3,223
Views
46
CrossRef citations to date
0
Altmetric
Review

Viral interactions with host cell Rab GTPases

Pages 192-201 | Received 01 Feb 2017, Accepted 20 Jun 2017, Published online: 18 Sep 2017

References

  • Delevoye C, Goud B. Rab GTPases and kinesin motors in endosomal trafficking. Methods Cell Biol 2015; 130:235-46; PMID:26360038
  • Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009; 10:513-25; PMID:19603039; https://doi.org/10.1038/nrm2728
  • Wandinger-Ness A, Zerial M. Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol 2014; 6:a022616; PMID:25341920; https://doi.org/10.1101/cshperspect.a022616
  • Muller MP, Goody RS. Molecular control of Rab activity by GEFs, GAPs and GDI. Small GTPases 2017:1-17; https://doi.org/10.1080/21541248.2016.1276999
  • Traut TW. Physiological concentrations of purines and pyrimidines. Mol Cell Biochem 1994; 140:1-22; PMID:7877593; https://doi.org/10.1007/BF00928361
  • Zhen Y, Stenmark H. Cellular functions of Rab GTPases at a glance. J Cell Sci 2015; 128:3171-6; PMID:26272922; https://doi.org/10.1242/jcs.166074
  • Hodge TW, Murray JL. Rab-GTPases: dual roles in vesicular transport and viral replication. Future Virol 2006; 1:811-22; https://doi.org/10.2217/17460794.1.6.811
  • Edinger TO, Pohl MO, Stertz S. Entry of influenza A virus: host factors and antiviral targets. J Gen Virol 2014; 95:263-77; PMID:24225499; https://doi.org/10.1099/vir.0.059477-0
  • Luo M. Influenza virus entry. Adv Exp Med Biol 2012; 726:201-21; PMID:22297515
  • de Vries E, Tscherne DM, Wienholts MJ, Cobos-Jimenez V, Scholte F, Garcia-Sastre A, Rottier PJ, de Haan CA. Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway. PLoS Pathog 2011; 7:e1001329; PMID:21483486; https://doi.org/10.1371/journal.ppat.1001329
  • Rossman JS, Leser GP, Lamb RA. Filamentous influenza virus enters cells via macropinocytosis. J Virol 2012; 86:10950-60; PMID:22875971; https://doi.org/10.1128/JVI.05992-11
  • Liu SL, Wu QM, Zhang LJ, Wang ZG, Sun EZ, Zhang ZL, Pang DW. Three-dimensional tracking of Rab5- and Rab7-associated infection process of influenza virus. Small 2014; 10:4746-53; PMID:24976105; https://doi.org/10.1002/smll.201400944
  • Sieczkarski SB, Whittaker GR. Differential requirements of Rab5 and Rab7 for endocytosis of influenza and other enveloped viruses. Traffic 2003; 4:333-43; PMID:12713661; https://doi.org/10.1034/j.1600-0854.2003.00090.x
  • Liebl D, Difato F, Hornikova L, Mannova P, Stokrova J, Forstova J. Mouse polyomavirus enters early endosomes, requires their acidic pH for productive infection, and meets transferrin cargo in Rab11-positive endosomes. J Virol 2006; 80:4610-22; PMID:16611921; https://doi.org/10.1128/JVI.80.9.4610-4622.2006
  • Mannova P, Forstova J. Mouse polyomavirus utilizes recycling endosomes for a traffic pathway independent of COPI vesicle transport. J Virol 2003; 77:1672-81; PMID:12525601; https://doi.org/10.1128/JVI.77.3.1672-1681.2003
  • Krishnan MN, Sukumaran B, Pal U, Agaisse H, Murray JL, Hodge TW, Fikrig E. Rab 5 is required for the cellular entry of dengue and West Nile viruses. J Virol 2007; 81:4881-5; PMID:17301152; https://doi.org/10.1128/JVI.02210-06
  • Meertens L, Bertaux C, Dragic T. Hepatitis C virus entry requires a critical postinternalization step and delivery to early endosomes via clathrin-coated vesicles. J Virol 2006; 80:11571-8; PMID:17005647; https://doi.org/10.1128/JVI.01717-06
  • Mercer J, Schelhaas M, Helenius A. Virus entry by endocytosis. Annu Rev Biochem 2010; 79:803-33; PMID:20196649; https://doi.org/10.1146/annurev-biochem-060208-104626
  • Rauma T, Tuukkanen J, Bergelson JM, Denning G, Hautala T. rab5 GTPase regulates adenovirus endocytosis. J Virol 1999; 73:9664-8; PMID:10516081
  • Enouf V, Chwetzoff S, Trugnan G, Cohen J. Interactions of rotavirus VP4 spike protein with the endosomal protein Rab5 and the prenylated Rab acceptor PRA1. J Virol 2003; 77:7041-7; PMID:12768023; https://doi.org/10.1128/JVI.77.12.7041-7047.2003
  • Johnson DC, Baines JD. Herpesviruses remodel host membranes for virus egress. Nat Rev Microbiol 2011; 9:382-94; PMID:21494278; https://doi.org/10.1038/nrmicro2559
  • Mettenleiter TC, Minson T. Egress of alphaherpesviruses. J Virol 2006; 80:1610-1; author reply 1–2; PMID:16415038; https://doi.org/10.1128/JVI.80.3.1610-1612.2006
  • Granzow H, Klupp BG, Fuchs W, Veits J, Osterrieder N, Mettenleiter TC. Egress of alphaherpesviruses: comparative ultrastructural study. J Virol 2001; 75:3675-84; PMID:11264357; https://doi.org/10.1128/JVI.75.8.3675-3684.2001
  • Hollinshead M, Johns HL, Sayers CL, Gonzalez-Lopez C, Smith GL, Elliott G. Endocytic tubules regulated by Rab GTPases 5 and 11 are used for envelopment of herpes simplex virus. EMBO J 2012; 31:4204-20; PMID:22990238; https://doi.org/10.1038/emboj.2012.262
  • Johns HL, Gonzalez-Lopez C, Sayers CL, Hollinshead M, Elliott G. Rab6 dependent post-Golgi trafficking of HSV1 envelope proteins to sites of virus envelopment. Traffic 2014; 15:157-78; PMID:24152084; https://doi.org/10.1111/tra.12134
  • Bello-Morales R, Crespillo AJ, Fraile-Ramos A, Tabares E, Alcina A, Lopez-Guerrero JA. Role of the small GTPase Rab27a during herpes simplex virus infection of oligodendrocytic cells. BMC Microbiol 2012; 12:265; PMID:23164453; https://doi.org/10.1186/1471-2180-12-265
  • Zenner HL, Yoshimura S, Barr FA, Crump CM. Analysis of Rab GTPase-activating proteins indicates that Rab1a/b and Rab43 are important for herpes simplex virus 1 secondary envelopment. J Virol 2011; 85:8012-21; PMID:21680502; https://doi.org/10.1128/JVI.00500-11
  • Hogue IB, Bosse JB, Hu JR, Thiberge SY, Enquist LW. Cellular mechanisms of alpha herpesvirus egress: live cell fluorescence microscopy of pseudorabies virus exocytosis. PLoS Pathog 2014; 10:e1004535; PMID:25474634; https://doi.org/10.1371/journal.ppat.1004535
  • Vora SB, Englund JA. Cytomegalovirus in immunocompromised children. Curr Opin Infect Dis 2015; 28:323-9; PMID:26098503; https://doi.org/10.1097/QCO.0000000000000174
  • Alwine JC. The human cytomegalovirus assembly compartment: a masterpiece of viral manipulation of cellular processes that facilitates assembly and egress. PLoS Pathog 2012; 8:e1002878; PMID:23028305; https://doi.org/10.1371/journal.ppat.1002878
  • Homman-Loudiyi M, Hultenby K, Britt W, Soderberg-Naucler C. Envelopment of human cytomegalovirus occurs by budding into Golgi-derived vacuole compartments positive for gB, Rab 3, trans-golgi network 46, and mannosidase II. J Virol 2003; 77:3191-203; PMID:12584343; https://doi.org/10.1128/JVI.77.5.3191-3203.2003
  • Sanchez V, Greis KD, Sztul E, Britt WJ. Accumulation of virion tegument and envelope proteins in a stable cytoplasmic compartment during human cytomegalovirus replication: characterization of a potential site of virus assembly. J Virol 2000; 74:975-86; PMID:10623760; https://doi.org/10.1128/JVI.74.2.975-986.2000
  • Indran SV, Ballestas ME, Britt WJ. Bicaudal D1-dependent trafficking of human cytomegalovirus tegument protein pp150 in virus-infected cells. J Virol 2010; 84:3162-77; PMID:20089649; https://doi.org/10.1128/JVI.01776-09
  • Indran SV, Britt WJ. A role for the small GTPase Rab6 in assembly of human cytomegalovirus. J Virol 2011; 85:5213-9; PMID:21411515; https://doi.org/10.1128/JVI.02605-10
  • Fraile-Ramos A, Cepeda V, Elstak E, van der Sluijs P. Rab27a is required for human cytomegalovirus assembly. PLoS One 2010; 5:e15318; PMID:21170347; https://doi.org/10.1371/journal.pone.0015318
  • Krzyzaniak MA, Mach M, Britt WJ. HCMV-encoded glycoprotein M (UL100) interacts with Rab11 effector protein FIP4. Traffic 2009; 10:1439-57; PMID:19761540; https://doi.org/10.1111/j.1600-0854.2009.00967.x
  • Murray JL, Mavrakis M, McDonald NJ, Yilla M, Sheng J, Bellini WJ, Zhao L, Le Doux JM, Shaw MW, Luo CC, et al. Rab9 GTPase is required for replication of human immunodeficiency virus type 1, filoviruses, and measles virus. J Virol 2005; 79:11742-51; PMID:16140752; https://doi.org/10.1128/JVI.79.18.11742-11751.2005
  • Ploen D, Hafirassou ML, Himmelsbach K, Schille SA, Biniossek ML, Baumert TF, Schuster C, Hildt E. TIP47 is associated with the hepatitis C virus and its interaction with Rab9 is required for release of viral particles. Eur J Cell Biol 2013; 92:374-82; PMID:24480419; https://doi.org/10.1016/j.ejcb.2013.12.003
  • Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, Bartenschlager R, Wakita T, Hijikata M, Shimotohno K. The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 2007; 9:1089-97; PMID:17721513; https://doi.org/10.1038/ncb1631
  • Bulankina AV, Deggerich A, Wenzel D, Mutenda K, Wittmann JG, Rudolph MG, Burger KN, Höning S. TIP47 functions in the biogenesis of lipid droplets. J Cell Biol 2009; 185:641-55; PMID:19451273; https://doi.org/10.1083/jcb.200812042
  • Gerber PP, Cabrini M, Jancic C, Paoletti L, Banchio C, von Bilderling C, Sigaut L, Pietrasanta LI, Duette G, Freed EO, et al. Rab27a controls HIV-1 assembly by regulating plasma membrane levels of phosphatidylinositol 4,5-bisphosphate. J Cell Biol 2015; 209:435-52; PMID:25940347; https://doi.org/10.1083/jcb.201409082
  • Saad JS, Miller J, Tai J, Kim A, Ghanam RH, Summers MF. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci U S A 2006; 103:11364-9; PMID:16840558; https://doi.org/10.1073/pnas.0602818103
  • Pelchen-Matthews A, Kramer B, Marsh M. Infectious HIV-1 assembles in late endosomes in primary macrophages. J Cell Biol 2003; 162:443-55; PMID:12885763; https://doi.org/10.1083/jcb.200304008
  • Tan J, Sattentau QJ. The HIV-1-containing macrophage compartment: a perfect cellular niche? Trends Microbiol 2013; 21:405-12; PMID:23735804; https://doi.org/10.1016/j.tim.2013.05.001
  • Deneka M, Pelchen-Matthews A, Byland R, Ruiz-Mateos E, Marsh M. In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. J Cell Biol 2007; 177:329-41; PMID:17438075; https://doi.org/10.1083/jcb.200609050
  • Hammonds JE, Beeman N, Ding L, Takushi S, Francis AC, Wang JJ, Melikyan GB, Spearman P. Siglec-1 initiates formation of the virus-containing compartment and enhances macrophage-to-T cell transmission of HIV-1. PLoS Pathog 2017; 13:e1006181; PMID:28129379; https://doi.org/10.1371/journal.ppat.1006181
  • Gaudin R, Berre S, Cunha de Alencar B, Decalf J, Schindler M, Gobert FX, Jouve M, Benaroch P. Dynamics of HIV-containing compartments in macrophages reveal sequestration of virions and transient surface connections. PLoS One 2013; 8:e69450; PMID:23922713; https://doi.org/10.1371/journal.pone.0069450
  • Nkwe DO, Pelchen-Matthews A, Burden JJ, Collinson LM, Marsh M. The intracellular plasma membrane-connected compartment in the assembly of HIV-1 in human macrophages. BMC Biol 2016; 14:50; PMID:27338237; https://doi.org/10.1186/s12915-016-0272-3
  • Qi M, Williams JA, Chu H, Chen X, Wang JJ, Ding L, Akhirome E, Wen X, Lapierre LA, Goldenring JR, et al. Rab11-FIP1C and Rab14 direct plasma membrane sorting and particle incorporation of the HIV-1 envelope glycoprotein complex. PLoS Pathog 2013; 9:e1003278; PMID:23592992; https://doi.org/10.1371/journal.ppat.1003278
  • Caillet M, Janvier K, Pelchen-Matthews A, Delcroix-Genete D, Camus G, Marsh M, Berlioz-Torrent C. Rab7A is required for efficient production of infectious HIV-1. PLoS Pathog 2011; 7:e1002347; PMID:22072966; https://doi.org/10.1371/journal.ppat.1002347
  • Adamson CS, Freed EO. Human immunodeficiency virus type 1 assembly, release, and maturation. Adv Pharmacol 2007; 55:347-87; PMID:17586320
  • Freed EO. HIV-1 gag proteins: diverse functions in the virus life cycle. Virology 1998; 251:1-15; PMID:9813197; https://doi.org/10.1006/viro.1998.9398
  • Ono A, Orenstein JM, Freed EO. Role of the Gag matrix domain in targeting human immunodeficiency virus type 1 assembly. J Virol 2000; 74:2855-66; PMID:10684302; https://doi.org/10.1128/JVI.74.6.2855-2866.2000
  • Ono A, Ablan SD, Lockett SJ, Nagashima K, Freed EO. Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc Natl Acad Sci U S A 2004; 101:14889-94; PMID:15465916; https://doi.org/10.1073/pnas.0405596101
  • Hales CM, Griner R, Hobdy-Henderson KC, Dorn MC, Hardy D, Kumar R, Navarre J, Chan EK, Lapierre LA, Goldenring JR. Identification and characterization of a family of Rab11-interacting proteins. J Biol Chem 2001; 276:39067-75; PMID:11495908; https://doi.org/10.1074/jbc.M104831200
  • Lindsay AJ, Hendrick AG, Cantalupo G, Senic-Matuglia F, Goud B, Bucci C, McCaffrey MW. Rab coupling protein (RCP), a novel Rab4 and Rab11 effector protein. J Biol Chem 2002; 277:12190-9; PMID:11786538; https://doi.org/10.1074/jbc.M108665200
  • Horgan CP, McCaffrey MW. The dynamic Rab11-FIPs. Biochem Soc Trans 2009; 37:1032-6; PMID:19754446; https://doi.org/10.1042/BST0371032
  • Prekeris R. Rabs, Rips, FIPs, and endocytic membrane traffic. ScientificWorldJournal 2003; 3:870-80; PMID:14532427; https://doi.org/10.1100/tsw.2003.69
  • Caswell PT, Chan M, Lindsay AJ, McCaffrey MW, Boettiger D, Norman JC. Rab-coupling protein coordinates recycling of alpha5beta1 integrin and EGFR1 to promote cell migration in 3D microenvironments. J Cell Biol 2008; 183:143-55; PMID:18838556; https://doi.org/10.1083/jcb.200804140
  • Jing J, Junutula JR, Wu C, Burden J, Matern H, Peden AA, Prekeris R. FIP1/RCP binding to Golgin-97 regulates retrograde transport from recycling endosomes to the trans-Golgi network. Mol Biol Cell 2010; 21:3041-53; PMID:20610657; https://doi.org/10.1091/mbc.E10-04-0313
  • Peden AA, Schonteich E, Chun J, Junutula JR, Scheller RH, Prekeris R. The RCP-Rab11 complex regulates endocytic protein sorting. Mol Biol Cell 2004; 15:3530-41; PMID:15181150; https://doi.org/10.1091/mbc.E03-12-0918
  • Kelly EE, Horgan CP, Adams C, Patzer TM, Ni Shuilleabhain DM, Norman JC, McCaffrey MW. Class I Rab11-family interacting proteins are binding targets for the Rab14 GTPase. Biol Cell 2009; 102:51-62; PMID:19702578; https://doi.org/10.1042/BC20090068
  • Checkley MA, Luttge BG, Freed EO. HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J Mol Biol 2011; 410:582-608; PMID:21762802; https://doi.org/10.1016/j.jmb.2011.04.042
  • Murakami T, Freed EO. The long cytoplasmic tail of gp41 is required in a cell type-dependent manner for HIV-1 envelope glycoprotein incorporation into virions. Proc Natl Acad Sci U S A 2000; 97:343-8; PMID:10618420; https://doi.org/10.1073/pnas.97.1.343
  • Qi M, Chu H, Chen X, Choi J, Wen X, Hammonds J, Ding L, Hunter E, Spearman P. A tyrosine-based motif in the HIV-1 envelope glycoprotein tail mediates cell-type- and Rab11-FIP1C-dependent incorporation into virions. Proc Natl Acad Sci U S A 2015; 112:7575-80; PMID:26034275; https://doi.org/10.1073/pnas.1504174112
  • Brock SC, Goldenring JR, Crowe JE Jr. Apical recycling systems regulate directional budding of respiratory syncytial virus from polarized epithelial cells. Proc Natl Acad Sci U S A 2003; 100:15143-8; PMID:14630951; https://doi.org/10.1073/pnas.2434327100
  • Utley TJ, Ducharme NA, Varthakavi V, Shepherd BE, Santangelo PJ, Lindquist ME, Goldenring JR, Crowe JE Jr. Respiratory syncytial virus uses a Vps4-independent budding mechanism controlled by Rab11-FIP2. Proc Natl Acad Sci U S A 2008; 105:10209-14; PMID:18621683; https://doi.org/10.1073/pnas.0712144105