1,072
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Complementary functions for the Ran gradient during division

&
Pages 177-187 | Received 28 Oct 2019, Accepted 28 Jan 2020, Published online: 14 Feb 2020

References

  • Beaudet D, Akhshi T, Phillipp J, et al. Active Ran regulates anillin function during cytokinesis. Mol Biol Cell. 2017;28(24):3517–3531.
  • Brownlee C, Heald R. Importin α partitioning to the plasma membrane regulates intracellular scaling. Cell. 2019;176(4):805–815.
  • Moore MS, Blobel G. The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature. 1993;365(6447):661–663.
  • Clarke PR, Zhang C. Spatial and temporal coordination of mitosis by Ran GTPase. Nat Rev Mol Cell Biol. 2008;9(6):464–477.
  • Güttler T, Görlich D. Ran-dependent nuclear export mediators: a structural perspective. Embo J. 2011;30(17):3457–3474.
  • Harel A, Forbes DJ. Importin beta: conducting a much larger cellular symphony. Mol Cell. 2004;16(3):319–330.
  • Lange A, Mills RE, Lange CJ, et al. Classical nuclear localization signals: definition, function, and interaction with importin-α. J Biol Chem. 2007;282(8):5101–5105.
  • Matsuura Y. Mechanistic insights from structural analyses of Ran-GTPase-driven nuclear export of proteins and RNAs. J Mol Biol. 2016;428(10Pt A):2025–2039.
  • Oka M, Yoneda Y. Importin α: functions as a nuclear transport factor and beyond. Proc Jpn Acad Ser B Phys Biol Sci. 2018;94(7):259–274.
  • Xu L, Massagué J. Nucleocytoplasmic shuttling of signal transducers. Nat Rev Mol Cell Biol. 2004;5(3):209–219.
  • Kimura M, Imamoto N. Biological significance of the importin-β family-dependent nucleocytoplasmic transport pathways. Traffic. 2014;15(7):727–748.
  • Kaláb P, Heald R. The RanGTP gradient - a GPS for the mitotic spindle. J Cell Sci. 2008;121:1577–1586.
  • Kaláb P, Pralle A, Isacoff EY, et al. Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature. 2006;440(7084):697–701.
  • Weaver LN, Walczak CE. Spatial gradients controlling spindle assembly. Biochem Soc Trans. 2015;43(1):7–12.
  • Cook A, Bono F, Jinek M, et al. Structural biology of nucleocytoplasmic transport. Annu Rev Biochem. 2007;76:647–671.
  • Kaláb P, Weis K, Heald R. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science. 2002;295(5564):2452–2456.
  • Cingolani G, Petosa C, Weis K, et al. Structure of importin-β bound to the IBB domain of importin-α. Nature. 1999;399(6733):221–229.
  • Goldfarb DS, Corbett AH, Mason DA, et al. Importin α: a multipurpose nuclear-transport receptor. Trends Cell Biol. 2004;14(9):505–514.
  • Kobe B. Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin α. Nat Struct Biol. 1999;6(4):388–397.
  • Fanara P, Hodel MR, Corbett AH, et al. Quantitative analysis of nuclear localization signal (NLS)-importin α interaction through fluorescence depolarization. Evidence for auto-inhibitory regulation of NLS binding. J Biol Chem. 2000;275(28):21218–21223.
  • Görlich D, Panté N, Kutay U, et al. Identification of different roles for RanGDP and RanGTP in nuclear protein import. Embo J. 1996;15(20):5584–5594.
  • Hasegawa K, Ryu SJ, Kaláb P. Chromosomal gain promotes formation of a steep RanGTP gradient that drives mitosis in aneuploid cells. J Cell Biol. 2013;200(2):151–161.
  • Forbes DJ, Travesa A, Nord MS, et al. Nuclear transport factors: global regulation of mitosis. Curr Opin Cell Biol. 2015;35:78–90.
  • Compton DA. Spindle assembly in animal cells. Annu Rev Biochem. 2000;69:95–114.
  • Gadde S, Heald R. Mechanisms and molecules of the mitotic spindle. Curr Biol. 2004;14(18):R797–805.
  • Walczak CE, Cai S, Khodjakov A. Mechanisms of chromosome behaviour during mitosis. Nat Rev Mol Cell Biol. 2010;11(2):91–102.
  • Giesecke A, Stewart M. Novel binding of the mitotic regulator TPX2 (target protein for Xenopus kinesin-like protein 2) to importin-α. J Biol Chem. 2010;285(23):17628–17635.
  • Gruss OJ, Carazo-Salas RE, Schatz CA, et al. Ran induces spindle assembly by reversing the inhibitory effect of importin α on TPX2 activity. Cell. 2001;104(1):83–93.
  • Schatz CA, Santarella R, Hoenger A, et al. Importin α-regulated nucleation of microtubules by TPX2. Embo J. 2003;22(9):2060–2070.
  • Chang -C-C, Huang T-L, Shimamoto Y, et al. Regulation of mitotic spindle assembly factor NuMA by importin- β. J Cell Biol. 2017;216(11):3453–3462.
  • Nachury MV, Maresca TJ, Salmon WC, et al. Importin β is a mitotic target of the small GTPase Ran in spindle assembly. Cell. 2001;104(1):95–106.
  • Wiese C, Wilde A, Moore MS, et al. Role of importin-β in coupling Ran to downstream targets in microtubule assembly. Science. 2001;291(5504):653–656.
  • Silljé HHW, Nagel S, Körner R, et al. HURP is a Ran-importin β-regulated protein that stabilizes kinetochore microtubules in the vicinity of chromosomes. Curr Biol. 2006;16(8):731–742.
  • Miyamoto Y, Yamada K, Yoneda Y. Importin α: a key molecule in nuclear transport and non-transport functions. J Biochem. 2016;160(2):69–75.
  • Gruss OJ, Vernos I. The mechanism of spindle assembly: functions of Ran and its target TPX2. J Cell Biol. 2004;166(7):949–955.
  • Petry S. Mechanisms of mitotic spindle assembly. Annu Rev Biochem. 2016;85:659–683.
  • Caudron M, Bunt G, Bastiaens P, et al. Spatial coordination of spindle assembly by chromosome-mediated signaling gradients. Science. 2005;309(5739):1373–1376.
  • Loughlin R, Heald R, Nédélec F. A computational model predicts Xenopus meiotic spindle organization. J Cell Biol. 2010;191(7):1239–1249.
  • Kim BJ, Lee H. Importin-β mediates Cdc7 nuclear import by binding to the kinase insert II domain, which can be antagonized by importin-α. J Biol Chem. 2006;281(17):12041–12049.
  • Lam MHC, Briggs LJ, Hu W, et al. Importin β recognizes parathyroid hormone-related protein with high affinity and mediates its nuclear import in the absence of importin α. J Biol Chem. 1999;274(11):7391–7398.
  • Sekimoto T, Miyamoto Y, Arai S, et al. Importin α protein acts as a negative regulator for snail protein nuclear import. J Biol Chem. 2011;286(17):15126–15131.
  • Forwood JK, Jans DA. Nuclear import pathway of the telomere elongation supressor TRF1: inhibition by importin α. Biochemistry. 2002;41(30):9333–9340.
  • Chan C-K, Jans DA. Synergy of importin α recognition and DNA binding by the yeast transcriptional activator GAL4. FEBS Lett. 1999;462(1–2):221–224.
  • Bennabi I, Terret M-E, Verlhac M-H. Meiotic spindle assembly and chromosome segregation in oocytes. J Cell Biol. 2016;215(5):611–619.
  • Maddox AS, Azoury J, Dumont J. Polar body cytokinesis. Cytoskeleton. 2012;69(11):855–868.
  • Dumont J, Petri S, Pellegrin F, et al. A centriole- and RanGTP-independent spindle assembly pathway in meiosis I of vertebrate oocytes. J Cell Biol. 2007;176(3):295–305.
  • Deng M, Suraneni P, Schultz RM, et al. The Ran GTPase mediates chromatin signaling to control cortical polarity during polar body extrusion in mouse oocytes. Dev Cell. 2007;12(2):301–308.
  • Dehapiot B, Carrière V, Carroll J, et al. Polarized Cdc42 activation promotes polar body protrusion and asymmetric division in mouse oocytes. Dev Biol. 2013;377(1):202–212.
  • Yi K, Unruh JR, Deng M, et al. Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3-complex-driven cytoplasmic streaming in mouse oocytes. Nat Cell Biol. 2011;13(10):1252–1258.
  • Suetsugu S, Takenawa T. Translocation of N-WASP by nuclear localization and export signals into the nucleus modulates expression of HSP90. J Biol Chem. 2003;278(43):42515–42523.
  • Wu X, Suetsugu S, Cooper LA, et al. Focal adhesion kinase regulation of N-WASP subcellular localization and function. J Biol Chem. 2004;279(10):9565–9576.
  • Burdyniuk M, Callegari A, Mori M, et al. F-actin nucleated on chromosomes coordinates their capture by microtubules in oocyte meiosis. J Cell Biol. 2018;217(8):2661–2674.
  • Lecuit T, Wieschaus E. Polarized insertion of new membrane from a cytoplasmic reservoir during cleavage of the Drosophila embryo. J Cell Biol. 2000;150(4):849–860.
  • Loncar D, Singer SJ. Cell membrane formation during the cellularization of the syncytial blastoderm of Drosophila. Proc Nat Acad Sci. 1995;92(6):2199–2203.
  • Sisson JC, Field C, Ventura R, et al. Lava lamp, a novel peripheral Golgi protein, is required for Drosophila melanogaster cellularization. J Cell Biol. 2000;151(4):905–918.
  • Lecuit T. Junctions and vesicular trafficking during Drosophila cellularization. J Cell Sci. 2004;117:3427–3433.
  • Field CM, Coughlin M, Doberstein S, et al. Characterization of anillin mutants reveals essential roles in septin localization and plasma membrane integrity. Development. 2005;132(12):2849–2860.
  • Silverman-Gavrila RV, Hales KG, Wilde A. Anillin-mediated targeting of peanut to pseudocleavage furrows is regulated by the GTPase Ran. Mol Biol Cell. 2008;19(9):3735–3744.
  • Chang -C-C, Chen C-J, Grauffel C, et al. Ran pathway-independent regulation of mitotic golgi disassembly by importin-α. Nat Commun. 2019;10(1):1–16.
  • Glotzer M. Cytokinesis in metazoa and fungi. Cold Spring Harb Perspect Biol. 2017;9(10):9:a02234.
  • Green RA, Paluch E, Oegema K. Cytokinesis in animal cells. Annu Rev Cell Dev Biol. 2012;28:29–58.
  • Pollard TD, O’Shaughnessy B. Molecular mechanism of cytokinesis. Annu Rev Biochem. 2019;88:661–689.
  • Hara T, Abe M, Inoue H, et al. Cytokinesis regulator ECT2 changes its conformation through phosphorylation at Thr-341 in G2/M phase. Oncogene. 2006;25(4):566–578.
  • Somers WG, Saint R. A RhoGEF and Rho family GTPase-activating protein complex links the contractile ring to cortical microtubules at the onset of cytokinesis. Dev Cell. 2003;4(1):29–39.
  • Yüce Ö, Piekny A, Glotzer M. An ECT2-centralspindlin complex regulates the localization and function of RhoA. J Cell Biol. 2005;170(4):571–582.
  • Murthy K, Wadsworth P. Dual role for microtubules in regulating cortical contractility during cytokinesis. J Cell Sci. 2008;121:2350–2359.
  • Zanin E, Desai A, Poser I, et al. A conserved RhoGAP limits M phase contractility and coordinates with microtubule asters to confine RhoA during cytokinesis. Dev Cell. 2013;26(5):496–510.
  • Manchinelly SAS, Miller JA, Su L, et al. Mitotic down-regulation of p190RhoGAP is required for the successful completion of cytokinesis. J Biol Chem. 2010;285(35):26923–26932.
  • Manukyan A, Ludwig K, Sanchez-Manchinelly S, et al. A complex of p190RhoGAP-A and anillin modulates RhoA-GTP and the cytokinetic furrow in human cells. J Cell Sci. 2015;128(1):50–60.
  • Mikawa M, Su L, Parsons SJ. Opposing roles of pl90RhoGAP and Ect2 RhoGEF in regulating cytokinesis. Cell Cycle. 2008;7(13):2003–2012.
  • Su L, Agati JM, Parsons SJ. p190RhoGAP is cell cycle regulated and affects cytokinesis. J Cell Biol. 2003;163(3):571–582.
  • Tse YC, Piekny A, Glotzer M. Anillin promotes astral microtubule-directed cortical myosin polarization. Mol Biol Cell. 2011;22(17):3165–3175.
  • van Oostende Triplet C, Jaramillo Garcia M, Haji Bik H, et al. Anillin interacts with microtubules and is part of the astral pathway that defines cortical domains. J Cell Sci. 2014;127:3699–3710.
  • Mangal S, Sacher J, Kim T, et al. TPXL-1 activates Aurora A to clear contractile ring components from the polar cortex during cytokinesis. J Cell Biol. 2018;217(3):837–848.
  • Cabernard C, Prehoda KE, Doe CQ. A spindle-independent cleavage furrow positioning pathway. Nature. 2010;467(7311):91–94.
  • Dechant R, Glotzer M. Centrosome separation and central spindle assembly act in redundant pathways that regulate microtubule density and trigger cleavage furrow formation. Dev Cell. 2003;4(3):333–344.
  • Kiyomitsu T, Cheeseman IM. Cortical dynein and asymmetric membrane elongation coordinately position the spindle in anaphase. Cell. 2013;154(2):391–402.
  • Petronczki M, Glotzer M, Kraut N, et al. Polo-like kinase 1 triggers the initiation of cytokinesis in human cells by promoting recruitment of the RhoGEF Ect2 to the central spindle. Dev Cell. 2007;12(5):713–725.
  • Rodrigues NTL, Lekomtsev S, Jananji S, et al. Kinetochore-localized PP1-Sds22 couples chromosome segregation to polar relaxation. Nature. 2015;524(7566):489–492.
  • Chen A, Akhshi TK, Lavoie BD, et al. Importin-β2 mediates the spatio-temporal regulation of anillin through a noncanonical nuclear localization signal. J Biol Chem. 2015;290(21):13500–13509.
  • Lagana A, Dorn JF, De Rop V, et al. A small GTPase molecular switch regulates epigenetic centromere maintenance by stabilizing newly incorporated CENP-A. Nat Cell Biol. 2010;12(12):1186–1193.
  • Oegema K, Savoian MS, Mitchison TJ, et al. Functional analysis of a human homologue of the Drosophila actin binding protein anillin suggests a role in cytokinesis. J Cell Biol. 2000;150(3):539–552.
  • Tatsumoto T, Xie X, Blumenthal R, et al. Human ECT2 is an exchange factor for Rho GTPases, phosphorylated in G2/M phases, and involved in cytokinesis. J Cell Biol. 1999;147(5):921–927.
  • Pombo CM, Force T, Kyriakis J, et al. The GCK II and III subfamilies of the STE20 group kinases. Front Biosci. 2007;12:850–859.
  • Bell K, Werner ME, Doshi A, et al. Novel cytokinetic ring components limit RhoA activity and contractility. BioRxiv. 2019. DOI:10.1101/633743
  • Rehain-Bell K, Love A, Werner ME, et al. A sterile 20 family kinase and its co-factor CCM-3 regulate contractile ring proteins on germline intercellular bridges. Curr Biol. 2017;27(6):860–867.
  • Deavours BE, Walker RA. Nuclear localization of C-terminal domains of the kinesin-like protein MKLP-1. Biochem Biophys Res Commun. 1999;260(3):605–608.
  • Kawashima T, Bao YC, Minoshima Y, et al. A Rac GTPase-activating protein, MgcRacGAP, is a nuclear localizing signal-containing nuclear chaperone in the activation of STAT transcription factors. Mol Cell Biol. 2009;29(7):1796–1813.
  • Guse A, Mishima M, Glotzer M. Phosphorylation of ZEN-4/MKLP1 by Aurora B regulates completion of cytokinesis. Curr Biol. 2005;15(8):778–786.
  • Liu X, Erikson RL. The nuclear localization signal of mitotic kinesin-like protein Mklp-1: effect on Mklp-1 function during cytokinesis. Biochem Biophys Res Commun. 2007;353(4):960–964.
  • Neef R, Klein UR, Kopajtich R, et al. Cooperation between mitotic kinesins controls the late stages of cytokinesis. Curr Biol. 2006;16(3):301–307.
  • Suzuki K, Sako K, Akiyama K, et al. Identification of non-Ser/Thr-Pro consensus motifs for Cdk1 and their roles in mitotic regulation of C2H2 zinc finger proteins and Ect2. Sci Rep. 2015;5:1–9.
  • Bement WM, Benink HA, von Dassow G. A microtubule-dependent zone of active RhoA during cleavage plane specification. J Cell Biol. 2005;170(1):91–101.
  • Lewellyn L, Dumont J, Desai A, et al. Analyzing the effects of delaying aster separation on furrow formation during cytokinesis in the Caenorhabditis elegans embryo. Mol Biol Cell. 2010;21(1):50–62.
  • Piekny AJ, Glotzer M. Anillin is a scaffold protein that links RhoA, actin, and myosin during cytokinesis. Curr Biol. 2008;18(1):30–36.
  • Takayama M, Noguchi T, Yamashiro S, et al. Microtuble organization in Xenopus eggs during the first cleavage and its role in cytokinesis. Cell Struct Funct. 2002;27(4):163–171.
  • von Dassow G, Verbrugghe KJC, Miller AL, et al. Action at a distance during cytokinesis. J Cell Biol. 2009;187(6):831–845.
  • Davies T, Kim HX, Spica NR, et al. Cell-intrinsic and -extrinsic mechanisms promote cell-type-specific cytokinetic diversity. ELife. 2018;7:e36204.
  • Rose L, Gönczy P. Polarity establishment, asymmetric division and segregation of fate determinants in early C. elegans embryos. WormBook. 2014:1–43. DOI:10.1895/wormbook.1.30.2
  • Mencarelli C, Nitarska J, Kroecher T, et al. RanBP1 couples nuclear export and Golgi regulation through LKB1 to promote cortical neuron polarity. Cell Rep. 2018;24(10):2529–2539.e4.
  • Nemergut ME, Macara IG. Nuclear import of the Ran exchange factor, RCC1, is mediated by at least two distinct mechanisms. J Cell Biol. 2000;149(4):835–849.
  • Talcott B, Moore MS. The nuclear import of RCC1 requires a specific nuclear localization sequence receptor, karyopherin α3/Qip. J Biol Chem. 2000;275(14):10099–10104.
  • Trieselmann N, Armstrong S, Rauw J, et al. Ran modulates spindle assembly by regulating a subset of TPX2 and Kid activities including Aurora A activation. J Cell Sci. 2003;116(23):4791–4798.
  • Tahara K, Takagi M, Ohsugi M, et al. Importin-β and the small guanosine triphosphatase Ran mediate chromosome loading of the human chromokinesin Kid. J Cell Biol. 2008;180(3):493–506.
  • Ems-McClung SC, Zheng Y, Walczak CE. Importin α/β and Ran-GTP regulate XCTK2 microtubule binding through a bipartite nuclear localization signal. Mol Biol Cell. 2004;15(1):46–57.
  • Kim BJ, Kim S-Y, Lee H. Identification and characterization of human Cdc7 nuclear retention and export sequences in the context of chromatin binding. J Biol Chem. 2007;282(41):30029–30038.
  • Cingolani G, Bednenko J, Gillespie MT, et al. Molecular basis for the recognition of a nonclassical nuclear localization signal by importin β. Mol Cell. 2002;10(6):1345–1353.
  • Chan CK, Hübner S, Hu W, et al. Mutual exclusivity of DNA binding and nuclear localization signal recognition by the yeast transcription factor GAL4: implications for nonviral DNA delivery. Gene Ther. 1998;5(9):1204–1212.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.