217
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Rab3a, a small GTP-binding protein, is required for the stabilization of the murine leukaemia virus Gag protein

, , , &
Pages 162-182 | Received 19 Jun 2020, Accepted 02 Jun 2021, Published online: 27 Jun 2021

References

  • Langemeyer L, Fröhlich F, Ungermann C. Rab GTPase function in endosome and lysosome biogenesis. Trends Cell Biol. 2018;28(11):957–970.
  • Spearman P. Viral interactions with host cell Rab GTPases. Small GTPases. 2018;9(1–2):192–201.
  • Chertova E, Chertov O, Coren LV, et al. Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol. 2006;80(18):9039–9052.
  • Caillet M, Janvier K, Pelchen-Matthews A, et al. 7a is required for efficient production of infectious HIV-1. PLoS Pathog. 2011;7(11):e1002347.
  • Murray JL, Mavrakis M, McDonald NJ, et al. Rab9 GTPase is required for replication of human immunodeficiency virus type 1, filoviruses, and measles virus. J Virol. 2005;79(18):11742–11751.
  • Gerber PP, Cabrini M, Jancic C, et al. Rab27a controls HIV-1 assembly by regulating plasma membrane levels of phosphatidylinositol 4,5-bisphosphate. J Cell Biol. 2015;209(3):435–452.
  • Qi M, Chu H, Chen X, et al. A tyrosine-based motif in the HIV-1 envelope glycoprotein tail mediates cell-type- and Rab11-FIP1C-dependent incorporation into virions. Proc Natl Acad Sci USA. 2015;112(24):7575–7580.
  • Qi M, Williams JA, Chu H, et al. Rab11-FIP1C and Rab14 direct plasma membrane sorting and particle incorporation of the HIV-1 envelope glycoprotein complex. PLoS Pathog. 2013;9(4):e1003278.
  • Brass AL, Dykxhoorn DM, Benita Y, et al. Identification of host proteins required for HIV infection through a functional genomic screen. Science. 2008;319(5865):921–926.
  • Kubo Y, Masumoto H, Izumida M, et al. Rab3a-bound CD63 is degraded and Rab3a-free CD63 is incorporated into HIV-1 particles. Front Microbiol. 2017;8:1653.
  • Bustos MA, Roggero CM, De la Iglesia PX, et al. GTP-bound Rab3a exhibits consecutive positive and negative roles during human sperm dense-core granule exocytosis. J Mol Cell Biol. 2014;6(4):286–298.
  • Quevedo MF, Lucchesi O, Bustos MA, et al. The Rab3A-22A chimera prevents sperm exocytosis by stabilizing open fusion pores. J Biol Chem. 2016;291(44):23101–23111.
  • Bello OD, Cappa AI, de Paola M, et al. Rab3a, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs. Exp Cell Res. 2016;347(1):42–51.
  • Encarnação M, Espada L, Escrevente C, et al. A Rab3a-dependent complex essential for lysosome positioning and plasma membrane repair. J Cell Biol. 2016;213(6):631–640.
  • Raiborg C, Stenmark H. Plasma membrane repairs by small GTPase Rab3a. J Cell Biol. 2016;213(6):613–615.
  • Vieira OV. Rab3a and Rab10 are regulators of lysosome exocytosis and plasma membrane repair. Small GTPases. 2018;9(4):349–351.
  • Florin L, Lang T. Tetraspanin assemblies in virus infection. Front Immunol. 2018;9:1140.
  • Suárez H, Rocha-Perugini V, Álvarez S, et al. Tetraspanins, another piece in the HIV-1 replication puzzle. Front Immunol. 2018;9:1811.
  • Yoshida T, Kawano Y, Sato K, et al. A CD63 mutant inhibits T-cell tropic human immunodeficiency virus type 1 entry by disrupting CXCR4 trafficking to the plasma membrane. Traffic. 2008;9(4):540–558.
  • Weng J, Krementsov DN, Khurana S, et al. Formation of syncytia is repressed by tetraspanins in human immunodeficiency virus type 1-producing cells. J Virol. 2009;83(15):7467–7474.
  • Symeonides M, Lambelé M, Roy NH, et al. Evidence showing that tetraspanins inhibit HIV-1-induced cell-cell fusion at a post-hemifusion stage. Viruses. 2014;6(3):1078–1090.
  • Sato K, Aoki J, Misawa N, et al. Modulation of human immunodeficiency virus type 1 infectivity through incorporation of tetraspanin proteins. J Virol. 2008;82(2):1021–1033.
  • Li G, Dziuba N, Friedrich B, et al. A post-entry role for CD63 in early HIV-1 replication. Virology. 2011;412(2):315–324.
  • Li G, Endsley MA, Somasunderam A, et al. The dual role of tetraspanin CD63 in HIV-1 replication. Virol J. 2014;11(1):23.
  • Von Lindern JJ, Rojo D, Grovit-Ferbas K, et al. Potential role for CD63 in CCR5-mediated human immunodeficiency virus type 1 infection of macrophages. J Virol. 2003;77(6):3624–3633.
  • Ho SH, Martin F, Higginbottom A, et al. Recombinant extracellular domains of tetraspanin proteins are potent inhibitors of the infection of macrophages by human immunodeficiency virus type 1. J Virol. 2006;80(13):6487–6496.
  • Rato S, Rausell A, Muñoz M, et al. Single-cell analysis identifies cellular markers of the HIV permissive cell. PLoS Pathog. 2017;13(10):e1006678.
  • Ruiz-Mateos E, Pelchen-Matthews A, Deneka M, et al. CD63 is not required for production of infectious human immunodeficiency virus type 1 in human macrophages. J Virol. 2008;82(10):4751–4761.
  • Krementsov DN, Weng J, Lambelé M, et al. Tetraspanins regulate cell-to-cell transmission of HIV-1. Retrovirology. 2009;6(1):64.
  • Jolly C, Sattentau QJ. Human immunodeficiency virus type 1 assembly, budding, and cell-cell spread in T cells take place in tetraspanin-enriched plasma membrane domains. J Virol. 2007;81(15):7873–7884.
  • Nydegger S, Khurana S, Krementsov DN, et al. Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1. J Cell Biol. 2006;173(5):795–807.
  • Krementsov DN, Rassam P, Margeat E, et al. assembly differentially alters dynamics and partitioning of tetraspanins and raft components. Traffic. 2010;11(11):1401–1414.
  • Hogue IB, Grover JR, Soheilian F, et al. Gag induces the coalescence of clustered lipid rafts and tetraspanin-enriched microdomains at HIV-1 assembly sites on the plasma membrane. J Virol. 2011;85(19):9749–9766.
  • Meerloo T, Parmentier HK, Osterhaus AD, et al. Modulation of cell surface molecules during HIV-1 infection of H9 cells. An immunoelectron microscopic study. AIDS. 1992;6(10):1105–1116.
  • Orentas RJ, Hildreth JE. Association of host cell surface adhesion receptors and other membrane proteins with HIV and SIV. AIDS Res Hum Retroviruses. 1993;9(11):1157–1165.
  • Chen H, Dziuba N, Friedrich B, et al. A critical role for CD63 in HIV replication and infection of macrophages and cell lines. Virology. 2008;379(2):191–196.
  • Fu E, Pan L, Xie Y, et al. Tetraspanin CD63 is a regulator of HIV-1 replication. Int J Clin Exp Pathol. 2015;8(2):1184–1198.
  • Kubo Y, Izumida M, Yashima Y, et al. Gamma-interferon-inducible, lysosome/endosome-localized thiolreductase, GILT, has anti-retroviral activity and its expression is counteracted by HIV-1. Oncotarget. 2016;7(44):71255–71273.
  • Grigorov B, Attuil-Audenis V, Perugi F, et al. A role for CD81 on the late steps of HIV-1 replication in a chronically infected T cell line. Retrovirology. 2009;6(1):28.
  • Tsuruyama T, Hiratsuka T, Yamada N. Hotspots of MLV integration in the hematopoietic tumor genome. Oncogene. 2017;36(9):1169–1175.
  • Kubo Y, Kakimi K, Higo K, et al. Possible origin of murine AIDS (MAIDS) virus: conversion of an endogenous retroviral p12gag sequence to a MAIDS-inducing sequence by frameshift mutations. J Virol. 1996;70(9):6405–6409.
  • Peterson KE, Chesebro B. Influence of proinflammatory cytokines and chemokines on the neuropathogenesis of oncornavirus and immunosuppressive lentivirus infections. Curr Top Microbiol Immunol. 2006;303:67–95.
  • Maetzig T, Galla M, Baum C, et al. Gammaretroviral vectors: biology, technology and application. Viruses. 2011;3(6):677–713.
  • Reddy JM, Raut NGR, Seifert JL, et al. Regulation of small GTPase prenylation in the nervous system. Mol Neurobiol. 2020;57(5):2220–2231.
  • Burstein ES, Brondyk WH, Macara IG. Amino acid residues in the Ras-like GTPase Rab3A that specify sensitivity to factors that regulate the GTP/GDT cycling of Rab3a. J Biol Chem. 1992;267(32):22715–22718.
  • Star EN, Newton AJ, Murthy VN. Real-time imaging of Rab3a and Rab5a reveals differential roles in presynaptic function. J Physiol. 2005;569(1):103–117.
  • Huang CC, Yang DM, Lin CC, et al. Involvement of Rab3a in vesicle priming during exocytosis: interaction with Munc13-1 and Munc18-1. Traffic. 2011;12(10):1356–1370.
  • Brondyk WH, McKierman CJ, Burstein ES, et al. Mutants of Rab3A analogous to oncogenic Ras mutants. Sensitivity to Rab3A-GTPase activating protein and Rab3A-guanine nucleotide releasing factor. J Biol Chem. 1993;268:9410–9415.
  • Ngsee JK, Fleming AM, Scheller RH. A Rab protein regulates the localization of secretory granules in AtT-20 cells. Mol Biol Cell. 1993;4(7):747–756.
  • Segura MM, Garnier A, Di Falco MR, et al. Identification of host proteins associated with retroviral vector particles by proteomic analysis of highly purified vector preparations. J Virol. 2008;82(3):1107–1117.
  • Klement V, Rowe WP, Hartley JW, et al. Mixed culture cytopathogenicity: a new test for growth of murine leukemia viruses in tissue culture. Proc Natl Acad Sci USA. 1969;63(3):753–758.
  • Schlüter OM, Khvotchev M, Jahn R, et al. Localization versus function of Rab3a proteins. Evidence for a common regulatory role in controlling fusion. J Biol Chem. 2002;277:40919–40929.
  • Dolce LG, Ohbayashi N, Dfc DS, et al. Unveiling the interaction between the molecular motor Myosin Vc and the small GTPase Rab3A. J Proteomics. 2020;212:103549.
  • Nishimura N, Araki K, Shinahara W, et al. Interaction of Rab3B with microtubule-binding protein Gas8 in NIH3T3 cells. Arch Biochem Biophys. 2008;474(1):136–142.
  • Haller C, Müller B, Fritz JV, et al. Nef and Vpu are functionally redundant broad-spectrum modulators of cell surface receptors, including tetraspanins. J Virol. 2014;88(24):14241–14257.
  • Lambelé M, Koppensteiner H, Symeonides M, et al. Vpu is the main determinant for tetraspanin downregulation in HIV-1-infected cells. J Virol. 2015;89(6):3247–3255.
  • Kim JK, Lee SY, Park CW, et al. Rab3a promotes brain tumor initiation and progression. Mol Biol Rep. 2014;41(9):5903–5911.
  • Kamiyama H, Kakoki K, Yoshii H, et al. Infection of XC cells by MLVs and Ebola virus is endosome-dependent but acidification-independent. PLoS ONE. 2011;6(10):e26180.
  • Onishi M, Kinoshita S, Morikawa Y, et al. Applications of retrovirus-mediated expression cloning. Exp Hematol. 1996;24(2):324–329.
  • Bacheler L, Fan H. Isolation of recombinant DNA clones carrying complete integrated proviruses of Moloney murine leukemia virus. J Virol. 1981;37(1):181–190.
  • Benedict CA, Tun RYM, Rubinstein DB, et al. Targeting retroviral vectors to CD34-expressing cells: binding to CD34 does not catalyze virus-cell fusion. Hum Gene Ther. 1999;10(4):545–557.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.