541
Views
9
CrossRef citations to date
0
Altmetric
Brief Report

Overexpression of YPT6 restores invasive filamentous growth and secretory vesicle clustering in a Candida albicans arl1 mutant

, , , &
Pages 204-210 | Received 03 Aug 2017, Accepted 07 Sep 2017, Published online: 29 Nov 2017

References

  • Jacobsen ID, Wilson D, Wächtler B, Brunke S, Naglik JR, Hube B. Candida albicans dimorphism as a therapeutic target. Expert Rev Anti Infect Ther. 2012;10(1):85–93. doi:10.1586/eri.11.152. PMID:22149617
  • Sudbery PE. Growth of Candida albicans hyphae. Nat Rev Microbiol. 2011;9(10):737–48. doi:10.1038/nrmicro2636. PMID:21844880
  • Shapiro RS, Robbins N, Cowen LE. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev. 2011;75(2):213–67. doi:10.1128/MMBR.00045-10. PMID:21646428
  • Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev. 2003;67(3):400–28, table of contents. doi:10.1128/MMBR.67.3.400-428.2003. PMID:12966142
  • Schaller M, Borelli C, Korting HC, Hube B. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses. 2005;48(6):365–77. doi:10.1111/j.1439-0507.2005.01165.x. PMID:16262871
  • Hruskova-Heidingsfeldova O. Secreted proteins of Candida albicans. Front Biosci. 2008;13:7227–42. doi:10.2741/3224. PMID:18508730
  • Jones LA, Sudbery PE. Spitzenkorper, exocyst, and polarisome components in Candida albicans hyphae show different patterns of localization and have distinct dynamic properties. Eukaryot Cell. 2010;9(10):1455–65. doi:10.1128/EC.00109-10. PMID:20693302
  • Ghugtyal V, Garcia-Rodas R, Seminara A, Schaub S, Bassilana M, Arkowitz RA. Phosphatidylinositol-4-phosphate-dependent membrane traffic is critical for fungal filamentous growth. Proc Natl Acad Sci U S A. 2015;112(28):8644–9. doi:10.1073/pnas.1504259112. PMID:26124136
  • Rida PC, Nishikawa A, Won GY, Dean N. Yeast-to-hyphal transition triggers formin-dependent Golgi localization to the growing tip in Candida albicans. Mol Biol Cell. 2006;17(10):4364–78. doi:10.1091/mbc.E06-02-0143. PMID:16855023
  • Caballero-Lima D, Kaneva IN, Watton SP, Sudbery PE, Craven CJ. The spatial distribution of the exocyst and actin cortical patches is sufficient to organize hyphal tip growth. Eukaryot Cell. 2013;12(7):998–1008. doi:10.1128/EC.00085-13. PMID:23666623
  • Barr F, Lambright DG. Rab GEFs and GAPs. Curr Opin Cell Biol. 2010;22(4):461–70. doi:10.1016/j.ceb.2010.04.007. PMID:20466531
  • Delic M, Valli M, Graf AB, Pfeffer M, Mattanovich D, Gasser B. The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev. 2013;37(6):872–914. doi:10.1111/1574-6976.12020. PMID:23480475
  • Donaldson JG, Jackson CL. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol. 2011;12(6):362–75. doi:10.1038/nrm3117. PMID:21587297
  • Gillingham AK, Munro S. The small G proteins of the Arf family and their regulators. Annu Rev Cell Dev Biol. 2007;23:579–611. doi:10.1146/annurev.cellbio.23.090506.123209. PMID:17506703
  • Mizuno-Yamasaki E, Rivera-Molina F, Novick P. GTPase networks in membrane traffic. Annu Rev Biochem. 2012;81:637–59. doi:10.1146/annurev-biochem-052810-093700. PMID:22463690
  • Segev N. Coordination of intracellular transport steps by GTPases. Semin Cell Dev Biol. 2011;22(1):33–8. doi:10.1016/j.semcdb.2010.11.005. PMID:21130177
  • Hedges SB. The origin and evolution of model organisms. Nat Rev Genet. 2002;3(11):838–49. doi:10.1038/nrg929. PMID:12415314
  • Labbaoui H, Bogliolo S, Ghugtyal V, Solis NV, Filler SG, Arkowitz RA, Bassilana M. Role of Arf GTPases in fungal morphogenesis and virulence. PLoS Pathog. 2017;13(2):e1006205. doi:10.1371/journal.ppat.1006205. PMID:28192532
  • Yu CJ, Lee FJ. Multiple activities of Arl1 GTPase in the trans-Golgi network. J Cell Sci. 2017;130(10):1691–1699. doi:10.1242/jcs.201319. PMID:28468990
  • Benjamin JJ, Poon PP, Drysdale JD, Wang X, Singer RA. Johnston GC. Dysregulated Arl1, a regulator of post-Golgi vesicle tethering, can inhibit endosomal transport and cell proliferation in yeast. Mol Biol Cell. 2011;22(13):2337–47. doi:10.1091/mbc.E10-09-0765. PMID:21562219
  • Maresova L, Vydareny T, Sychrova H. Comparison of the influence of small GTPases Arl1 and Ypt6 on yeast cells' tolerance to various stress factors. FEMS Yeast Res. 2012;12(3):332–40. doi:10.1111/j.1567-1364.2011.00780.x. PMID:22188384
  • McDonold CM, Fromme JC. Four GTPases differentially regulate the Sec7 Arf-GEF to direct traffic at the trans-golgi network. Dev Cell. 2014;30(6):759–67. doi:10.1016/j.devcel.2014.07.016. PMID:25220393
  • Wang IH, Chen YJ, Hsu JW, Lee FS. The Arl3 and Arl1 GTPases co-operate with Cog8 to regulate selective autophagy via Atg9 trafficking. Traffic. 2017. doi:10.1111/tra.12498.
  • Yang S, Rosenwald A. Small GTPase proteins in macroautophagy. Small GTPases. 2016:1–6. doi:10.1080/21541248.2016.1246280. PMID:27763811
  • Yang S, Rosenwald AG. Autophagy in Saccharomyces cerevisiae requires the monomeric GTP-binding proteins, Arl1 and Ypt6. Autophagy. 2016;12(10):1721–1737. doi:10.1080/15548627.2016.1196316. PMID:27462928
  • Langemeyer L, Nunes Bastos R, Cai Y, Itzen A, Reinisch KM, Barr FA. Diversity and plasticity in Rab GTPase nucleotide release mechanism has consequences for Rab activation and inactivation. Elife. 2014;3:e01623. doi:10.7554/eLife.01623. PMID:24520163
  • Kawamura S, Nagano M, Toshima JY, Toshima J. Analysis of subcellular localization and function of the yeast Rab6 homologue, Ypt6p, using a novel amino-terminal tagging strategy. Biochem Biophys Res Commun. 2014;450(1):519–25. doi:10.1016/j.bbrc.2014.06.002. PMID:24924636
  • Pantazopoulou A, Penalva MA, Characterization of Aspergillus nidulans RabC/Rab6. Traffic. 2011;12(4):386–406. doi:10.1111/j.1600-0854.2011.01164.x. PMID:21226815
  • Pantazopoulou A, Pinar M, Xiang X, Peñalva MA. Maturation of late Golgi cisternae into RabE(RAB11) exocytic post-Golgi carriers visualized in vivo. Mol Biol Cell. 2014;25(16):2428–43. doi:10.1091/mbc.E14-02-0710. PMID:24943841
  • Grigoriev I, Splinter D, Keijzer N, Wulf PS, Demmers J, Ohtsuka T, Modesti M, Maly IV, Grosveld F, Hoogenraad CC. et al., Rab6 regulates transport and targeting of exocytotic carriers. Dev Cell. 2007;13(2):305–14. doi:10.1016/j.devcel.2007.06.010. PMID:17681140
  • Micaroni M, Stanley AC, Khromykh T, Venturato J, Wong CX, Lim JP, Marsh BJ, Storrie B, Gleeson PA, Stow JL. Rab6a/a' are important Golgi regulators of pro-inflammatory TNF secretion in macrophages. PLoS One. 2013;8(2):e57034. doi:10.1371/journal.pone.0057034. PMID:23437303
  • Schlager MA, Kapitein LC, Grigoriev I, Burzynski GM, Wulf PS, Keijzer N, de Graaff E, Fukuda M, Shepherd IT, Akhmanova A. Pericentrosomal targeting of Rab6 secretory vesicles by Bicaudal-D-related protein 1 (BICDR-1) regulates neuritogenesis. EMBO J. 2010;29(10):1637–51. doi:10.1038/emboj.2010.51. PMID:20360680
  • Panic B, Whyte JR, Munro S. The ARF-like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus. Curr Biol. 2003;13(5):405–10. doi:10.1016/S0960-9822(03)00091-5. PMID:12620189
  • Siniossoglou S, Pelham HR. Vps51p links the VFT complex to the SNARE Tlg1p. J Biol Chem. 2002;277(50):48318–24. doi:10.1074/jbc.M209428200. PMID:12377769
  • Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J. Berriz GF, Brost RL, Chang M. Global mapping of the yeast genetic interaction network. Science. 2004;303(5659):808–13. doi:10.1126/science.1091317. PMID:14764870
  • Frohlich F, Petit C, Kory N, Christiano R, Hannibal-Bach HK, Graham M, Liu X, Ejsing CS, Farese RV, Walther TC. The GARP complex is required for cellular sphingolipid homeostasis. Elife. 2015;4. doi:10.7554/eLife.08712
  • Pereira-Leal JB. The Ypt/Rab family and the evolution of trafficking in fungi. Traffic. 2008;9(1):27–38. doi:10.1111/j.1600-0854.2007.00667.x. PMID:17973655
  • Bassilana M, Blyth J, Arkowitz RA. Cdc24, the GDP-GTP exchange factor for Cdc42, is required for invasive hyphal growth of Candida albicans. Eukaryot Cell. 2003;2(1):9–18. doi:10.1128/EC.2.1.9-18.2003. PMID:12582118
  • Calera JA, Zhao XJ, Calderone R. Defective hyphal development and avirulence caused by a deletion of the SSK1 response regulator gene in Candida albicans. Infect Immun. 2000;68(2):518–25. doi:10.1128/IAI.68.2.518-525.2000. PMID:10639412
  • Wilson RB, Davis D, Mitchell AP. Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol, 1999;181(6):1868–74. PMID:10074081
  • Hope H, Bogliolo S, Arkowitz RA, Bassilana M. Activation of Rac1 by the guanine nucleotide exchange factor Dck1 is required for invasive filamentous growth in the pathogen Candida albicans. Mol Biol Cell. 2008;19(9):3638–51. doi:10.1091/mbc.E07-12-1272. PMID:18579689
  • Li CR, Lee RT, Wang YM, Zheng XD, Wang Y. Candida albicans hyphal morphogenesis occurs in Sec3p-independent and Sec3p-dependent phases separated by septin ring formation. J Cell Sci. 2007;120(Pt 11):1898–907. doi:10.1242/jcs.002931. PMID:17504812
  • Zhang C, Konopka JB. A photostable green fluorescent protein variant for analysis of protein localization in Candida albicans. Eukaryot Cell. 2010;9(1):224–6. doi:10.1128/EC.00327-09. PMID:19915075
  • Bassilana M, Hopkins J, Arkowitz RA. Regulation of the Cdc42/Cdc24 GTPase module during Candida albicans hyphal growth. Eukaryot Cell. 2005;4(3):588–603. doi:10.1128/EC.4.3.588-603.2005. PMID:15755921
  • Hope H, Schmauch C, Arkowitz RA, Bassilana M. The Candida albicans ELMO homologue functions together with Rac1 and Dck1, upstream of the MAP Kinase Cek1, in invasive filamentous growth. Mol Microbiol. 2010;76(6):1572–90. doi:10.1111/j.1365-2958.2010.07186.x. PMID:20444104
  • Reuss O, Vik A, Kolter R, Morschhäuser J. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene. 2004;341:119–27. doi:10.1016/j.gene.2004.06.021. PMID:15474295
  • Vernay A, Schaub S, Guillas I, Bassilana M, Arkowitz RA. A steep phosphoinositide bis-phosphate gradient forms during fungal filamentous growth. J Cell Biol. 2012;198(4):711–30. doi:10.1083/jcb.201203099. PMID:22891265

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.