8,205
Views
49
CrossRef citations to date
0
Altmetric
Articles

Making the invisible observable by Augmented Reality in informal science education context

, &
Pages 253-268 | Received 04 May 2016, Accepted 25 Oct 2016, Published online: 25 Nov 2016

References

  • Alberts, B. (2009). Making a science of education. Science, 323(5910), 15. doi:10.1126/science.1169941
  • Andújar, J. M., Mejías, A., & Márquez, M. A. (2011). Augmented reality for the improvement of remote laboratories: An augmented remote laboratory. IEEE Transactions on Education, 54(3), 492–500. doi: 10.1109/TE.2010.2085047
  • Antonioli, M., Blake, C., & Sparks, K. (2014). Augmented reality applications in education. The Journal of Technology Studies, 40(2), 96–107. doi: 10.21061/jots.v40i2.a.4
  • Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators and Virtual Environments, 6(4), 355–385. doi: 10.1162/pres.1997.6.4.355
  • Bacca, J., Baldris, S., Fabregat, R., Graf, S., & Kinshuk. (2014). Augmented reality trends in education: A systematic review of research and applications. Education Technology & Society, 17(4), 133–149.
  • Balling, J., & Falk, J. (1980). A perspective on field trips: Environmental effects on learning. Curator: The Museum Journal, 23(4), 229–240. doi: 10.1111/j.2151-6952.1980.tb01672.x
  • Bilek, M., Zemanova, M., & Turcani, M. (2007). ICT for the workday activity of chemistry teachers in the Czech Republic (pp. 29–32). In Information & Communication Technology in Science Education 2007/Proceedings of international scientific practical conference, Siauliai.
  • Bower, M., Howe, K., McCredie, N., Robinson, A., & Grover, D. (2014). Augmented reality in education – Cases, places and potentials. Educational Media International, 51(1), 1–15. doi:10.1080/09523987.2014.889400
  • Braund, M., & Reiss, M. (2007). What does out-of-school learning offer school science? The Science Education Review, 6, 35–37.
  • Buchholz, H., & Brosda, C. (2012). Melting interfaces – Learning in mixed realities a retrospective on transitional objects (pp. 69–80). Proceedings of the EDEN 2011 ‘science center to go’ workshops. Athens: Ellinogermaniki Agogi. ISBN 978-960-473-328-6. www.sctg.eu/materials/sctgo_proceedings_low.pdf
  • Byrne, B. (2010). Structural equation modeling with AMOS: Basic concepts, applications, and programming (2nd ed.). New York, NY: Routledge.
  • Chiang, T.-H.-C., Yang, S.-J.-H., & Hwang, G.-J. (2014). An augmented reality-based mobile learning system to improve students’ learning achievements and motivations I natural science inquiry activities. Educational Technology & Society, 17(4), 352–365.
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed., p. 174). Hillsdale, NJ: Erlbaum.
  • Cohen, J., Miles, J., & Shevlin, M. (2001). Applying regression and correlation: A guide for students and researchers (p. 272). London: Sage.
  • Connolly, T., Boyle, E., MacArthur, E., Hainey, T., & Boyle, J. (2012). A systematic literature review of empirical evidence on computer games and serious games. Computers & Education, 59, 661–686. doi: 10.1016/j.compedu.2012.03.004
  • Dede, C., & Barab, S. (2009). Emerging technologies for learning science: A time of rapid advances. Journal of Science Education and Technology, 18(4), 301–304. doi: 10.1007/s10956-009-9172-4
  • Durik, A. M., Harackiewicz, J. M. (2007). Different strokes for different folks: How personal interest moderates the effects of situational factors on task interest. Journal of Educational Psychology, 99(4), 597–610. doi: 10.1037/0022-0663.99.3.597
  • Echeverría, A., Gil, F., & Nussbaum, M. (2011). Classroom Augmented Reality games: A model for the creation of immersive collaborative games in the classroom. Retrieved April 2016 in www.ceppe.cl/images/stories/articulos/tic/2.2-Nussbaum-Classroom-Augmented-Reality-Games-A-model-for-the-creation-of-immersive-collaborative-games-in-the-classroom.pdf
  • Falk, J., & Dierking, L. (1992). The museum experience. Washington DC: Whalesbak Books.
  • Fenichel, M., & Schweingruber, H. (2010). Surrounded by science: Learning science in informal environments. Board of Science education, Centre of education, Division of behavioral and social sciences and education. Washington, DC: The National Academic Press.
  • Freitas, R., & Campos, P. (2008). SMART: A system of Augmented Reality for teaching 2nd grade students (pp. 27–30). In Proceedings of the 22nd British HCI Group annual conference on people and computers: Culture, creativity, interaction, Vol. 2. Swinton, UK.
  • Gargalakos, M., Rogalas, D., Lazoudis, A., & Sotiriou, S. (2012). The exploar project: Visualizing the invisible (pp. 57–68). Proceedings of the EDEN 2011 ‘science center to go’ workshops. Athens: Ellinogermaniki Agogi. ISBN 978-960-473-328-6. Retrieved from www.sctg.eu/materials/sctgo_proceedings_low.pdf
  • Giallouri, E., Lazuodis, A., & Sotiriou, S. (2012). Assessing the impact of the science center to go system on understanding of quantum interpretation of the double slit experiment. In Proceedings of the EDEN 2011 ‘science center to go’ workshops (pp. 41–46). Athens: Ellinogermaniki Agogi. ISBN 978-960-473-328-6. Retrieved from www.sctg.eu/materials/sctgo_proceedings_low.pdf
  • Lazoudis, A., Sotiriou, S., & Salmi, H. (2012). Science center to go: Guide of good practice. (p. (p. 212). Athens, Greece: Ellinogermaniki Agogi. Retrieved from http://www.sctg.eu/materials/SCTGO_GoGP-low.pdf
  • Haller, M., Billinghurst, M., & Thomas, B. (2007). Emerging technologies of augmented reality: Interfaces and design ( 399 p). New York, NY: Idea Group.
  • Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111–127. doi: 10.1207/s15326985ep4102_4
  • Hsiao, K., Chen, N., & Huang, S. (2012). Learning while exercising for science education in augmented reality among adolescents. Interactive Learning Environments, 20(4), 331–349. doi: 10.1080/10494820.2010.486682
  • Kamarainen, A., Metcalf, S., Grotzer, T., Browne, A., Mazzuca, D., Tutwiler, M., & Dede, C. (2013). EcoMOBILE: Integrating augmented reality and probeware with environmental education field trips. Computers & Education, 68, 545–556. doi: 10.1016/j.compedu.2013.02.018
  • Lamanauskas, V., & Vilkonis, R. (2007). Information communication technologies in natural science education: Situational analysis and prospects in baltic countries. Journal of Baltic Science Education, 6(2), 35–49.
  • Larsen, Y., & Bogner, F. (2012). Evaluation of a portable and interactive AR learning system by teachers and students: Augmented reality in education. Proceedings of the EDEN 2011 ‘science center to go’ workshops (pp. 47–56). Athens: Ellinogermaniki Agogi. ISBN 978-960-473-328-6. Retrieved from www.sctg.eu/materials/sctgo_proceedings_low.pdf
  • Martin, S., Diaz, G., Sancristobal, E., Gil, R., Castro, M., & Peire, J. (2011). New technology trends in education: Seven years of forecasts and convergence. Computers & Education, 57(2), 1893–1906. doi: 10.1016/j.compedu.2011.04.003
  • Mattila, A. (2001). Seeing things in a new light: Reframing in therapeutic conversation. Helsinki: Rehabilitation Foundation, Research Reports 67/2001
  • Milgram, P., & Kishino, A. F. (1994). Taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems, E77-D(12), 1321–1329.
  • Nincarean, D., Bilal Alia, M., Halim, N., & Rahman, M. (2013). Mobile augmented reality: The potential for education. Procedia – Social and Behavioral Sciences, 103, 657–664. doi:10.1016/j.sbspro.2013.10.385
  • Osborne, J. F., & Dillon, J. (2008). Science education in Europe. London: Nuffield Foundation.
  • Osgood, C. E. (1964). Semantic differential technique in the comparative study of cultures. American Anthropologist, 66(3), 171–200. doi: 10.1525/aa.1964.66.3.02a00880
  • Owen, M., Owen, S., Barajas, M., & Trifonova, A. (2012). Pedagogical issues and questions from Augmented Reality: Augmented reality in Education (pp. 13–30). Proceedings of the EDEN 2011 ‘science center to go’ workshops. Athens: Ellinogermaniki Agogi. ISBN 978-960-473-328-6. www.sctg.eu/materials/sctgo_proceedings_low.pdf
  • Radu, J. (2014). Augmented reality in education: A meta-review and cross-media analysis. Personal and Ubiquitous Computing, 18(6), 1533–1543. doi: 10.1007/s00779-013-0747-y
  • Raven, J., Raven, J. C., & Court, J. (2000). Section 3. Standard progressive matrices, 2000 edition. Oxford: Elsfield Hall.
  • Raven, J., Raven, J. C., & Court, J. (2003). Manual for Raven’s progressive matrices and vocabulary scales. Oxford: OPP.
  • Rennie, L. (2014). Learning science outside of school. In N. Lederman & S. Abell (Eds.), Handbook of research on science education (vol. II, pp. 120–144). London: Routledge.
  • Renninger, K. (2000). Individual interest and its implications for understanding intrinsic motivation. In C. Sansone & J.M. Harakiewicz (Eds.), Intrinsic motivation: Controversies and new directions (pp. 373–404). Sand Diego, CA: Academic Press.
  • Renninger, K.A., & Hidi, S. (2011). Revisiting the conceptualisation, measurement, and generation of interest. Educational Psychologist, 46(3), 168–184. doi:10.1080/00461520.2011.587723
  • Rosenbaum, E., Klopfer, E., & Perry, J. (2007). On location learning: Authentic applied science with networked augmented realities. Journal of Science Education and Technology, 16(1), 31–45. doi: 10.1007/s10956-006-9036-0
  • Ryan, R., & Connell, J. (1989). Perceived locus of causality and internalisation: Examining reasons for acting in two domains. Journal of Personality and Social Psychology, 57, 749–761. doi: 10.1037/0022-3514.57.5.749
  • Salmi, H. (2003). Science centres as learning laboratories: Experiences of Heureka, the Finnish science centre. International Journal of Technology Management, 25(5), 460–476. doi: 10.1504/IJTM.2003.003113
  • Salmi, H. (2011). Evidence of bridging the gap between formal and informal learning through teacher education. Reflecting Education, 8(2), 45–61.
  • Salmi, H. (2012). Augmented reality in education. Proceedings of the ‘science center to go’ workshops. Athens: Ellinogermaniki Agogi. ISBN 978-960-473-328-6. www.sctg.eu/materials/sctgo_proceedings_low.pdf
  • Salmi, H., Kaasinen, A., & Kallunki, V. (2012). Towards an open learning environment via Augmented Reality (AR): Visualising the invisible in science centres and schools for teacher education. Procedia – Social and Behavioral Sciences, 45, 284–295. doi: 10.1016/j.sbspro.2012.06.565
  • Salmi, H., Sotiriou, S., & Bogner, F. (2010). Visualising the invisible in science centres and science museums: Augmented Reality (AR) technology application and science teaching. In N. Karacapilidis (Ed.), Web-based learning solutions for communities of practice: Developing virtual environments for social and pedagogical advancement (pp. 185–208). New York, NY: Information Science Reference. Hershey. ISBN 978-1-60566-711-9.
  • Salmi, H., Thuneberg, H., & Vainikainen, M.-P. (2016). How do engineering attitudes vary by gender and motivation? Attractiveness of outreach science exhibition in four countries. European Journal of Engineering Education, 18(1), 2–22. doi:10.1080/03043797.2015.1121466
  • Salmi, H., Vainikainen, M-P., & Thuneberg, H. (2015) Mathematical thinking skills, self-concept and learning outcomes of 12-year-olds visiting a mathematics science centre exhibition in Latvia and Sweden. Journal of Science Communication, 14(4), 1–19.
  • TanWee Hin, L. & Subramaniam, R. (2003). Science and technology centres as agents for promoting science culture in developing nations. International Journal of Technology Management, 25(5), 413–426. doi: 10.1504/IJTM.2003.003110
  • Vainikainen, M-P., Salmi, H., & Thuneberg, H. (2015). Situational interest and learning in a science centre mathematics exhibition. Journal of Science Communication, 14(4), 1–19.
  • Vilkoniené, M. (2009). Influence of augmented reality upon pupil’s knowledge about Human Digestive System: The Results of the Experiment. Online Submission, Retrieved from ERIC database.
  • Vilkoniené, M., Lamanauskas, V., & Vilkonis, R. (2008). Pedagogical evaluation of the teaching/learning platform based on augmented reality technology: The opinion of science teachers and the experts providing assistance with teaching/learning (pp. 407–412). Proceedings of Internat. Scientific Practical Conference ‘Science Education Technologic – 2008’.
  • Wagner, T. (2008). The global achievement gap. New York, NY: Basic Books.
  • Wickens, C., & Alexander, A. (2009). Attentional tunneling and task management in synthetic vision displays. The International Journal of Aviation Psychology, 19(2), 182–199. doi: 10.1080/10508410902766549