AB, et al. Acute hyperkalemia associated with inhalation of a potent ENaC antagonist: Phase 1 trial of GS-9411. J Aerosol Med Pulm Drug Deliv 2014; 27:200-8; PMID:23905576; https://doi.org/10.1089/jamp.2013.1037

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.