4,082
Views
47
CrossRef citations to date
0
Altmetric
Review

Rab GTPases in cilium formation and function

, &
Pages 76-94 | Received 02 Mar 2017, Accepted 29 Jun 2017, Published online: 26 Oct 2017

References

  • Brown FC, Pfeffer SR. An update on transport vesicle tethering. Mol Membr Biol. 2010;27:457-61. doi:10.3109/09687688.2010.501765. PMID:21067454
  • Hutagalung AH, Novick PJ. Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev. 2011;91:119-49. doi:10.1152/physrev.00059.2009. PMID:21248164
  • Wandinger-Ness A, Zerial M. Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol. 2014;6:a022616. doi:10.1101/cshperspect.a022616. PMID:25341920
  • Zhen Y, Stenmark H. Cellular functions of Rab GTPases at a glance. J Cell Sci. 2015;128:3171-6. doi:10.1242/jcs.166074. PMID:26272922
  • Elias M, Brighouse A, Gabernet-Castello C, Field MC, Dacks JB. Sculpting the endomembrane system in deep time: High resolution phylogenetics of Rab GTPases. J Cell Sci. 2012;125:2500-8. doi:10.1242/jcs.101378. PMID:22366452
  • Klopper TH, Kienle N, Fasshauer D, Munro S. Untangling the evolution of Rab G proteins: Implications of a comprehensive genomic analysis. BMC Biol. 2012;10:71. doi:10.1186/1741-7007-10-71. PMID:22873208
  • Vetter IR, Wittinghofer A. The guanine nucleotide-binding switch in three dimensions. Science. 2001;294:1299-304. doi:10.1126/science.1062023. PMID:11701921
  • Cherfils J, Zeghouf M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev. 2013;93:269-309. doi:10.1152/physrev.00003.2012. PMID:23303910
  • Pfeffer SR. Rab GTPase localization and Rab cascades in Golgi transport. Biochem Soc Trans. 2012;40:1373-7. doi:10.1042/BST20120168. PMID:23176483
  • Mizuno-Yamasaki E, Rivera-Molina F, Novick P. GTPase networks in membrane traffic. Annu Rev Biochem. 2012;81:637-59. doi:10.1146/annurev-biochem-052810-093700. PMID:22463690
  • Pfeffer SR. Rab GTPase regulation of membrane identity. Curr Opin Cell Biol. 2013;25:414-9. doi:10.1016/j.ceb.2013.04.002. PMID:23639309
  • Mitchell DR. Evolution of cilia. Cold Spring Harb Perspect Biol. 2017;9:a028290. doi:10.1101/cshperspect.a028290. PMID:27663773
  • Satir P, Pedersen LB, Christensen ST. The primary cilium at a glance. J Cell Sci. 2010;123:499-503. doi:10.1242/jcs.050377. PMID:20144997
  • Benmerah A. The ciliary pocket. Curr Opin Cell Biol. 2013;25:78-84. doi:10.1016/j.ceb.2012.10.011. PMID:23153502
  • Goetz S, Anderson K. The primary cilium: A signalling centre during vertebrate development. Nat Rev Genet. 2010;11:331-44. doi:10.1038/nrg2774. PMID:20395968
  • Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature. 2003;426:83-7. doi:10.1038/nature02061. PMID:14603322
  • Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF. Vertebrate Smoothened functions at the primary cilium. Nature. 2005;437:1018-21. doi:10.1038/nature04117. PMID:16136078
  • Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet. 2005;1:e53. doi:10.1371/journal.pgen.0010053. PMID:16254602
  • Rohatgi R, Milenkovic L, Scott MP. Patched1 regulates hedgehog signaling at the primary cilium. Science. 2007;317:372-6. doi:10.1126/science.1139740. PMID:17641202
  • Liem KF Jr, Ashe A, He M, Satir P, Moran J, Beier D, Wicking C, Anderson KV. The IFT-A complex regulates Shh signaling through cilia structure and membrane protein trafficking. J Cell Biol. 2012;197:789-800. doi:10.1083/jcb.201110049. PMID:22689656
  • Mukhopadhyay S, Wen X, Ratti N, Loktev A, Rangell L, Scales SJ, Jackson PK. The ciliary G-protein-coupled receptor Gpr161 negatively regulates the Sonic hedgehog pathway via cAMP signaling. Cell. 2013;152:210-23. doi:10.1016/j.cell.2012.12.026. PMID:23332756
  • He M, Agbu S, Anderson KV. Microtubule motors drive hedgehog signaling in primary cilia. Trends Cell Biol. 2016;27(2):110-25. PMID:27765513
  • Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med. 2011;364:1533-43. doi:10.1056/NEJMra1010172. PMID:21506742
  • Waters AM, Beales PL. Ciliopathies: An expanding disease spectrum. Pediatr Nephrol. 2011;26:1039-56. doi:10.1007/s00467-010-1731-7. PMID:21210154
  • Sorokin S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol. 1962;15:363-77. doi:10.1083/jcb.15.2.363. PMID:13978319
  • Sorokin SP. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci. 1968;3:207-30. PMID:5661997
  • Ghossoub R, Molla-Herman A, Bastin P, Benmerah A. The ciliary pocket: A once-forgotten membrane domain at the base of cilia. Biol Cell. 2011;103:131-44. doi:10.1042/BC20100128. PMID:21275905
  • Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci U S A. 1993;90:5519-23. doi:10.1073/pnas.90.12.5519. PMID:8516294
  • Rosenbaum JL, Witman GB. Intraflagellar transport. Nat Rev. 2002;3:813-25. doi:10.1038/nrm952. PMID:12415299
  • Ishikawa H, Marshall W. Ciliogenesis: Building the cell's antenna. Nat Rev Mol Cell Biol. 2011;12:222-56. doi:10.1038/nrm3085. PMID:21427764
  • Taschner M, Lorentzen E. The intraflagellar transport machinery. Cold Spring Harb Perspect Biol. 2016;8:a028092. doi:10.1101/cshperspect.a028092. PMID:27352625
  • Piperno G, Mead K. Transport of a novel complex in the cytoplasmic matrix of Chlamydomonas flagella. Proc Natl Acad Sci U S A. 1997;94:4457-62. doi:10.1073/pnas.94.9.4457. PMID:9114011
  • Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol. 1998;141:993-1008. doi:10.1083/jcb.141.4.993. PMID:9585417
  • Lucker BF, Behal RH, Qin H, Siron LC, Taggart WD, Rosenbaum JL, Cole DG. Characterization of the intraflagellar transport complex B core: Direct interaction of the IFT81 and IFT74/72 subunits. J Biol Chem. 2005;280:27688-96. doi:10.1074/jbc.M505062200. PMID:15955805
  • Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peranen J, Merdes A, Slusarski DC, Scheller RH, Bazan JF, Sheffield VC, et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell. 2007;129:1201-13. doi:10.1016/j.cell.2007.03.053. PMID:17574030
  • Taschner M, Weber K, Mourao A, Vetter M, Awasthi M, Stiegler M, Bhogaraju S, Lorentzen E. Intraflagellar transport proteins 172, 80, 57, 54, 38, and 20 form a stable tubulin-binding IFT-B2 complex. EMBO J. 2016;35:773-90. doi:10.15252/embj.201593164. PMID:26912722
  • Yoshimura S, Egerer J, Fuchs E, Haas AK, Barr FA. Functional dissection of Rab GTPases involved in primary cilium formation. J Cell Biol. 2007;178:363-9. doi:10.1083/jcb.200703047. PMID:17646400
  • Tsang WY, Bossard C, Khanna H, Peranen J, Swaroop A, Malhotra V, Dynlacht BD. CP110 suppresses primary cilia formation through its interaction with CEP290, a protein deficient in human ciliary disease. Dev Cell. 2008;15:187-97. doi:10.1016/j.devcel.2008.07.004. PMID:18694559
  • Cevik S, Hori Y, Kaplan OI, Kida K, Toivenon T, Foley-Fisher C, Cottell D, Katada T, Kontani K, Blacque OE. Joubert syndrome Arl13b functions at ciliary membranes and stabilizes protein transport in Caenorhabditis elegans. J Cell Biol. 2010;188:953-69. doi:10.1083/jcb.200908133. PMID:20231383
  • Li Y, Wei Q, Zhang Y, Ling K, Hu J. The small GTPases ARL-13 and ARL-3 coordinate intraflagellar transport and ciliogenesis. J Cell Biol. 2010;189:1039-51. doi:10.1083/jcb.200912001. PMID:20530210
  • Westlake CJ, Baye LM, Nachury MV, Wright KJ, Ervin KE, Phu L, Chalouni C, Beck JS, Kirkpatrick DS, Slusarski DC, et al. Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proc Natl Acad Sci U S A. 2011;108:2759-64. doi:10.1073/pnas.1018823108. PMID:21273506
  • Li Y, Ling K, Hu J. The emerging role of Arf/Arl small GTPases in cilia and ciliopathies. J Cell Biochem. 2012;113:2201-7. doi:10.1002/jcb.24116. PMID:22389062
  • Schmidt KN, Kuhns S, Neuner A, Hub B, Zentgraf H, Pereira G. Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. J Cell Biol. 2012;199:1083-101. doi:10.1083/jcb.201202126. PMID:23253480
  • Lu Q, Insinna C, Ott C, Stauffer J, Pintado PA, Rahajeng J, Baxa U, Walia V, Cuenca A, Hwang YS, et al. Early steps in primary cilium assembly require EHD1/EHD3-dependent ciliary vesicle formation. Nat Cell Biol. 2015;17:228-40. doi:10.1038/ncb3109. PMID:25686250
  • Nachury MV, Seeley ES, Jin H. Trafficking to the ciliary membrane: How to get across the periciliary diffusion barrier? Annu Rev Cell Dev Biol. 2010;26:59-87. doi:10.1146/annurev.cellbio.042308.113337. PMID:19575670
  • Hsiao Y-C, Tuz K, Ferland R. Trafficking in and to the primary cilium. Cilia. 2012;1:4. doi:10.1186/2046-2530-1-4. PMID:23351793
  • Deretic D. Crosstalk of Arf and Rab GTPases en route to cilia. Small GTPases. 2013;4:70-7. doi:10.4161/sgtp.24396. PMID:23567335
  • Malicki J, Avidor-Reiss T. From the cytoplasm into the cilium: Bon voyage. Organogenesis. 2014;10:138-57. doi:10.4161/org.29055. PMID:24786986
  • Reiter J, Blacque O, Leroux M. The base of the cilium: Roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep. 2012;13:608-18. doi:10.1038/embor.2012.73. PMID:22653444
  • Szymanska K, Johnson CA. The transition zone: An essential functional compartment of cilia. Cilia. 2012;1:10. doi:10.1186/2046-2530-1-10. PMID:23352055
  • Garcia-Gonzalo FR, Reiter JF. Open sesame: How transition fibers and the transition zone control ciliary composition. Cold Spring Harb Perspect Biol. 2017;9:a028134. doi:10.1101/cshperspect.a028134. PMID:27770015
  • Li Y, Hu J. Small GTPases and cilia. Protein Cell. 2011;2:13-25. doi:10.1007/s13238-011-1004-7. PMID:21337006
  • Lim YS, Chua CE, Tang BL. Rabs and other small GTPases in ciliary transport. Biol Cell. 2011;103:209-21. doi:10.1042/BC20100150. PMID:21488838
  • Wang J, Deretic D. Molecular complexes that direct rhodopsin transport to primary cilia. Prog Retin Eye Res. 2014;38:1-19. doi:10.1016/j.preteyeres.2013.08.004. PMID:24135424
  • Deretic D, Huber LA, Ransom N, Mancini M, Simons K, Papermaster DS. rab8 in retinal photoreceptors may participate in rhodopsin transport and in rod outer segment disk morphogenesis. J Cell Sci. 1995;108 (Pt 1):215-24. PMID:7738098
  • Moritz OL, Tam BM, Hurd LL, Peranen J, Deretic D, Papermaster DS. Mutant rab8 Impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods. Mol Biol Cell. 2001;12:2341-51. doi:10.1091/mbc.12.8.2341. PMID:11514620
  • Mukhopadhyay S, Lu Y, Shaham S, Sengupta P. Sensory signaling-dependent remodeling of olfactory cilia architecture in C. elegans. Dev Cell. 2008;14:762-74. doi:10.1016/j.devcel.2008.03.002. PMID:18477458
  • Kaplan OI, Molla-Herman A, Cevik S, Ghossoub R, Kida K, Kimura Y, Jenkins P, Martens JR, Setou M, Benmerah A, et al. The AP-1 clathrin adaptor facilitates cilium formation and functions with RAB-8 in C. elegans ciliary membrane transport. J Cell Sci. 2010;123:3966-77. doi:10.1242/jcs.073908. PMID:20980383
  • Sato T, Mushiake S, Kato Y, Sato K, Sato M, Takeda N, Ozono K, Miki K, Kubo Y, Tsuji A, et al. The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature. 2007;448:366-9. doi:10.1038/nature05929. PMID:17597763
  • Sato T, Iwano T, Kunii M, Matsuda S, Mizuguchi R, Jung Y, Hagiwara H, Yoshihara Y, Yuzaki M, Harada R, et al. Rab8a and Rab8b are essential for several apical transport pathways but insufficient for ciliogenesis. J Cell Sci. 2014;127:422-31. doi:10.1242/jcs.136903. PMID:24213529
  • Babbey CM, Bacallao RL, Dunn KW. Rab10 associates with primary cilia and the exocyst complex in renal epithelial cells. Am J Physiol. 2010;299:F495-506
  • Kuhns S, Schmidt KN, Reymann J, Gilbert DF, Neuner A, Hub B, Carvalho R, Wiedemann P, Zentgraf H, Erfle H, et al. The microtubule affinity regulating kinase MARK4 promotes axoneme extension during early ciliogenesis. J Cell Biol. 2013;200:505-22. doi:10.1083/jcb.201206013. PMID:23400999
  • Kurtulmus B, Wang W, Ruppert T, Neuner A, Cerikan B, Viol L, Dueñas-Sánchez R, Gruss OJ, Pereira G. WDR8 is a centriolar satellite and centriole-associated protein that promotes ciliary vesicle docking during ciliogenesis. J Cell Sci. 2016;129:621-36. doi:10.1242/jcs.179713. PMID:26675238
  • Wang L, Lee K, Malonis R, Sanchez I, Dynlacht BD. Tethering of an E3 ligase by PCM1 regulates the abundance of centrosomal KIAA0586/Talpid3 and promotes ciliogenesis. Elife. 2016;5:e12950. doi:10.7554/eLife.12950. PMID:27146717
  • Kim J, Krishnaswami SR, Gleeson JG. CEP290 interacts with the centriolar satellite component PCM-1 and is required for Rab8 localization to the primary cilium. Hum Mol Genet. 2008;17:3796-805. doi:10.1093/hmg/ddn277. PMID:18772192
  • Baron Gaillard CL, Pallesi-Pocachard E, Massey-Harroche D, Richard F, Arsanto JP, Chauvin JP, Lecine P, Krämer H, Borg JP, Le Bivic A. Hook2 is involved in the morphogenesis of the primary cilium. Mol Biol Cell. 2011;22:4549-62. doi:10.1091/mbc.E11-05-0405. PMID:21998199
  • Kobayashi T, Kim S, Lin YC, Inoue T, Dynlacht BD. The CP110-interacting proteins Talpid3 and Cep290 play overlapping and distinct roles in cilia assembly. J Cell Biol. 2014;204:215-29. doi:10.1083/jcb.201304153. PMID:24421332
  • Barbelanne M, Hossain D, Chan DP, Peranen J, Tsang WY. Nephrocystin proteins NPHP5 and Cep290 regulate BBSome integrity, ciliary trafficking and cargo delivery. Hum Mol Genet. 2015;24:2185-200. doi:10.1093/hmg/ddu738. PMID:25552655
  • Tollenaere MA, Mailand N, Bekker-Jensen S. Centriolar satellites: Key mediators of centrosome functions. Cell Mol Life Sci. 2015;72:11-23. doi:10.1007/s00018-014-1711-3. PMID:25173771
  • Knodler A, Feng S, Zhang J, Zhang X, Das A, Peranen J, Guo W. Coordination of Rab8 and Rab11 in primary ciliogenesis. Proc Natl Acad Sci U S A. 2010;107:6346-51. doi:10.1073/pnas.1002401107. PMID:20308558
  • Feng S, Knodler A, Ren J, Zhang J, Zhang X, Hong Y, Huang S, Peränen J, Guo W. A Rab8 guanine nucleotide exchange factor-effector interaction network regulates primary ciliogenesis. J Biol Chem. 2012;287:15602-9. doi:10.1074/jbc.M111.333245. PMID:22433857
  • Hehnly H, Chen CT, Powers CM, Liu HL, Doxsey S. The centrosome regulates the Rab11- dependent recycling endosome pathway at appendages of the mother centriole. Curr Biol. 2012;22:1944-50. doi:10.1016/j.cub.2012.08.022. PMID:22981775
  • Franco I, Gulluni F, Campa CC, Costa C, Margaria JP, Ciraolo E, Martini M, Monteyne D, De Luca E, Germena G, et al. PI3K class II alpha controls spatially restricted endosomal PtdIns3P and Rab11 activation to promote primary cilium function. Dev Cell. 2014;28:647-58. doi:10.1016/j.devcel.2014.01.022. PMID:24697898
  • Chiba S, Amagai Y, Homma Y, Fukuda M, Mizuno K. NDR2-mediated Rabin8 phosphorylation is crucial for ciliogenesis by switching binding specificity from phosphatidylserine to Sec15. EMBO J. 2013;32:874-85. doi:10.1038/emboj.2013.32. PMID:23435566
  • Zhang B, Zhang T, Wang G, Wang G, Chi W, Jiang Q, Zhang C. GSK3beta-Dzip1-Rab8 cascade regulates ciliogenesis after mitosis. PLoS Biol. 2015;13:e1002129. doi:10.1371/journal.pbio.1002129. PMID:25860027
  • Vetter M, Wang J, Lorentzen E, Deretic D. Novel topography of the Rab11-effector interaction network within a ciliary membrane targeting complex. Small GTPases. 2015;6:165-73. doi:10.1080/21541248.2015.1091539. PMID:26399276
  • Deretic D, Puleo-Scheppke B, Trippe C. Cytoplasmic domain of rhodopsin is essential for post-Golgi vesicle formation in a retinal cell-free system. J Biol Chem. 1996;271:2279-86. doi:10.1074/jbc.271.4.2279. PMID:8567690
  • Mazelova J, Astuto-Gribble L, Inoue H, Tam BM, Schonteich E, Prekeris R, Moritz OL, Randazzo PA, Deretic D. Ciliary targeting motif VxPx directs assembly of a trafficking module through Arf4. EMBO J. 2009;28:183-92. doi:10.1038/emboj.2008.267. PMID:19153612
  • Wang J, Morita Y, Mazelova J, Deretic D. The Arf GAP ASAP1 provides a platform to regulate Arf4- and Rab11-Rab8-mediated ciliary receptor targeting. EMBO J. 2012;31:4057-71. doi:10.1038/emboj.2012.253. PMID:22983554
  • Wang J, Deretic D. The Arf and Rab11 effector FIP3 acts synergistically with ASAP1 to direct Rabin8 in ciliary receptor targeting. J Cell Sci. 2015;128:1375-85. doi:10.1242/jcs.162925. PMID:25673879
  • Bachmann-Gagescu R, Phelps IG, Stearns G, Link BA, Brockerhoff SE, Moens CB, Doherty D. The ciliopathy gene cc2d2a controls zebrafish photoreceptor outer segment development through a role in Rab8-dependent vesicle trafficking. Hum Mol Genet. 2011;20:4041-55. doi:10.1093/hmg/ddr332. PMID:21816947
  • Bachmann-Gagescu R, Dona M, Hetterschijt L, Tonnaer E, Peters T, de Vrieze E, Mans DA, van Beersum SE, Phelps IG, Arts HH, et al. The ciliopathy protein CC2D2A associates with NINL and functions in RAB8-MICAL3-regulated vesicle trafficking. PLoS Genet. 2015;11:e1005575. doi:10.1371/journal.pgen.1005575. PMID:26485645
  • Grigoriev I, Yu KL, Martinez-Sanchez E, Serra-Marques A, Smal I, Meijering E, Demmers J, Peränen J, Pasterkamp RJ, van der Sluijs P, et al. Rab6, Rab8, and MICAL3 cooperate in controlling docking and fusion of exocytotic carriers. Curr Biol. 2011;21:967-74. doi:10.1016/j.cub.2011.04.030. PMID:21596566
  • Boehlke C, Bashkurov M, Buescher A, Krick T, John AK, Nitschke R, Walz G, Kuehn EW. Differential role of Rab proteins in ciliary trafficking: Rab23 regulates smoothened levels. J Cell Sci. 2010;123:1460-7. doi:10.1242/jcs.058883. PMID:20375059
  • Follit JA, Li L, Vucica Y, Pazour GJ. The cytoplasmic tail of fibrocystin contains a ciliary targeting sequence. J Cell Biol. 2010;188:21-8. doi:10.1083/jcb.200910096. PMID:20048263
  • Ward HH, Brown-Glaberman U, Wang J, Morita Y, Alper SL, Bedrick EJ, Gattone VH 2nd, Deretic D, Wandinger-Ness A. A conserved signal and GTPase complex are required for the ciliary transport of polycystin-1. Mol Biol Cell. 2011;22:3289-305. doi:10.1091/mbc.E11-01-0082. PMID:21775626
  • Hoffmeister H, Babinger K, Gurster S, Cedzich A, Meese C, Schadendorf K, Osten L, de Vries U, Rascle A, Witzgall R. Polycystin-2 takes different routes to the somatic and ciliary plasma membrane. J Cell Biol. 2011;192:631-45. doi:10.1083/jcb.201007050. PMID:21321097
  • Monis WJ, Faundez V, Pazour GJ. BLOC-1 is required for selective membrane protein trafficking from endosomes to primary cilia. J Cell Biol. 2017;216(7):2131-50. doi:10.1083/jcb.201611138. PMID:28576874
  • Madugula V, Lu L. A ternary complex comprising transportin1, Rab8 and the ciliary targeting signal directs proteins to ciliary membranes. J Cell Sci. 2016;129:3922-34. doi:10.1242/jcs.194019. PMID:27633000
  • Dishinger JF, Kee HL, Jenkins PM, Fan S, Hurd TW, Hammond JW, Truong YN, Margolis B, Martens JR, Verhey KJ. Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-beta2 and RanGTP. Nat Cell Biol. 2010;12:703-10. doi:10.1038/ncb2073. PMID:20526328
  • Takao D, Verhey KJ. Gated entry into the ciliary compartment. Cell Mol Life Sci. 2016;73:119-27. doi:10.1007/s00018-015-2058-0. PMID:26472341
  • Onnis A, Finetti F, Patrussi L, Gottardo M, Cassioli C, Spano S, Baldari CT. The small GTPase Rab29 is a common regulator of immune synapse assembly and ciliogenesis. Cell Death Differ. 2015;22:1687-99. doi:10.1038/cdd.2015.17. PMID:26021297
  • Finetti F, Onnis A, Baldari CT. Regulation of vesicular traffic at the T cell immune synapse: Lessons from the primary cilium. Traffic. 2015;16:241-9. doi:10.1111/tra.12241. PMID:25393976
  • Angus KL, Griffiths GM. Cell polarisation and the immunological synapse. Curr Opin Cell Biol. 2013;25:85-91. doi:10.1016/j.ceb.2012.08.013. PMID:22990072
  • Eggenschwiler JT, Espinoza E, Anderson KV. Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. Nature. 2001;412:194-8. doi:10.1038/35084089. PMID:11449277
  • Huangfu D, Anderson KV. Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci U S A. 2005;102:11325-30. doi:10.1073/pnas.0505328102. PMID:16061793
  • Eggenschwiler JT, Bulgakov OV, Qin J, Li T, Anderson KV. Mouse Rab23 regulates hedgehog signaling from smoothened to Gli proteins. Dev Biol. 2006;290:1-12. doi:10.1016/j.ydbio.2005.09.022. PMID:16364285
  • Fuller K, O'Connell JT, Gordon J, Mauti O, Eggenschwiler J. Rab23 regulates Nodal signaling in vertebrate left-right patterning independently of the Hedgehog pathway. Dev Biol. 2014;391:182-95. doi:10.1016/j.ydbio.2014.04.012. PMID:24780629
  • Lim YS, Tang BL. A role for Rab23 in the trafficking of Kif17 to the primary cilium. J Cell Sci. 2015;128:2996-3008. doi:10.1242/jcs.163964. PMID:26136363
  • Pataki C, Matusek T, Kurucz E, Ando I, Jenny A, Mihaly J. Drosophila Rab23 is involved in the regulation of the number and planar polarization of the adult cuticular hairs. Genetics. 2010;184:1051-65. doi:10.1534/genetics.109.112060. PMID:20124028
  • Nozawa T, Aikawa C, Goda A, Maruyama F, Hamada S, Nakagawa I. The small GTPases Rab9A and Rab23 function at distinct steps in autophagy during Group A Streptococcus infection. Cell Microbiol. 2012;14:1149-65. doi:10.1111/j.1462-5822.2012.01792.x. PMID:22452336
  • Chen Y, Ng F, Tang BL. Rab23 activities and human cancer-emerging connections and mechanisms. Tumour Biol. 2016;37:12959-67. doi:10.1007/s13277-016-5207-7. PMID:27449041
  • Lumb JH, Field MC. Rab23 is a flagellar protein in Trypanosoma brucei. BMC Res Notes. 2011;4:190. doi:10.1186/1756-0500-4-190. PMID:21676215
  • Leaf A, Von Zastrow M. Dopamine receptors reveal an essential role of IFT-B, KIF17, and Rab23 in delivering specific receptors to primary cilia. Elife. 2015;4. doi:10.7554/eLife.06996. PMID:26182404
  • Evans TM, Ferguson C, Wainwright BJ, Parton RG, Wicking C. Rab23, a negative regulator of hedgehog signaling, localizes to the plasma membrane and the endocytic pathway. Traffic. 2003;4:869-84. doi:10.1046/j.1600-0854.2003.00141.x. PMID:14617350
  • Jenkins D, Seelow D, Jehee FS, Perlyn CA, Alonso LG, Bueno DF, Donnai D, Josifova D, Mathijssen IM, Morton JE, et al. RAB23 mutations in Carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity. Am J Hum Genet. 2007;80:1162-70. doi:10.1086/518047. PMID:17503333
  • Alessandri JL, Dagoneau N, Laville JM, Baruteau J, Hebert JC, Cormier-Daire V. RAB23 mutation in a large family from Comoros Islands with Carpenter syndrome. Am J Med Genet A. 2010;152A:982-6. doi:10.1002/ajmg.a.33327. PMID:20358613
  • Ben-Salem S, Begum MA, Ali BR, Al-Gazali L. A novel aberrant splice site mutation in RAB23 leads to an eight nucleotide deletion in the mRNA and is responsible for carpenter syndrome in a consanguineous emirati family. Mol Syndromol. 2013;3:255-61. PMID:23599695
  • Haye D, Collet C, Sembely-Taveau C, Haddad G, Denis C, Soule N, Suc AL, Listrat A, Toutain A. Prenatal findings in carpenter syndrome and a novel mutation in RAB23. Am J Med Genet A. 2014;164A:2926-30. doi:10.1002/ajmg.a.36726. PMID:25168863
  • Zeigerer A, Gilleron J, Bogorad RL, Marsico G, Nonaka H, Seifert S, Epstein-Barash H, Kuchimanchi S, Peng CG, Ruda VM, et al. Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature. 2012;485:465-70. doi:10.1038/nature11133. PMID:22622570
  • Hu J, Wittekind SG, Barr MM. STAM and Hrs down-regulate ciliary TRP receptors. Mol Biol Cell. 2007;18:3277-89. doi:10.1091/mbc.E07-03-0239. PMID:17581863
  • Kaplan OI, Doroquez DB, Cevik S, Bowie RV, Clarke L, Sanders AA, Kida K, Rappoport JZ, Sengupta P, Blacque OE. Endocytosis genes facilitate protein and membrane transport in C. elegans sensory cilia. Curr Biol. 2012;22:451-60. doi:10.1016/j.cub.2012.01.060. PMID:22342749
  • van der Vaart A, Rademakers S, Jansen G. DLK-1/p38 MAP kinase signaling controls cilium length by regulating RAB-5 mediated endocytosis in caenorhabditis elegans. PLoS Genet. 2015;11:e1005733. doi:10.1371/journal.pgen.1005733. PMID:26657059
  • Cavalli V, Vilbois F, Corti M, Marcote MJ, Tamura K, Karin M, Arkinstall S, Gruenberg J. The stress-induced MAP kinase p38 regulates endocytic trafficking via the GDI:Rab5 complex. Mol Cell. 2001;7:421-32. doi:10.1016/S1097-2765(01)00189-7. PMID:11239470
  • Olivier-Mason A, Wojtyniak M, Bowie RV, Nechipurenko IV, Blacque OE, Sengupta P. Transmembrane protein OSTA-1 shapes sensory cilia morphology via regulation of intracellular membrane trafficking in C. elegans. Development. 2013;140:1560-72. doi:10.1242/dev.086249. PMID:23482491
  • Coon BG, Hernandez V, Madhivanan K, Mukherjee D, Hanna CB, Barinaga-Rementeria Ramirez I, Lowe M, Beales PL, Aguilar RC. The Lowe syndrome protein OCRL1 is involved in primary cilia assembly. Hum Mol Genet. 2012;21:1835-47. doi:10.1093/hmg/ddr615. PMID:22228094
  • Luo N, West CC, Murga-Zamalloa CA, Sun L, Anderson RM, Wells CD, Weinreb RN, Travers JB, Khanna H, Sun Y. OCRL localizes to the primary cilium: A new role for cilia in Lowe syndrome. Hum Mol Genet. 2012;21:3333-44. doi:10.1093/hmg/dds163. PMID:22543976
  • Molla-Herman A, Ghossoub R, Blisnick T, Meunier A, Serres C, Silbermann F, Emmerson C, Romeo K, Bourdoncle P, Schmitt A, et al. The ciliary pocket: An endocytic membrane domain at the base of primary and motile cilia. J Cell Sci. 2010;123:1785-95. doi:10.1242/jcs.059519. PMID:20427320
  • Ghossoub R, Lindbaek L, Molla-Herman A, Schmitt A, Christensen ST, Benmerah A. Morphological and functional characterization of the ciliary pocket by electron and fluorescence microscopy. Methods Mol Biol. 2016;1454:35-51. doi:10.1007/978-1-4939-3789-9_3. PMID:27514914
  • Pedersen LB, Mogensen JB, Christensen ST. Endocytic control of cellular signaling at the primary cilium. Trends Biochem Sci. 2016;41:784-97. doi:10.1016/j.tibs.2016.06.002. PMID:27364476
  • Troilo A, Alexander I, Muehl S, Jaramillo D, Knobeloch KP, Krek W. HIF1alpha deubiquitination by USP8 is essential for ciliogenesis in normoxia. EMBO Rep. 2014;15:77-85. doi:10.1002/embr.201337688. PMID:24378640
  • Saito M, Otsu W, Hsu KS, Chuang JZ, Yanagisawa T, Shieh V, Kaitsuka T, Wei FY, Tomizawa K, Sung CH. Tctex-1 controls ciliary resorption by regulating branched actin polymerization and endocytosis. EMBO Rep. 2017;18:1460–1472. doi:10.15252/embr.201744204. PMID:28607034
  • Pal K, Hwang SH, Somatilaka B, Badgandi H, Jackson PK, DeFea K, Mukhopadhyay S. Smoothened determines beta-arrestin-mediated removal of the G protein-coupled receptor Gpr161 from the primary cilium. J Cell Biol. 2016;212:861-75. doi:10.1083/jcb.201506132. PMID:27002170
  • Christ A, Christa A, Kur E, Lioubinski O, Bachmann S, Willnow TE, Hammes A. LRP2 is an auxiliary SHH receptor required to condition the forebrain ventral midline for inductive signals. Dev Cell. 2012;22:268-78. doi:10.1016/j.devcel.2011.11.023. PMID:22340494
  • Clement CA, Ajbro KD, Koefoed K, Vestergaard ML, Veland IR, Henriques de Jesus MP, Pedersen LB, Benmerah A, Andersen CY, Larsen LA, et al. TGF-beta signaling is associated with endocytosis at the pocket region of the primary cilium. Cell Rep. 2013;3:1806-14. doi:10.1016/j.celrep.2013.05.020. PMID:23746451
  • Adhiambo C, Blisnick T, Toutirais G, Delannoy E, Bastin P. A novel function for the atypical small G protein Rab-like 5 in the assembly of the trypanosome flagellum. J Cell Sci. 2009;122:834-75. doi:10.1242/jcs.040444. PMID:19240117
  • Diekmann Y, Seixas E, Gouw M, Tavares-Cadete F, Seabra MC, Pereira-Leal JB. Thousands of rab GTPases for the cell biologist. PLoS Comput Biol. 2011;7:e1002217. doi:10.1371/journal.pcbi.1002217. PMID:22022256
  • Qin H, Wang Z, Diener D, Rosenbaum J. Intraflagellar transport protein 27 is a small G protein involved in cell-cycle control. Curr Biol. 2007;17:193-202. doi:10.1016/j.cub.2006.12.040. PMID:17276912
  • Wang Z, Fan ZC, Williamson SM, Qin H. Intraflagellar transport (IFT) protein IFT25 is a phosphoprotein component of IFT complex B and physically interacts with IFT27 in Chlamydomonas. PloS One. 2009;4:e5384. doi:10.1371/journal.pone.0005384. PMID:19412537
  • Bhogaraju S, Taschner M, Morawetz M, Basquin C, Lorentzen E. Crystal structure of the intraflagellar transport complex 25/27. EMBO J. 2011;30:1907-18. doi:10.1038/emboj.2011.110. PMID:21505417
  • Richey EA, Qin H. Dissecting the sequential assembly and localization of intraflagellar transport particle complex B in Chlamydomonas. PloS One. 2012;7:e43118. doi:10.1371/journal.pone.0043118. PMID:22900094
  • Eguether T, San Agustin JT, Keady BT, Jonassen JA, Liang Y, Francis R, Tobita K, Johnson CA, Abdelhamed ZA, Lo CW, et al. IFT27 links the BBSome to IFT for maintenance of the ciliary signaling compartment. Dev Cell. 2014;31:279-90. doi:10.1016/j.devcel.2014.09.011. PMID:25446516
  • Huet D, Blisnick T, Perrot S, Bastin P. The GTPase IFT27 is involved in both anterograde and retrograde intraflagellar transport. Elife. 2014;3:e02419. doi:10.7554/eLife.02419. PMID:24843028
  • Liew GM, Ye F, Nager AR, Murphy JP, Lee JS, Aguiar M, Breslow DK, Gygi SP, Nachury MV. The intraflagellar transport protein IFT27 promotes BBSome exit from cilia through the GTPase ARL6/BBS3. Dev Cell. 2014;31:265-78. doi:10.1016/j.devcel.2014.09.004. PMID:25443296
  • Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature. 2005;437:1173-8. doi:10.1038/nature04209. PMID:16189514
  • Follit J, Xu F, Keady B, Pazour G. Characterization of mouse IFT complex B. Cell Motil Cytoskeleton. 2009;66:457-68. doi:10.1002/cm.20346. PMID:19253336
  • Lechtreck KF, Luro S, Awata J, Witman GB. HA-tagging of putative flagellar proteins in Chlamydomonas reinhardtii identifies a novel protein of intraflagellar transport complex B. Cell Motil Cytoskeleton. 2009;66:469-82. doi:10.1002/cm.20369. PMID:19382199
  • Keady BT, Samtani R, Tobita K, Tsuchya M, San Agustin JT, Follit JA, Jonassen JA, Subramanian R, Lo CW, Pazour GJ. IFT25 links the signal-dependent movement of Hedgehog components to intraflagellar transport. Dev Cell. 2012;22:940-51. doi:10.1016/j.devcel.2012.04.009. PMID:22595669
  • Lucker BF, Miller MS, Dziedzic SA, Blackmarr PT, Cole DG. Direct interactions of intraflagellar transport complex B proteins IFT88, IFT52, and IFT46. J Biol Chem. 2010;285:21508-18. doi:10.1074/jbc.M110.106997. PMID:20435895
  • Taschner M, Kotsis F, Braeuer P, Kuehn EW, Lorentzen E. Crystal structures of IFT70/52 and IFT52/46 provide insight into intraflagellar transport B core complex assembly. J Cell Biol. 2014;207:269-82. doi:10.1083/jcb.201408002. PMID:25349261
  • Mourao A, Christensen ST, Lorentzen E. The intraflagellar transport machinery in ciliary signaling. Curr Opin Struct Biol. 2016;41:98-108. doi:10.1016/j.sbi.2016.06.009. PMID:27393972
  • Yang N, Li L, Eguether T, Sundberg JP, Pazour GJ, Chen J. Intraflagellar transport 27 is essential for hedgehog signaling but dispensable for ciliogenesis during hair follicle morphogenesis. Development. 2015;142:2194-202. doi:10.1242/dev.115261. PMID:26023097
  • Liu H, Li W, Zhang Y, Zhang Z, Shang X, Zhang L, Zhang S, Li Y, Somoza AV, Delpi B, et al. IFT25, an intraflagellar transporter protein dispensable for ciliogenesis in somatic cells, is essential for sperm flagella formation. Biol Reprod. 2017;96:993–1006. doi:10.1093/biolre/iox029. PMID:28430876
  • Murcia NS, Richards WG, Yoder BK, Mucenski ML, Dunlap JR, Woychik RP. The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left-right axis determination. Development. 2000;127:2347-55. PMID:10804177
  • Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, Cole DG. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol. 2000;151:709-18. doi:10.1083/jcb.151.3.709. PMID:11062270
  • Mick DU, Rodrigues RB, Leib RD, Adams CM, Chien AS, Gygi SP, Nachury MV. Proteomics of primary cilia by proximity labeling. Dev Cell. 2015;35:497-512. doi:10.1016/j.devcel.2015.10.015. PMID:26585297
  • Lechtreck K-F, Johnson E, Sakai T, Cochran D, Ballif B, Rush J, Pazour GJ, Ikebe M, Witman GB. The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J Cell Biol. 2009;187:1117-49. doi:10.1083/jcb.200909183. PMID:20038682
  • Aldahmesh MA, Li Y, Alhashem A, Anazi S, Alkuraya H, Hashem M, Awaji AA, Sogaty S, Alkharashi A, Alzahrani S, et al. IFT27, encoding a small GTPase component of IFT particles, is mutated in a consanguineous family with Bardet-Biedl syndrome. Hum Mol Genet. 2014;23:3307-15. doi:10.1093/hmg/ddu044. PMID:24488770
  • Miertzschke M, Koerner C, Spoerner M, Wittinghofer A. Structural insights into the small G-protein Arl13B and implications for Joubert syndrome. Biochem J. 2014;457:301-11. doi:10.1042/BJ20131097. PMID:24168557
  • Schafer JC, Winkelbauer ME, Williams CL, Haycraft CJ, Desmond RA, Yoder BK. IFTA-2 is a conserved cilia protein involved in pathways regulating longevity and dauer formation in Caenorhabditis elegans. J Cell Sci. 2006;119:4088-100. doi:10.1242/jcs.03187. PMID:16968739
  • Silva DA, Huang X, Behal RH, Cole DG, Qin H. The RABL5 homolog IFT22 regulates the cellular pool size and the amount of IFT particles partitioned to the flagellar compartment in Chlamydomonas reinhardtii. Cytoskeleton. 2012;69:33-48. doi:10.1002/cm.20546. PMID:22076686
  • Taschner M, Bhogaraju S, Vetter M, Morawetz M, Lorentzen E. Biochemical mapping of interactions within the intraflagellar transport (IFT) B core complex: IFT52 binds directly to four other IFT-B subunits. J Biol Chem. 2011;286:26344-52. doi:10.1074/jbc.M111.254920. PMID:21642430
  • Li JB, Gerdes JM, Haycraft CJ, Fan Y, Teslovich TM, May-Simera H, Li H, Blacque OE, Li L, Leitch CC, et al. Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell. 2004;117:541-52. doi:10.1016/S0092-8674(04)00450-7. PMID:15137946
  • Colicelli J. Human RAS superfamily proteins and related GTPases. Sci STKE. 2004;2004:RE13. PMID:15367757
  • Lee SH, Baek K, Dominguez R. Large nucleotide-dependent conformational change in Rab28. FEBS Lett. 2008;582:4107-11. doi:10.1016/j.febslet.2008.11.008. PMID:19026641
  • Borrell A, Cutanda MC, Lumbreras V, Pujal J, Goday A, Culianez-Macia FA, Pagès M. Arabidopsis thaliana atrab28: A nuclear targeted protein related to germination and toxic cation tolerance. Plant Mol Biol. 2002;50:249-59. doi:10.1023/A:1016084615014. PMID:12175017
  • Lumb JH, Leung KF, Dubois KN, Field MC. Rab28 function in trypanosomes: Interactions with retromer and ESCRT pathways. J Cell Sci. 2011;124:3771-83. doi:10.1242/jcs.079178. PMID:22100919
  • Jiang J, Qi YX, Zhang P, Gu WT, Yan ZQ, Shen BR, Yao QP, Kong H, Chien S, Jiang ZL. Involvement of Rab28 in NF-kappaB nuclear transport in endothelial cells. PloS One. 2013;8:e56076. doi:10.1371/journal.pone.0056076. PMID:23457503
  • Zhou Z, Menzel F, Benninghoff T, Chadt A, Du C, Holman GD, Al-Hasani H. Rab28 is a TBC1D1/TBC1D4 substrate involved in GLUT4 trafficking. FEBS Lett. 2017;591:88-96. doi:10.1002/1873-3468.12509. PMID:27929607
  • Estrada-Cuzcano A, Roepman R, Cremers FP, den Hollander AI, Mans DA. Non-syndromic retinal ciliopathies: Translating gene discovery into therapy. Hum Mol Genet. 2012;21:R111-24. doi:10.1093/hmg/dds298. PMID:22843501
  • Roosing S, Rohrschneider K, Beryozkin A, Sharon D, Weisschuh N, Staller J, Kohl S, Zelinger L, Peters TA, Neveling K, et al. Mutations in RAB28, encoding a farnesylated small GTPase, are associated with autosomal-recessive cone-rod dystrophy. Am J Hum Genet. 2013;93:110-7. doi:10.1016/j.ajhg.2013.05.005. PMID:23746546
  • Riveiro-Alvarez R, Xie YA, Lopez-Martinez MA, Gambin T, Perez-Carro R, Avila-Fernandez A, López-Molina MI, Zernant J, Jhangiani S, Muzny D, et al. New mutations in the RAB28 gene in 2 Spanish families with cone-rod dystrophy. JAMA Ophthalmol. 2015;133:133-9. doi:10.1001/jamaophthalmol.2014.4266. PMID:25356532
  • Hanke-Gogokhia C, Wu Z, Gerstner CD, Frederick JM, Zhang H, Baehr W. Arf-like protein 3 (ARL3) regulates protein trafficking and ciliogenesis in mouse photoreceptors. J Biol Chem. 2016;291:7142-55. doi:10.1074/jbc.M115.710954. PMID:26814127
  • Jensen VL, Carter S, Sanders AA, Li C, Kennedy J, Timbers TA, Cai J, Scheidel N, Kennedy BN, Morin RD, et al. Whole-organism developmental expression profiling identifies RAB-28 as a novel ciliary GTPase associated with the BBSome and intraflagellar transport. PLoS Genet. 2016;12:e1006469. doi:10.1371/journal.pgen.1006469. PMID:27930654
  • Perens EA, Shaham S. C. elegans daf-6 encodes a patched-related protein required for lumen formation. Dev Cell. 2005;8:893-906. doi:10.1016/j.devcel.2005.03.009. PMID:15935778
  • Heiman MG, Shaham S. DEX-1 and DYF-7 establish sensory dendrite length by anchoring dendritic tips during cell migration. Cell. 2009;137:344-55. doi:10.1016/j.cell.2009.01.057. PMID:19344940
  • Oikonomou G, Perens EA, Lu Y, Watanabe S, Jorgensen EM, Shaham S. Opposing activities of LIT-1/NLK and DAF-6/patched-related direct sensory compartment morphogenesis in C. elegans. PLoS Biol. 2011;9:e1001121. doi:10.1371/journal.pbio.1001121. PMID:21857800
  • Wang J, Silva M, Haas LA, Morsci NS, Nguyen KC, Hall DH, Barr MM. C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication. Curr Biol. 2014;24:519-25. doi:10.1016/j.cub.2014.01.002. PMID:24530063
  • Wang J, Kaletsky R, Silva M, Williams A, Haas LA, Androwski RJ, Landis JN, Patrick C, Rashid A, Santiago-Martinez D, et al. Cell-specific transcriptional profiling of ciliated sensory neurons reveals regulators of behavior and extracellular vesicle biogenesis. Curr Biol. 2015;25:3232-8. doi:10.1016/j.cub.2015.10.057. PMID:26687621
  • Wang J, Barr MM. Ciliary extracellular vesicles: Txt msg organelles. Cell Mol Neurobiol. 2016;36:449-57. doi:10.1007/s10571-016-0345-4. PMID:26983828
  • Lo JC, Jamsai D, O'Connor AE, Borg C, Clark BJ, Whisstock JC, Field MC, Adams V, Ishikawa T, Aitken RJ, et al. RAB-like 2 has an essential role in male fertility, sperm intra-flagellar transport, and tail assembly. PLoS Genet. 2012;8:e1002969. doi:10.1371/journal.pgen.1002969. PMID:23055941
  • Elias M, Klimes V, Derelle R, Petrzelkova R, Tachezy J. A paneukaryotic genomic analysis of the small GTPase RABL2 underscores the significance of recurrent gene loss in eukaryote evolution. Biol Direct. 2016;11:5. doi:10.1186/s13062-016-0107-8. PMID:26832778
  • San Agustin JT, Pazour GJ, Witman GB. Intraflagellar transport is essential for mammalian spermiogenesis but is absent in mature sperm. Mol Biol Cell. 2015;26:4358-72. doi:10.1091/mbc.E15-08-0578. PMID:26424803
  • Yi Lo JC, O'Connor AE, Andrews ZB, Lo C, Tiganis T, Watt MJ, O'Bryan MK. RABL2 is required for hepatic fatty acid homeostasis and its dysfunction leads to steatosis and a diabetes-like state. Endocrinology. 2016;157:4732-43. doi:10.1210/en.2016-1487. PMID:27732084
  • Kanie T, Abbott KL, Mooney NA, Plowey ED, Demeter J, Jackson PK. The CEP19-RABL2 GTPase complex binds IFT-B to initiate intraflagellar transport at the ciliary base. Dev Cell. 2017;42(1):22-36.e12. doi:10.1016/j.devcel.2017.05.016. PMID:28625565
  • Nishijima Y, Hagiya Y, Kubo T, Takei R, Katoh Y, Nakayama K. RABL2 interacts with the intraflagellar transport-B complex and CEP19 and participates in ciliary assembly. Mol Biol Cell. 2017;28:1652-66. doi:10.1091/mbc.E17-01-0017. PMID:28428259
  • Follit JA, San Agustin JT, Jonassen JA, Huang T, Rivera-Perez JA, Tremblay KD, Pazour GJ. Arf4 is required for Mammalian development but dispensable for ciliary assembly. PLoS Genet. 2014;10:e1004170. doi:10.1371/journal.pgen.1004170. PMID:24586199
  • Su X, Wu M, Yao G, El-Jouni W, Luo C, Tabari A, Zhou J. Regulation of polycystin-1 ciliary trafficking by motifs at its C-terminus and polycystin-2 but not by cleavage at the GPS site. J Cell Sci. 2015;128:4063-73. doi:10.1242/jcs.160556. PMID:26430213
  • Pearring JN, San Agustin JT, Lobanova ES, Gabriel CJ, Lieu EC, Monis WJ, Stuck MWStrittmatter LJaber SMArshavsky VY, et al. Loss of Arf4 causes severe degeneration of the exocrine pancreas but not cystic kidney disease or retinal degeneration. PLoS Genet. 2017;13:e1006740. doi:10.1371/journal.pgen.1006740. PMID:28410364
  • Omori Y, Zhao C, Saras A, Mukhopadhyay S, Kim W, Furukawa T, Sengupta P, Veraksa A, Malicki J. Elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8. Nat Cell Biol. 2008;10:437-44. doi:10.1038/ncb1706. PMID:18364699