739
Views
0
CrossRef citations to date
0
Altmetric
Review

Aberrant Rac pathway signalling in glioblastoma

Pages 81-95 | Received 11 Mar 2019, Accepted 25 Apr 2019, Published online: 06 May 2019

References

  • Tamimi AF, Juweid M. Epidemiology and outcome of glioblastoma. In: De Vleeschouwer S, editor. Glioblastoma. Brisbane (AU): Codon Publications Copyright: The Authors; 2017. Available from: https://www-ncbi-nlm-nih-gov.proxy.bib.uottawa.ca/books/NBK470003/ doi: 10.15586/codon.glioblastoma.2017.ch8
  • Appin CL, Brat DJ. Molecular pathways in gliomagenesis and their relevance to neuropathologic diagnosis. Adv Anat Pathol. 2015 Jan;22(1):50–58. . PubMed PMID: 25461780; eng.
  • Hanif F, Muzaffar K, Perveen K, et al. Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev. 2017 Jan 1;18(1):3–9. PubMed PMID: 28239999; PubMed Central PMCID: PMCPMC5563115. eng.
  • Wick W, Osswald M, Wick A, et al. Treatment of glioblastoma in adults. Ther Adv Neurol Disord. 2018;11:1756286418790452. PubMed PMID: 30083233; PubMed Central PMCID: PMCPMC6071154. eng.
  • Ranjan S, Warren KE. Gliomatosis cerebri: current understanding and controversies. Front Oncol. 2017;7:165. PubMed PMID: 28824876; PubMed Central PMCID: PMCPMC5545748. eng.
  • Osswald M, Jung E, Sahm F, et al. Brain tumour cells interconnect to a functional and resistant network. Nature. 2015 Dec 03;528(7580):93–98. PubMed PMID: 26536111; eng.
  • Stupp R, Mason WP, van Den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005 mar 10;352(10):987–996. 352/10/987 [pii].
  • Chen J, Li Y, Yu TS, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012 Aug 23;488(7412):522–526. nature11287 [pii].
  • Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006 Dec 7;444(7120):756–760. nature05236 [pii].
  • Weil S, Osswald M, Solecki G, et al. Tumor microtubes convey resistance to surgical lesions and chemotherapy in gliomas. Neuro Oncol. 2017 Apr 17 PubMed PMID: 28419303; eng. DOI:10.1093/neuonc/nox070.
  • Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014 June 20;344(6190):1396–1401. science.1254257 [pii].
  • Maxwell R, Jackson CM, Lim M. Clinical trials investigating immune checkpoint blockade in glioblastoma. Curr Treat Options Oncol. 2017 Aug;18(8):51. . PubMed PMID: 28785997; eng.
  • Beroukhim R, Getz G, Nghiemphu L, et al. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):20007–20012. PubMed PMID: 18077431; PubMed Central PMCID: PMCPMC2148413. eng.
  • Brennan CW, Verhaak RG, McKenna A, et al. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct 10;155(2):462–477. S0092-8674(13)01208-7 [pii].
  • Ozawa T, Riester M, Cheng YK, et al. Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma. Cancer Cell. 2014 Aug 11;26(2):288–300. S1535-6108(14)00265-7 [pii].
  • Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010 Jan 19;17(1):98–110. S1535-6108(09)00432-2 [pii].
  • Killela PJ, Reitman ZJ, Jiao Y, et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci USA. 2013 April 9;110(15):6021–6026. 1303607110 [pii].
  • Lien EC, Dibble CC, Toker A. PI3K signaling in cancer: beyond AKT. Curr Opin Cell Biol. 2017 Apr;45:62–71. PubMed PMID: 28343126; PubMed Central PMCID: PMCPMC5482768. eng.
  • Fruman DA, Chiu H, Bd H, et al. The PI3K pathway in human disease. Cell. 2017 Aug 10;170(4):605–635. PubMed PMID: 28802037; eng.
  • Garcia-Mata R, Boulter E, Burridge K. The ‘invisible hand‘: regulation of RHO GTPases by RHOGDIs. Nat Rev Mol Cell Biol. 2011 Jul 22;12(8):493–504. . PubMed PMID: 21779026; PubMed Central PMCID: PMCPMC3260518. eng.
  • Jordan P, Brazao R, Boavida MG, et al. Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors. Oncogene. 1999 Nov 18;18(48):6835–6839. PubMed PMID: 10597294; eng.
  • Matos P, Skaug J, Marques B, et al. Small GTPase Rac1: structure, localization, and expression of the human gene. Biochem Biophys Res Commun. 2000 Nov 2;277(3):741–751. PubMed PMID: 11062023; eng.
  • Schnelzer A, Prechtel D, Knaus U, et al. Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene. 2000 Jun 15;19(26):3013–3020. PubMed PMID: 10871853; eng.
  • Fiegen D, Haeusler LC, Blumenstein L, et al. Alternative splicing of Rac1 generates Rac1b, a self-activating GTPase. J Biol Chem. 2004 Feb 6;279(6):4743–4749. PubMed PMID: 14625275; eng.
  • Matos P, Collard JG, Jordan P. Tumor-related alternatively spliced Rac1b is not regulated by Rho-GDP dissociation inhibitors and exhibits selective downstream signaling. J Biol Chem. 2003 Dec 12;278(50):50442–50448. . PubMed PMID: 14506233; eng.
  • Singh A, Karnoub AE, Palmby TR, et al. Rac1b, a tumor associated, constitutively active Rac1 splice variant, promotes cellular transformation. Oncogene. 2004 Dec 16;23(58):9369–9380. PubMed PMID: 15516977; eng.
  • Goncalves V, Henriques AF, Pereira JF, et al. Phosphorylation of SRSF1 by SRPK1 regulates alternative splicing of tumor-related Rac1b in colorectal cells. Rna. 2014 Apr;20(4):474–482. PubMed PMID: 24550521; PubMed Central PMCID: PMCPMC3964909. eng.
  • Wang F, Fu X, Chen P, et al. SPSB1-mediated HnRNP A1 ubiquitylation regulates alternative splicing and cell migration in EGF signaling. Cell Res. 2017 Apr;27(4):540–558. PubMed PMID: 28084329; PubMed Central PMCID: PMCPMC5385621. eng.
  • Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401–404. 2/5/401 [pii].
  • Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013 April 2;6(269):l1. scisignal.2004088 [pii].
  • Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics. 2011 Aug 4;12:323.
  • Alan JK, Lundquist EA. Mutationally activated Rho GTPases in cancer. Small GTPases. 2013 Jul -Sep;4(3):159–163. . PubMed PMID: 24088985; PubMed Central PMCID: PMCPMC3976972. eng.
  • Hodis E, Watson IR, Kryukov GV, et al. A landscape of driver mutations in melanoma. Cell. 2012 Jul 20;150(2):251–263. PubMed PMID: 22817889; PubMed Central PMCID: PMCPMC3600117. eng.
  • Ryan M, Wong WC, Brown R, et al. TCGASpliceSeq a compendium of alternative mRNA splicing in cancer. Nucleic Acids Res. 2016 Jan 4;44(D1):D1018–D1022. PubMed PMID: 26602693; PubMed Central PMCID: PMCPMC4702910. eng.
  • Marei H, Malliri A. GEFs: dual regulation of Rac1 signaling. Small GTPases. 2017 Apr 03;8(2):90–99. . PubMed PMID: 27314616; PubMed Central PMCID: PMCPMC5464116. eng.
  • Marei H, Carpy A, Woroniuk A, et al. Differential Rac1 signalling by guanine nucleotide exchange factors implicates FLII in regulating Rac1-driven cell migration. Nat Commun. 2016 Feb 18;7:10664. PubMed PMID: 26887924; PubMed Central PMCID: PMCPMC4759627. eng.
  • Salhia B, Tran NL, Chan A, et al. The guanine nucleotide exchange factors trio, Ect2, and Vav3 mediate the invasive behavior of glioblastoma. Am J Pathol. 2008 Dec;173(6):1828–1838. S0002-9440(10)61566-0 [pii].
  • Gont A, Daneshmand M, Woulfe J, et al. PREX1 integrates G protein-coupled receptor and phosphoinositide 3-kinase signaling to promote glioblastoma invasion. Oncotarget. 2017 Jan 31;8(5):8559–8573. PubMed PMID: 28051998; eng.
  • Jarzynka MJ, Hu B, Hui KM, et al. ELMO1 and Dock180, a bipartite Rac1 guanine nucleotide exchange factor, promote human glioma cell invasion. Cancer Res. 2007 Aug 1;67(15):7203–7211. PubMed PMID: 17671188; PubMed Central PMCID: PMCPMC2867339. eng.
  • Feng H, Hu B, Liu KW, et al. Activation of Rac1 by Src-dependent phosphorylation of Dock180(Y1811) mediates PDGFRalpha-stimulated glioma tumorigenesis in mice and humans. J Clin Invest. 2011 Dec;121(12):4670–4684. PubMed PMID: 22080864; PubMed Central PMCID: PMCPMC3223070. eng.
  • Wong CY, Wuriyanghan H, Xie Y, et al. Epigenetic regulation of phosphatidylinositol 3,4,5-triphosphate-dependent Rac exchanger 1 gene expression in prostate cancer cells. J Biol Chem. 2011 July 22;286(29):25813–25822. M110.211292 [pii].
  • Ryan MB, Finn AJ, Pedone KH, et al. ERK/MAPK signaling drives overexpression of the Rac-GEF, PREX1, in BRAF- and NRAS-mutant melanoma. Mol Cancer Res. 2016 Oct;14(10):1009–1018. PubMed PMID: 27418645; PubMed Central PMCID: PMCPMC5065759. eng.
  • Rosmaninho P, Mukusch S, Piscopo V, et al. Zeb1 potentiates genome-wide gene transcription with Lef1 to promote glioblastoma cell invasion. Embo J. 2018 Aug 1;37(15). PubMed PMID: 29903919; PubMed Central PMCID: PMCPMC6068449. eng.
  • Singh DK, Kollipara RK, Vemireddy V, et al. Oncogenes activate an autonomous transcriptional regulatory circuit that drives glioblastoma. Cell Rep. 2017 Jan 24;18(4):961–976. PubMed PMID: 28122245; PubMed Central PMCID: PMCPMC5321610. eng.
  • Welch HC, Coadwell WJ, Ellson CD, et al. P-Rex1, a PtdIns(3,4,5)P3- and Gbetagamma-regulated guanine-nucleotide exchange factor for Rac. Cell. 2002 Mar 22;108(6):809–821. S0092867402006633 [pii].
  • Welch HC. Regulation and function of P-Rex family Rac-GEFs. Small GTPases. 2015 April 3;6(2):49–70. .
  • Lu M, Ravichandran KS. Dock180-ELMO cooperation in Rac activation. Methods Enzymol. 2006;406:388–402. PubMed PMID: 16472672; eng.
  • Feng H, Hu B, Jarzynka MJ, et al. Phosphorylation of dedicator of cytokinesis 1 (Dock180) at tyrosine residue Y722 by Src family kinases mediates EGFRvIII-driven glioblastoma tumorigenesis. Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):3018–3023. PubMed PMID: 22323579; PubMed Central PMCID: PMCPMC3286964. eng.
  • Cote JF, Motoyama AB, Bush JA, et al. A novel and evolutionarily conserved PtdIns(3,4,5)P3-binding domain is necessary for DOCK180 signalling. Nat Cell Biol. 2005 Aug;7(8):797–807. PubMed PMID: 16025104; PubMed Central PMCID: PMCPMC1352170. eng.
  • Laurin M, Cote JF. Insights into the biological functions of Dock family guanine nucleotide exchange factors. Genes Dev. 2014 Mar 15;28(6):533–547. . PubMed PMID: 24637113; PubMed Central PMCID: PMCPMC3967044. eng.
  • Gadea G, Blangy A. Dock-family exchange factors in cell migration and disease. Eur J Cell Biol. 2014 Oct;93(10–12):466–477. . PubMed PMID: 25022758; eng.
  • Schmidt S, Debant A. Function and regulation of the Rho guanine nucleotide exchange factor Trio. Small GTPases. 2014;5:e29769. PubMed PMID: 24987837; PubMed Central PMCID: PMCPMC4114922. eng.
  • Torrino S, Visvikis O, Doye A, et al. The E3 ubiquitin-ligase HACE1 catalyzes the ubiquitylation of active Rac1. Dev Cell. 2011 Nov 15;21(5):959–965. PubMed PMID: 22036506; eng.
  • Oberoi TK, Dogan T, Hocking JC, et al. IAPs regulate the plasticity of cell migration by directly targeting Rac1 for degradation. Embo J. 2012 Jan 4;31(1):14–28. PubMed PMID: 22117219; PubMed Central PMCID: PMCPMC3252583. eng.
  • Zhao J, Mialki RK, Wei J, et al. SCF E3 ligase F-box protein complex SCF(FBXL19) regulates cell migration by mediating Rac1 ubiquitination and degradation. FASEB J. 2013 Jul;27(7):2611–2619. PubMed PMID: 23512198; PubMed Central PMCID: PMCPMC3688740. eng.
  • Zhang L, Anglesio MS, O‘Sullivan M, et al. The E3 ligase HACE1 is a critical chromosome 6q21 tumor suppressor involved in multiple cancers. Nat Med. 2007 Sep;13(9):1060–1069. PubMed PMID: 17694067; eng.
  • Bouzelfen A, Alcantara M, Kora H, et al. HACE1 is a putative tumor suppressor gene in B-cell lymphomagenesis and is down-regulated by both deletion and epigenetic alterations. Leuk Res. 2016 Jun;45:90–100. PubMed PMID: 27107267; eng.
  • Kucuk C, Hu X, Iqbal J, et al. HACE1 is a tumor suppressor gene candidate in natural killer cell neoplasms. Am J Pathol. 2013 Jan;182(1):49–55. PubMed PMID: 23142381; PubMed Central PMCID: PMCPMC3532710. eng.
  • Acosta MI, Urbach S, Doye A, et al. Group-I PAKs-mediated phosphorylation of HACE1 at serine 385 regulates its oligomerization state and Rac1 ubiquitination. Sci Rep. 2018 Jan 23;8(1):1410. PubMed PMID: 29362425; PubMed Central PMCID: PMCPMC5780496. eng.
  • Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia coli. Nature. 2000 Jan 20;403(6767):339–342. . PubMed PMID: 10659857; eng.
  • Castillo-Lluva S, Tatham MH, Jones RC, et al. SUMOylation of the GTPase Rac1 is required for optimal cell migration. Nat Cell Biol. 2010 Nov;12(11):1078–1085. PubMed PMID: 20935639; PubMed Central PMCID: PMCPMC2992316. eng.
  • Graziano BR, Gong D, Anderson KE, et al. A module for Rac temporal signal integration revealed with optogenetics. J Cell Biol. 2017 Aug 7;216(8):2515–2531. PubMed PMID: 28687663; PubMed Central PMCID: PMCPMC5551696. eng.
  • Krause M, Gautreau A. Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat Rev Mol Cell Biol. 2014 Sep;15(9):577–590. PubMed PMID: 25145849; eng.
  • Hoshino D, Branch KM, Weaver AM. Signaling inputs to invadopodia and podosomes. J Cell Sci. 2013 Jul 15;126(Pt 14):2979–2989. . PubMed PMID: 23843616; PubMed Central PMCID: PMCPMC3711196. eng.
  • Hall A. Rho GTPases and the actin cytoskeleton. Science. 1998 Jan 23;279(5350):509–514. PubMed PMID: 9438836; eng.
  • Kobayashi K, Kuroda S, Fukata M, et al. p140Sra-1 (specifically Rac1-associated protein) is a novel specific target for Rac1 small GTPase. J Biol Chem. 1998 Jan 2;273(1):291–295. PubMed PMID: 9417078; eng.
  • Chen Z, Borek D, Padrick SB, et al. Structure and control of the actin regulatory WAVE complex. Nature. 2010 Nov 25;468(7323):533–538. PubMed PMID: 21107423; PubMed Central PMCID: PMCPMC3085272. eng.
  • Chen B, Chou HT, Brautigam CA, et al. Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites. eLife. 2017 Sep 26;6. PubMed PMID: 28949297; PubMed Central PMCID: PMCPMC5614565. eng.
  • Law AL, Vehlow A, Kotini M, et al. Lamellipodin and the Scar/WAVE complex cooperate to promote cell migration in vivo. J Cell Biol. 2013 Nov 25;203(4):673–689. PubMed PMID: 24247431; PubMed Central PMCID: PMCPMC3840943. eng.
  • Dang I, Gorelik R, Sousa-Blin C, et al. Inhibitory signalling to the Arp2/3 complex steers cell migration. Nature. 2013 Nov 14;503(7475):281–284. PubMed PMID: 24132237; eng.
  • Wheeler AP, Wells CM, Smith SD, et al. Rac1 and Rac2 regulate macrophage morphology but are not essential for migration. J Cell Sci. 2006 Jul 1;119(Pt 13):2749–2757. PubMed PMID: 16772332; eng.
  • Zhuge Y, Xu J. Rac1 mediates type I collagen-dependent MMP-2 activation. role in cell invasion across collagen barrier. J Biol Chem. 2001 May 11;276(19):16248–16256. PubMed PMID: 11340084; eng.
  • Olson MF, Ashworth A, Hall A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science. 1995 Sep 1;269(5228):1270–1272. PubMed PMID: 7652575; eng.
  • Perona R, Montaner S, Saniger L, et al. Activation of the nuclear factor-kappaB by Rho, CDC42, and Rac-1 proteins. Genes Dev. 1997 Feb 15;11(4):463–475. PubMed PMID: 9042860; eng.
  • Joyce D, Bouzahzah B, Fu M, et al. Integration of Rac-dependent regulation of cyclin D1 transcription through a nuclear factor-kappaB-dependent pathway. J Biol Chem. 1999 Sep 3;274(36):25245–25249. PubMed PMID: 10464245; eng.
  • Matos P, Jordan P. Expression of Rac1b stimulates NF-kappaB-mediated cell survival and G1/S progression. Exp Cell Res. 2005 May 1;305(2):292–299. . PubMed PMID: 15817154; eng.
  • Tobar N, Caceres M, Santibanez JF, et al. RAC1 activity and intracellular ROS modulate the migratory potential of MCF-7 cells through a NADPH oxidase and NFkappaB-dependent mechanism. Cancer Lett. 2008 Aug 18;267(1):125–132. PubMed PMID: 18433991; eng.
  • Nishida K, Kaziro Y, Satoh T. Anti-apoptotic function of Rac in hematopoietic cells. Oncogene. 1999 Jan 14;18(2):407–415. . PubMed PMID: 9927197; eng.
  • Pervaiz S, Cao J, Os C, et al. Activation of the RacGTPase inhibits apoptosis in human tumor cells. Oncogene. 2001 Sep 27;20(43):6263–6268. PubMed PMID: 11593437; eng.
  • Senger DL, Tudan C, Guiot MC, et al. Suppression of Rac activity induces apoptosis of human glioma cells but not normal human astrocytes. Cancer Res. 2002 Apr 1;62(7):2131–2140. PubMed PMID: 11929835; eng.
  • Benitah SA, Frye M, Glogauer M, et al. Stem cell depletion through epidermal deletion of Rac1. Science. 2005 Aug 5;309(5736):933–935. PubMed PMID: 16081735; eng.
  • Frances D, Sharma N, Pofahl R, et al. A role for Rac1 activity in malignant progression of sebaceous skin tumors. Oncogene. 2015 Oct;34(43):5505–5512. PubMed PMID: 25659584; eng.
  • Yoon CH, Hyun KH, Kim RK, et al. The small GTPase Rac1 is involved in the maintenance of stemness and malignancies in glioma stem-like cells. FEBS Lett. 2011 Jul 21;585(14):2331–2338. PubMed PMID: 21704033; eng.
  • Almiron Bonnin DA, Havrda MC, Lee MC, et al. Secretion-mediated STAT3 activation promotes self-renewal of glioma stem-like cells during hypoxia. Oncogene. 2018 Feb 22;37(8):1107–1118. PubMed PMID: 29155422; PubMed Central PMCID: PMCPMC5851110. eng.
  • Kumar R, Sanawar R, Li X, et al. Structure, biochemistry, and biology of PAK kinases. Gene. 2017 Mar 20;605:20–31. PubMed PMID: 28007610; PubMed Central PMCID: PMCPMC5250584. eng.
  • Advani SJ, Camargo MF, Seguin L, et al. Kinase-independent role for CRAF-driving tumour radioresistance via CHK2. Nat Commun. 2015 Sep 03;6:8154. PubMed PMID: 26333361; PubMed Central PMCID: PMCPMC4559870. eng.
  • Li DQ, Nair SS, Ohshiro K, et al. MORC2 signaling integrates phosphorylation-dependent, ATPase-coupled chromatin remodeling during the DNA damage response. Cell Rep. 2012 Dec 27;2(6):1657–1669. PubMed PMID: 23260667; PubMed Central PMCID: PMCPMC3554793. eng.
  • Kohn AD, Summers SA, Birnbaum MJ, et al. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem. 1996 Dec 6;271(49):31372–31378. PubMed PMID: 8940145; eng.
  • Hu H, Juvekar A, Lyssiotis CA, et al. Phosphoinositide 3-kinase regulates glycolysis through mobilization of aldolase from the actin cytoskeleton. Cell. 2016 Jan 28;164(3):433–446. PubMed PMID: 26824656; PubMed Central PMCID: PMCPMC4898774. eng.
  • Marin-Valencia I, Yang C, Mashimo T, et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 2012 Jun 6;15(6):827–837. PubMed PMID: 22682223; PubMed Central PMCID: PMCPMC3372870. eng.
  • Maher EA, Marin-Valencia I, Bachoo RM, et al. Metabolism of [U-13 C]glucose in human brain tumors in vivo. NMR Biomed. 2012 Nov;25(11):1234–1244. PubMed PMID: 22419606; PubMed Central PMCID: PMCPMC3406255. eng.
  • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009 May 22;324(5930):1029–1033. . PubMed PMID: 19460998; PubMed Central PMCID: PMCPMC2849637. eng.
  • Miyano K, Sumimoto H. Role of the small GTPase Rac in p22phox-dependent NADPH oxidases. Biochimie. 2007 Sep;89(9):1133–1144. . PubMed PMID: 17583407; eng.
  • Cetinbas N, Daugaard M, Ar M, et al. Loss of the tumor suppressor Hace1 leads to ROS-dependent glutamine addiction. Oncogene. 2015 Jul 23;34(30):4005–4010. PubMed PMID: 25284589; PubMed Central PMCID: PMCPMC4387113. eng.
  • Hardee ME, Zagzag D. Mechanisms of glioma-associated neovascularization. Am J Pathol. 2012 Oct;181(4):1126–1141. . PubMed PMID: 22858156; PubMed Central PMCID: PMCPMC3463636. eng.
  • Bid HK, Roberts RD, Manchanda PK, et al. RAC1: an emerging therapeutic option for targeting cancer angiogenesis and metastasis. Mol Cancer Ther. 2013 Oct;12(10):1925–1934. PubMed PMID: 24072884; PubMed Central PMCID: PMCPMC3823055. eng.
  • Vader P, van der Meel R, Symons MH, et al. Examining the role of Rac1 in tumor angiogenesis and growth: a clinically relevant RNAi-mediated approach. Angiogenesis. 2011 Dec;14(4):457–466. PubMed PMID: 21789714; eng.
  • D‘Amico G, Robinson SD, Germain M, et al. Endothelial-Rac1 is not required for tumor angiogenesis unless alphavbeta3-integrin is absent. PLoS One. 2010 Mar 22;5(3):e9766. PubMed PMID: 20339539; PubMed Central PMCID: PMCPMC2842301. eng.
  • Buerki RA, Chheda ZS, Okada H. Immunotherapy of primary brain tumors: facts and hopes. Clin Cancer Res. 2018 Jun 5. PubMed PMID: 29871908; eng. DOI:10.1158/1078-0432.ccr-17-2769.
  • Engler JR, Robinson AE, Smirnov I, et al. Increased microglia/macrophage gene expression in a subset of adult and pediatric astrocytomas. PLoS One. 2012;7(8):e43339. PubMed PMID: 22937035; PubMed Central PMCID: PMCPMC3425586. eng.
  • Woroniecka KI, Rhodin KE, Chongsathidkiet P, et al. T-cell dysfunction in glioblastoma: applying a new framework. Clin Cancer Res. 2018 Aug 15;24(16):3792–3802. PubMed PMID: 29593027; PubMed Central PMCID: PMCPMC6095741. eng.
  • Chongsathidkiet P, Jackson C, Koyama S, et al. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat Med. 2018 Sep;24(9):1459–1468. PubMed PMID: 30104766; PubMed Central PMCID: PMCPMC6129206. eng.
  • Ferguson SD, Srinivasan VM, Heimberger AB. The role of STAT3 in tumor-mediated immune suppression. J Neurooncol. 2015 Jul;123(3):385–394. . PubMed PMID: 25700834; eng.
  • Nefedova Y, Huang M, Kusmartsev S, et al. Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol. 2004 Jan 1;172(1):464–474. PubMed PMID: 14688356; eng.
  • Corzo CA, Cotter MJ, Cheng P, et al. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol. 2009 May 1;182(9):5693–5701. PubMed PMID: 19380816; PubMed Central PMCID: PMCPMC2833019. eng.
  • Wu A, Wei J, Kong LY, et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol. 2010 Nov;12(11):1113–1125. PubMed PMID: 20667896; PubMed Central PMCID: PMCPMC3098021. eng.
  • Kortylewski M, Kujawski M, Wang T, et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med. 2005 Dec;11(12):1314–1321. PubMed PMID: 16288283; eng.
  • Raptis L, Arulanandam R, Geletu M, et al. The R(h)oads to Stat3: stat3 activation by the Rho GTPases. Exp Cell Res. 2011 Aug 1;317(13):1787–1795. PubMed PMID: 21619876; PubMed Central PMCID: PMCPMC3129747. eng.
  • Simon AR, Vikis HG, Stewart S, et al. Regulation of STAT3 by direct binding to the Rac1 GTPase. Science. 2000 Oct 6;290(5489):144–147. PubMed PMID: 11021801; eng.
  • Faruqi TR, Gomez D, Bustelo XR, et al. Rac1 mediates STAT3 activation by autocrine IL-6. Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9014–9019. PubMed PMID: 11470914; PubMed Central PMCID: PMCPMC55365. eng.
  • Pelletier S, Duhamel F, Coulombe P, et al. Rho family GTPases are required for activation of Jak/STAT signaling by G protein-coupled receptors. Mol Cell Biol. 2003 Feb;23(4):1316–1333. PubMed PMID: 12556491; PubMed Central PMCID: PMCPMC141129. eng.
  • Maldonado MDM, Dharmawardhane S. Targeting Rac and Cdc42 GTPases in Cancer. Cancer Res. 2018 Jun 15;78(12):3101–3111. . PubMed PMID: 29858187; PubMed Central PMCID: PMCPMC6004249. eng.
  • Marei H, Malliri A. Rac1 in human diseases: the therapeutic potential of targeting Rac1 signaling regulatory mechanisms. Small GTPases. 2017 Jul 3;8(3):139–163. . PubMed PMID: 27442895; PubMed Central PMCID: PMCPMC5584733. eng.
  • Desire L, Bourdin J, Loiseau N, et al. RAC1 inhibition targets amyloid precursor protein processing by gamma-secretase and decreases Abeta production in vitro and in vivo. J Biol Chem. 2005 Nov 11;280(45):37516–37525. PubMed PMID: 16150730; eng.
  • Shutes A, Onesto C, Picard V, et al. Specificity and mechanism of action of EHT 1864, a novel small molecule inhibitor of Rac family small GTPases. J Biol Chem. 2007 Dec 7;282(49):35666–35678. PubMed PMID: 17932039; eng.
  • Khosravi-Far R, Solski PA, Clark GJ, et al. Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol Cell Biol. 1995 Nov;15(11):6443–6453. PubMed PMID: 7565796; PubMed Central PMCID: PMCPMC230895. eng.
  • Qiu RG, Chen J, Kirn D, et al. An essential role for Rac in Ras transformation. Nature. 1995 Mar 30;374(6521):457–459. PubMed PMID: 7700355; eng.
  • Weiss WA, Burns MJ, Hackett C, et al. Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Res. 2003 Apr 1;63(7):1589–1595. PubMed PMID: 12670909; eng.
  • Gao Y, Dickerson JB, Guo F, et al. Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci U S A. 2004 May 18;101(20):7618–7623. PubMed PMID: 15128949; PubMed Central PMCID: PMCPMC419655. eng.
  • Karpel-Massler G, Westhoff MA, Zhou S, et al. Combined inhibition of HER1/EGFR and RAC1 results in a synergistic antiproliferative effect on established and primary cultured human glioblastoma cells. Mol Cancer Ther. 2013 Sep;12(9):1783–1795. PubMed PMID: 23832120; eng.
  • Hernandez E, De La Mota-Peynado A, Dharmawardhane S, et al. Novel inhibitors of Rac1 in metastatic breast cancer. P R Health Sci J. 2010 Dec;29(4):348–356. PubMed PMID: 21261173; eng.
  • Castillo-Pichardo L, Humphries-Bickley T, De La Parra C, et al. The Rac inhibitor EHop-016 inhibits mammary tumor growth and metastasis in a nude mouse model. Transl Oncol. 2014 Oct;7(5):546–555. PubMed PMID: 25389450; PubMed Central PMCID: PMCPMC4225654. eng.
  • Humphries-Bickley T, Castillo-Pichardo L, Hernandez-O‘Farrill E, et al. Characterization of a Dual Rac/Cdc42 Inhibitor MBQ-167 in metastatic cancer. Mol Cancer Ther. 2017 May;16(5):805–818. PubMed PMID: 28450422; PubMed Central PMCID: PMCPMC5418092. eng.
  • Cardama GA, Comin MJ, Hornos L, et al. Preclinical development of novel Rac1-GEF signaling inhibitors using a rational design approach in highly aggressive breast cancer cell lines. Anticancer Agents Med Chem. 2014;14(6):840–851. PubMed PMID: 24066799; PubMed Central PMCID: PMCPMC4104455. eng.
  • Cardama GA, Gonzalez N, Ciarlantini M, et al. Proapoptotic and antiinvasive activity of Rac1 small molecule inhibitors on malignant glioma cells. Onco Targets Ther. 2014;7:2021–2033. PubMed PMID: 25378937; PubMed Central PMCID: PMCPMC4218912. eng.
  • Vigil D, Cherfils J, Rossman KL, et al. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer. 2010 Dec;10(12):842–857. PubMed PMID: 21102635; PubMed Central PMCID: PMCPMC3124093. eng.
  • Vives V, Laurin M, Cres G, et al. The Rac1 exchange factor Dock5 is essential for bone resorption by osteoclasts. J Bone Miner Res. 2011 May;26(5):1099–1110. PubMed PMID: 21542010; PubMed Central PMCID: PMCPMC4640905. eng.
  • Ferrandez Y, Zhang W, Peurois F, et al. Allosteric inhibition of the guanine nucleotide exchange factor DOCK5 by a small molecule. Sci Rep. 2017 Oct 31;7(1):14409. PubMed PMID: 29089502; PubMed Central PMCID: PMCPMC5663973. eng.
  • Hill K, Krugmann S, Andrews SR, et al. Regulation of P-Rex1 by phosphatidylinositol (3,4,5)-trisphosphate and Gbetagamma subunits. J Biol Chem. 2005 Feb 11;280(6):4166–4173. M411262200 [pii].
  • Zhao HF, Wang J, Shao W, et al. Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: current preclinical and clinical development. Mol Cancer. 2017 Jun 7;16(1):100. PubMed PMID: 28592260; PubMed Central PMCID: PMCPMC5463420. eng.
  • Rane CK, Minden A. P21 activated kinase signaling in cancer. Semin Cancer Biol. 2018 Jan 9. PubMed PMID: 29330094; eng. DOI:10.1016/j.semcancer.2018.01.006.
  • Licciulli S, Maksimoska J, Zhou C, et al. FRAX597, a small molecule inhibitor of the p21-activated kinases, inhibits tumorigenesis of neurofibromatosis type 2 (NF2)-associated Schwannomas. J Biol Chem. 2013 Oct 4;288(40):29105–29114. PubMed PMID: 23960073; PubMed Central PMCID: PMCPMC3790009. eng.
  • Chow HY, Jubb AM, Koch JN, et al. p21-Activated kinase 1 is required for efficient tumor formation and progression in a Ras-mediated skin cancer model. Cancer Res. 2012 Nov 15;72(22):5966–5975. PubMed PMID: 22983922; PubMed Central PMCID: PMCPMC3500416. eng.
  • Dolan BM, Duron SG, Campbell DA, et al. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by the small-molecule PAK inhibitor FRAX486. Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5671–5676. PubMed PMID: 23509247; PubMed Central PMCID: PMCPMC3619302. eng.
  • Siekmann IK, Dierck K, Prall S, et al. Combined inhibition of receptor tyrosine and p21-activated kinases as a therapeutic strategy in childhood ALL. Blood Adv. 2018 Oct 9;2(19):2554–2567. PubMed PMID: 30301811; PubMed Central PMCID: PMCPMC6177654. eng.
  • Zhou J, Atsina KB, Himes BT, et al. Novel delivery strategies for glioblastoma. Cancer J. 2012 Jan -Feb;18(1):89–99. PubMed PMID: 22290262; PubMed Central PMCID: PMCPMC3269656. eng.
  • Zeghouf M, Guibert B, Zeeh JC, et al. Arf, Sec7 and Brefeldin A: a model towards the therapeutic inhibition of guanine nucleotide-exchange factors. Biochem Soc Trans. 2005 Dec;33(Pt 6):1265–1268. PubMed PMID: 16246094; eng.
  • Zeeh JC, Zeghouf M, Grauffel C, et al. Dual specificity of the interfacial inhibitor brefeldin a for arf proteins and sec7 domains. J Biol Chem. 2006 Apr 28;281(17):11805–11814. PubMed PMID: 16484231; eng.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.