1,658
Views
9
CrossRef citations to date
0
Altmetric
Review

No patient left behind: The promise of immune priming with epigenetic agents

, , , , , , , , & show all
Article: e1315486 | Received 11 Jul 2016, Accepted 30 Mar 2017, Published online: 15 Sep 2017

References

  • Coley WB II. Contribution to the knowledge of sarcoma. Ann Surg 1891; 14:199-220; PMID:17859590; https://doi.org/10.1097/00000658-189112000-00015
  • Parish CR. Cancer immunotherapy: The past, the present and the future. Immunol Cell Biol 2003; 81:106-13; PMID:12631233; https://doi.org/10.1046/j.0818-9641.2003.01151.x
  • Wiemann B, Starnes CO. Coley's toxins, tumor necrosis factor and cancer research: A historical perspective. Pharmacol Ther 1994; 64:529-64; PMID:7724661; https://doi.org/10.1016/0163-7258(94)90023-X
  • Karbach J, Neumann A, Brand K, Wahle C, Siegel E, Maeurer M, Ritter E, Tsuji T, Gnjatic S, Old LJ, et al. Phase I clinical trial of mixed bacterial vaccine (Coley's toxins) in patients with NY-ESO-1 expressing cancers: Immunological effects and clinical activity. Clin Cancer Res 2012; 18:5449-59; PMID:22847809; https://doi.org/10.1158/1078-0432.CCR-12-1116
  • Firor AE, Jares A, Ma Y. From humble beginnings to success in the clinic: Chimeric antigen receptor-modified T-cells and implications for immunotherapy. Exp Biol Med (Maywood) 2015; 240:1087-98; PMID:25956686; https://doi.org/10.1177/1535370215584936
  • Larson CL, Baker RE, Ushijima RN, Baker MB, Gillespie C. Immunotherapy of friend disease in mice employing viable BCG vaccine. Proc Soc Exp Biol Med 1972; 140:700-2; PMID:4556666; https://doi.org/10.3181/00379727-140-36534
  • Rosenberg SA. IL-2: The first effective immunotherapy for human cancer. J Immunol 2014; 192:5451-8; PMID:24907378; https://doi.org/10.4049/jimmunol.1490019
  • Morikawa K, Fidler IJ. Heterogeneous response of human colon cancer cells to the cytostatic and cytotoxic effects of recombinant human cytokines: Interferon-alpha, interferon-gamma, tumor necrosis factor, and interleukin-1. J Biol Response Mod 1989; 8:206-18; PMID:2499665
  • Drake CG, Jaffee E, Pardoll DM. Mechanisms of immune evasion by tumors. Adv Immunol 2006; 90:51-81; PMID:16730261; https://doi.org/10.1016/S0065-2776(06)90002-9
  • Rosenblatt J, Avigan D. Targetting the PD-L1/PD-1 axis holds promise in the treatment of malignancy. Transl Cancer Res 2012; 1:283-6.
  • Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366:2443-54; PMID:22658127; https://doi.org/10.1056/NEJMoa1200690
  • Brown R, Curry E, Magnani L, Wilhelm-Benartzi CS, Borley J. Poised epigenetic states and acquired drug resistance in cancer. Nat Rev Cancer 2014; 14:747-53; PMID:25253389; https://doi.org/10.1038/nrc3819
  • Waddington CH. The epigenotype. 1942. Int J Epidemiol 2012; 41:10-3; PMID:22186258; https://doi.org/10.1093/ije/dyr184
  • Javierre BM, Fernandez AF, Richter J, Al-Shahrour F, Martin-Subero JI, Rodriguez-Ubreva J, Berdasco M, Fraga MF, O'Hanlon TP, Rider LG, et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res 2010; 20:170-9; PMID:20028698; https://doi.org/10.1101/gr.100289.109
  • Ning S, Sekar TV, Scicinski J, Oronsky B, Peehl DM, Knox SJ, Paulmurugan R. Nrf2 activity as a potential biomarker for the pan-epigenetic anticancer agent, RRx-001. Oncotarget 2015; 6:21547-56; PMID:26280276; https://doi.org/10.18632/oncotarget.4249
  • Cabrales P, Oronsky B, Scicinski J. Abstract 1420: RRx-001 inhibits glucose erythrocyte and tumor glucose 6-phosphate dehydrogenase. Cancer Res 2014; 74:1420; https://doi.org/10.1158/1538-7445.AM2014-1420
  • Cabrales P, Reid T, Oronsky B, Scicinski J, Chauchan D, Parker C, et al. RRx-001 An EXO-based epigenetic anti-cancer agent in phase 2 clinical trials. ISEV International Society for Extracellular Vesicles 2014, Educational Event San Diego, Oct 26, 2014.
  • Juo YY, Johnston FM, Zhang DY, Juo HH, Wang H, Pappou EP, Yu T, Easwaran H, Baylin S, van Engeland M, et al. Prognostic value of CpG island methylator phenotype among colorectal cancer patients: A systematic review and meta-analysis. Ann Oncol 2014; 25:2314-27; PMID:24718889; https://doi.org/10.1093/annonc/mdu149
  • Easwaran H, Tsai HC, Baylin SB. Cancer epigenetics: Tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cell 2014; 54:716-27; PMID:24905005; https://doi.org/10.1016/j.molcel.2014.05.015
  • Kim K, Skora AD, Li Z, Liu Q, Tam AJ, Blosser RL, Diaz LA Jr, Papadopoulos N, Kinzler KW, Vogelstein B, et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci U S A 2014; 111:11774-9; PMID:25071169; https://doi.org/10.1073/pnas.1410626111
  • Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics 2009; 1:239-59; PMID:20495664; https://doi.org/10.2217/epi.09.33
  • Sigalotti L, Covre A, Fratta E, Parisi G, Colizzi F, Rizzo A, Danielli R, Nicolay HJ, Coral S, Maio M. Epigenetics of human cutaneous melanoma: setting the stage for new therapeutic strategies. J Transl Med 2010; 8:56; PMID:20540720; https://doi.org/10.1186/1479-5876-8-56
  • Hashimshony T, Zhang J, Keshet I, Bustin M, Cedar H. The role of DNA methylation in setting up chromatin structure during development. Nat Genet 2003; 34:187-92; PMID:12740577; https://doi.org/10.1038/ng1158
  • Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002; 3:415-28; PMID:12042769; https://doi.org/10.1038/nrg816
  • Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis 2010; 31:27-36; PMID:19752007; https://doi.org/10.1093/carcin/bgp220
  • Kulis M, Esteller M. DNA methylation and cancer. Adv Genet 2010; 70:27-56; PMID:20920744; https://doi.org/10.1016/B978-0-12-380866-0.60002-2
  • Baylin SB. DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2005; 2(Suppl 1):S4-11; PMID:16341240; https://doi.org/10.1038/ncponc0354
  • Lund AH, van Lohuizen M. Epigenetics and cancer. Genes Dev 2004; 18:2315-35; PMID:15466484; https://doi.org/10.1101/gad.1232504
  • Golbabapour S, Abdulla MA, Hajrezaei M. A concise review on epigenetic regulation: Insight into molecular mechanisms. Int J Mol Sci 2011; 12:8661-94; PMID:22272098; https://doi.org/10.3390/ijms12128661
  • Josselyn S, Frankland PW. Another twist in the histone memory code. Cell Res 2015; 25:151-2; PMID:25342557; https://doi.org/10.1038/cr.2014.134
  • Muller WG, Rieder D, Karpova TS, John S, Trajanoski Z, McNally JG. Organization of chromatin and histone modifications at a transcription site. J Cell Biol 2007; 177:957-67; PMID:17576795; https://doi.org/10.1083/jcb.200703157
  • Schneider R, Grosschedl R. Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev 2007; 21:3027-43; PMID:18056419; https://doi.org/10.1101/gad.1604607
  • Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 1998; 12:599-606; PMID:9499396; https://doi.org/10.1101/gad.12.5.599
  • Luo RX, Dean DC. Chromatin remodeling and transcriptional regulation. J Natl Cancer Inst 1999; 91:1288-94; PMID:10433617; https://doi.org/10.1093/jnci/91.15.1288
  • Zupkovitz G, Tischler J, Posch M, Sadzak I, Ramsauer K, Egger G, Grausenburger R, Schweifer N, Chiocca S, Decker T, et al. Negative and positive regulation of gene expression by mouse histone deacetylase 1. Mol Cell Biol 2006; 26:7913-28; PMID:16940178; https://doi.org/10.1128/MCB.01220-06
  • Rajendran R, Garva R, Krstic-Demonacos M, Demonacos C. Sirtuins: Molecular traffic lights in the crossroad of oxidative stress, chromatin remodeling, and transcription. J Biomed Biotechnol 2011; 2011:368276; PMID:21912480; https://doi.org/10.1155/2011/368276
  • Nebbioso A, Carafa V, Benedetti R, Altucci L. Trials with ‘epigenetic’ drugs: an update. Mol Oncol 2012; 6:657-82; PMID:23103179; https://doi.org/10.1016/j.molonc.2012.09.004
  • Wee S, Dhanak D, Li H, Armstrong SA, Copeland RA, Sims R, Baylin SB, Liu XS, Schweizer L. Targeting epigenetic regulators for cancer therapy. Ann N Y Acad Sci 2014; 1309:30-6; PMID:24571255; https://doi.org/10.1111/nyas.12356
  • Azad N, Zahnow CA, Rudin CM, Baylin SB. The future of epigenetic therapy in solid tumours–lessons from the past. Nat Rev Clin Oncol 2013; 10:256-66; PMID:23546521; https://doi.org/10.1038/nrclinonc.2013.42
  • Carter C, Reid T, Fisher G, Cho-Phan C, Kunz P, Kaiser H, Oronsky B, Fanger G, Caroen S, Parker C, et al. O3.8Early Results: “ROCKET” a phase II Study of RRx-001, a novel triple epigenetic inhibitor, resensitization to irinotecan in colorectal cancer. Ann Oncol 2015; 26:ii4-5; https://doi.org/10.1093/annonc/mdv081.8
  • Oronsky B, Oronsky N, Lybeck M, Fanger G, Scicinski J. Targeting hyponitroxia in cancer therapy. In: Bonavida B, ed. Nitric oxide and cancer: Pathogenesis and therapy: Springer, 2015:39-47.
  • Hickok JR, Vasudevan D, Antholine WE, Thomas DD. Nitric oxide modifies global histone methylation by inhibiting Jumonji C domain-containing demethylases. J Biol Chem 2013; 288:16004-15; PMID:23546878; https://doi.org/10.1074/jbc.M112.432294
  • Scicinski J, Oronsky B, Ning S, Knox S, Peehl D, Kim MM, Langecker P, Fanger G. NO to cancer: The complex and multifaceted role of nitric oxide and the epigenetic nitric oxide donor, RRx-001. Redox Biol 2015; 6:1-8; PMID:26164533; https://doi.org/10.1016/j.redox.2015.07.002
  • Wrangle J, Wang W, Koch A, Easwaran H, Mohammad HP, Vendetti F, Vancriekinge W, Demeyer T, Du Z, Parsana P, et al. Alterations of immune response of non-small cell lung cancer with azacytidine. Oncotarget 2013; 4:2067-79; PMID:24162015; https://doi.org/10.18632/oncotarget.1542
  • Brahmer JR, Pardoll DM. Immune checkpoint inhibitors: Making immunotherapy a reality for the treatment of lung cancer. Cancer Immunol Res 2013; 1:85-91; PMID:24777499; https://doi.org/10.1158/2326-6066.CIR-13-0078
  • Juergens RA, Vendetti F, Coleman B, Sebree RS, Rudek MA, Belinsky SA. Phase I trial of 5-azacitidine (%AC) and SNDX-275 in advanced lung cancer (NSCLC). J Clin Onc 2008; 26: abstract no. 19036; https://doi.org/10.1200/jco.2008.26.15_suppl.19036
  • EpicentRx, unpublished data.
  • Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: From immunosurveillance to tumor escape. Nat Immunol 2002; 3:991-8; PMID:12407406; https://doi.org/10.1038/ni1102-991
  • Dushyanthen S, Beavis PA, Savas P, Teo ZL, Zhou C, Mansour M, Darcy PK, Loi S. Relevance of tumor-infiltrating lymphocytes in breast cancer. BMC Med 2015; 13:202; PMID:26300242; https://doi.org/10.1186/s12916-015-0431-3
  • Gross E, Sunwoo JB, Bui JD. Cancer immunosurveillance and immunoediting by natural killer cells. Cancer J 2013; 19:483-9; PMID:24270347; https://doi.org/10.1097/PPO.0000000000000005
  • Krysko O, Love Aaes T, Bachert C, Vandenabeele P, Krysko DV. Many faces of DAMPs in cancer therapy. Cell Death Dis 2013; 4:e631; PMID:23681226; https://doi.org/10.1038/cddis.2013.156
  • Bezu L, Gomes-de-Silva LC, Dewitte H, Breckpot K, Fucikova J, Spisek R, Galluzzi L, Kepp O, Kroemer G. Combinatorial strategies for the induction of immunogenic cell death. Front Immunol 2015; 6:187; PMID:25964783; https://doi.org/10.3389/fimmu.2015.00187
  • Ishii H, Tanaka S, Masuyama K. Therapeutic strategy for cancer immunotherapy in head and neck cancer. Adv Cell Mol Otolaryngol 2015; 3:27690; https://doi.org/10.3402/acmo.v3.27690
  • Scanlan MJ, Simpson AJ, Old LJ. The cancer/testis genes: Review, standardization, and commentary. Cancer Immun 2004; 4:1; PMID:14738373
  • Kim R, Kulkarni P, Hannenhalli S. Derepression of cancer/testis antigens in cancer is associated with distinct patterns of DNA hypomethylation. BMC Cancer 2013; 13:144; PMID:23522060; https://doi.org/10.1186/1471-2407-13-144
  • Toor AA, Payne KK, Chung HM, Sabo RT, Hazlett AF, Kmieciak M, Sanford K, Williams DC, Clark WB, Roberts CH, et al. Epigenetic induction of adaptive immune response in multiple myeloma: Sequential azacitidine and lenalidomide generate cancer testis antigen-specific cellular immunity. Br J Haematol 2012; 158:700-11; PMID:22816680; https://doi.org/10.1111/j.1365-2141.2012.09225.x
  • Huang M, Krishnadas D, Lucas K. Cellular and antibody based approaches for pediatric cancer immunotherapy. J Immunol Res 2015; 2015:675269 :Article ID 675269, 7 pages, 2015; PMID:26587548; https://doi.org/10.1155/2015/675269
  • Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science 2015; 348:69-74; PMID:25838375; https://doi.org/10.1126/science.aaa4971
  • Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015; 372:2509-20; PMID:26028255; https://doi.org/10.1056/NEJMoa1500596
  • Smyrk TC, Watson P, Kaul K, Lynch HT. Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer 2001; 91:2417-22; PMID:11413533; https://doi.org/10.1002/1097-0142(20010615)91:12%3c2417::AID-CNCR1276%3e3.0.CO;2-U
  • Richard GF, Kerrest A, Dujon B. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 2008; 72:686-727; PMID:19052325; https://doi.org/10.1128/MMBR.00011-08
  • Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Hold GL, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 2013; 14:207-15; PMID:23954159; https://doi.org/10.1016/j.chom.2013.07.007
  • Corso CD, Ali AN, Diaz R. Radiation-induced tumor neoantigens: Imaging and therapeutic implications. Am J Cancer Res 2011; 1:390-412; PMID:21969260
  • Martens K, Meyners T, Rades D, Tronnier V, Bonsanto MM, Petersen D, Dunst J, Dellas K. The prognostic value of tumor necrosis in patients undergoing stereotactic radiosurgery of brain metastases. Radiat Oncol 2013; 8:162; PMID:23822663; https://doi.org/10.1186/1748-717X-8-162
  • Parvez K, Parvez A, Zadeh G. The diagnosis and treatment of pseudoprogression, radiation necrosis and brain tumor recurrence. Int J Mol Sci 2014; 15:11832-46; PMID:24995696; https://doi.org/10.3390/ijms150711832
  • Festjens N, Vanden Berghe T, Vandenabeele P. Necrosis, a well-orchestrated form of cell demise: Signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 2006; 1757:1371-87; PMID:16950166; https://doi.org/10.1016/j.bbabio.2006.06.014
  • Formenti SC, Demaria S. Systemic effects of local radiotherapy. Lancet Oncol 2009; 10:718-26; PMID:19573801; https://doi.org/10.1016/S1470-2045(09)70082-8
  • Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, Kroemer G. Cell death modalities: Classification and pathophysiological implications. Cell Death Differ 2007; 14:1237-43; PMID:17431418; https://doi.org/10.1038/sj.cdd.4402148
  • Roulois D, Loo Yau H, Singhania R, Wang Y, Danesh A, Shen SY, Han H, Liang G, Jones PA, Pugh TJ, et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 2015; 162:961-73; PMID:26317465; https://doi.org/10.1016/j.cell.2015.07.056
  • Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, Hein A, Rote NS, Cope LM, Snyder A, et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 2015; 162:974-86; PMID:26317466; https://doi.org/10.1016/j.cell.2015.07.011
  • Maio M, Covre A, Fratta E, Di Giacomo AM, Taverna P, Natali PG, Coral S, Sigalotti L. Molecular pathways: At the crossroads of cancer epigenetics and immunotherapy. Clin Cancer Res 2015; 21:4040-7; PMID:26374074; https://doi.org/10.1158/1078-0432.CCR-14-2914
  • Zhao H, Ning S, Scicinski J, Oronsky B, Knox S, Peehl DM. Abstract 3515: RRx-001: A double action systemically non-toxic epigenetic agent for cancer therapy. Cancer Research 2015; 75:3515; https://doi.org/10.1158/1538-7445.AM2015-3515
  • Reid T, Infante JR, Paul A, Burris HA, Oronsky B, Scribner C, Knox S, Stephens J, Santini J, Scicinski J. Abstract LB-86: Preliminary results from an ongoing phase I trial of RRx-001, a tumor selective cytotoxic agent. Cancer Res 2013; 73:LB-86; https://doi.org/10.1158/1538-7445.AM2013-LB-86
  • Garcia-Lora A, Algarra I, Garrido F. MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol 2003; 195:346-55; PMID:12704644; https://doi.org/10.1002/jcp.10290
  • Chang CC, Ferrone S. Immune selective pressure and HLA class I antigen defects in malignant lesions. Cancer Immunol Immunother 2007; 56:227-36; PMID:16783578; https://doi.org/10.1007/s00262-006-0183-1
  • Campoli M, Ferrone S. HLA antigen changes in malignant cells: Epigenetic mechanisms and biologic significance. Oncogene 2008; 27:5869-85; PMID:18836468; https://doi.org/10.1038/onc.2008.273
  • Khan AN, Magner WJ, Tomasi TB. An epigenetically altered tumor cell vaccine. Cancer Immunol Immunother 2004; 53:748-54; PMID:14997346; https://doi.org/10.1007/s00262-004-0513-0
  • Magner WJ, Kazim AL, Stewart C, Romano MA, Catalano G, Grande C, Keiser N, Santaniello F, Tomasi TB. Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J Immunol 2000; 165:7017-24; PMID:11120829; https://doi.org/10.4049/jimmunol.165.12.7017
  • Tomasi TB, Magner WJ, Khan AN. Epigenetic regulation of immune escape genes in cancer. Cancer Immunol Immunother 2006; 55:1159-84; PMID:16680460; https://doi.org/10.1007/s00262-006-0164-4
  • Coral S, Sigalotti L, Gasparollo A, Cattarossi I, Visintin A, Cattelan A, Altomonte M, Maio M. Prolonged upregulation of the expression of HLA class I antigens and costimulatory molecules on melanoma cells treated with 5-aza-2′-deoxycytidine (5-AZA-CdR). J Immunother 1999; 22:16-24; PMID:9924695; https://doi.org/10.1097/00002371-199901000-00003
  • Fonsatti E, Nicolay HJ, Sigalotti L, Calabro L, Pezzani L, Colizzi F, Altomonte M, Guidoboni M, Marincola FM, Maio M. Functional up-regulation of human leukocyte antigen class I antigens expression by 5-aza-2′-deoxycytidine in cutaneous melanoma: immunotherapeutic implications. Clin Cancer Res 2007; 13:3333-8; PMID:17545540; https://doi.org/10.1158/1078-0432.CCR-06-3091
  • Capece D, Verzella D, Fischietti M, Zazzeroni F, Alesse E. Targeting costimulatory molecules to improve antitumor immunity. J Biomed Biotechnol 2012; 2012:926321; PMID:22500111; https://doi.org/10.1155/2012/926321
  • Garcia KC, Teyton L, Wilson IA. Structural basis of T cell recognition. Annu Rev Immunol 1999; 17:369-97; PMID:10358763; https://doi.org/10.1146/annurev.immunol.17.1.369
  • Aleksic M, Dushek O, Zhang H, Shenderov E, Chen JL, Cerundolo V, Coombs D, van der Merwe PA. Dependence of T cell antigen recognition on T cell receptor-peptide MHC confinement time. Immunity 2010; 32:163-74; PMID:20137987; https://doi.org/10.1016/j.immuni.2009.11.013
  • Jenkins MK, Schwartz RH. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J Exp Med 1987; 165:302-19; PMID:3029267; https://doi.org/10.1084/jem.165.2.302
  • Ishii N, Takahashi T, Soroosh P, Sugamura K. OX40-OX40 ligand interaction in T-cell-mediated immunity and immunopathology. Adv Immunol 2010; 105:63-98; PMID:20510730; https://doi.org/10.1016/S0065-2776(10)05003-0
  • Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 2007; 27:111-22; PMID:17629517; https://doi.org/10.1016/j.immuni.2007.05.016
  • Curtsinger JM, Schmidt CS, Mondino A, Lins DC, Kedl RM, Jenkins MK, Mescher MF. Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol 1999; 162:3256-62; PMID:10092777
  • Wang LX, Mei ZY, Zhou JH, Yao YS, Li YH, Xu YH, Li JX, Gao XN, Zhou MH, Jiang MM, et al. Low dose decitabine treatment induces CD80 expression in cancer cells and stimulates tumor specific cytotoxic T lymphocyte responses. PLoS One 2013; 8:e62924; PMID:23671644; https://doi.org/10.1371/journal.pone.0062924
  • Yang H, Bueso-Ramos C, DiNardo C, Estecio MR, Davanlou M, Geng QR, Fang Z, Nguyen M, Pierce S, Wei Y, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 2014; 28:1280-8; PMID:24270737; https://doi.org/10.1038/leu.2013.355
  • Villagra A, Sotomayor EM, Seto E. Histone deacetylases and the immunological network: Implications in cancer and inflammation. Oncogene 2010; 29:157-73; PMID:19855430; https://doi.org/10.1038/onc.2009.334
  • Nagy JA, Chang SH, Dvorak AM, Dvorak HF. Why are tumour blood vessels abnormal and why is it important to know? Br J Cancer 2009; 100:865-9; PMID:19240721; https://doi.org/10.1038/sj.bjc.6604929
  • Barsoum IB, Koti M, Siemens DR, Graham CH. Mechanisms of hypoxia-mediated immune escape in cancer. Cancer Res 2014; 74:7185-90; PMID:25344227; https://doi.org/10.1158/0008-5472.CAN-14-2598
  • Mauge L, Terme M, Tartour E, Helley D. Control of the adaptive immune response by tumor vasculature. Front Oncol 2014; 4:61; PMID:24734218; https://doi.org/10.3389/fonc.2014.00061
  • Muller WA. Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol 2003; 24:327-34; PMID:12810109; https://doi.org/10.1016/S1471-4906(03)00117-0
  • Muller WA. Mechanisms of transendothelial migration of leukocytes. Circ Res 2009; 105:223-30; PMID:19644057; https://doi.org/10.1161/CIRCRESAHA.109.200717
  • Lu Y, Chu A, Turker MS, Glazer PM. Hypoxia-induced epigenetic regulation and silencing of the BRCA1 promoter. Mol Cell Biol 2011; 31:3339-50; PMID:21670155; https://doi.org/10.1128/MCB.01121-10
  • Yeh JJ, Kim WY. Targeting tumor hypoxia with hypoxia-activated prodrugs. J Clin Oncol 2015; 33:1505-8; PMID:25800764; https://doi.org/10.1200/JCO.2014.60.0759
  • Jain RK. Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science 2005; 307:58-62; PMID:15637262; https://doi.org/10.1126/science.1104819
  • Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res 2010; 70:6171-80; PMID:20631075; https://doi.org/10.1158/0008-5472.CAN-10-0153
  • Tripathi C, Tewari BN, Kanchan RK, Baghel KS, Nautiyal N, Shrivastava R, Kaur H, Bhatt ML, Bhadauria S. Macrophages are recruited to hypoxic tumor areas and acquire a pro-angiogenic M2-polarized phenotype via hypoxic cancer cell derived cytokines Oncostatin M and Eotaxin. Oncotarget 2014; 5:5350-68; PMID:25051364; https://doi.org/10.18632/oncotarget.2110
  • Paulmurugan R, Oronsky B, Brouse CF, Reid T, Knox S, Scicinski J. Real time dynamic imaging and current targeted therapies in the war on cancer: A new paradigm. Theranostics 2013; 3:437-47; PMID:23781290; https://doi.org/10.7150/thno.5658
  • Kim M, Parmar H, Cao Y, Pramanik P, Schipper M, Hayman J, Junck L, Mammoser A, Heth J, Carter CA, et al. Whole brain radiotherapy and RRx-001: A case report of two partial responses in radioresistant melanoma brain metastases. Transl Oncol 2016; 9:108-13; PMID:27084426; https://doi.org/10.1016/j.tranon.2015.12.003
  • Kim R, Emi M, Tanabe K, Arihiro K. Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res 2006; 66:5527-36; PMID:16740684; https://doi.org/10.1158/0008-5472.CAN-05-4128
  • Yasmin R, Siraj S, Hassan A, Khan AR, Abbasi R, Ahmad N. Epigenetic regulation of inflammatory cytokines and associated genes in human malignancies. Mediators Inflamm 2015; 2015:201703; PMID:25814785; https://doi.org/10.1155/2015/201703
  • Hedjran F, Shantanu K, Tony R. Deletion analysis of Ad5 E1a transcriptional control region: Impact on tumor-selective expression of E1a and E1b. Cancer Gene Ther 2011; 18:717-23; PMID:21818136; https://doi.org/10.1038/cgt.2011.41
  • Oelkrug C, Ramage JM. Enhancement of T cell recruitment and infiltration into tumours. Clin Exp Immunol 2014; 178:1-8; PMID:24828133; https://doi.org/10.1111/cei.12382
  • He J, Hu Y, Hu M, Li B. Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci Rep 2015; 5:13110; PMID:26279307; https://doi.org/10.1038/srep13110
  • Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat Med 2002; 8:793-800; PMID:12091876; https://doi.org/10.1038/nm0902-1039c
  • Mellor AL, Munn DH. Tryptophan catabolism and T-cell tolerance: Immunosuppression by starvation? Immunol Today 1999; 20:469-73; PMID:10500295; https://doi.org/10.1016/S0167-5699(99)01520-0
  • Lob S, Konigsrainer A, Rammensee HG, Opelz G, Terness P. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: Can we see the wood for the trees? Nat Rev Cancer 2009; 9:445-52; PMID:19461669; https://doi.org/10.1038/nrc2639
  • Munn DH, Mellor AL. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest 2007; 117:1147-54; PMID:17476344; https://doi.org/10.1172/JCI31178
  • Xue ZT, Sjogren HO, Salford LG, Widegren B. An epigenetic mechanism for high, synergistic expression of indoleamine 2,3-dioxygenase 1 (IDO1) by combined treatment with zebularine and IFN-gamma: potential therapeutic use in autoimmune diseases. Mol Immunol 2012; 51:101-11; PMID:22424783; https://doi.org/10.1016/j.molimm.2012.01.006
  • Opitz CA, Litzenburger UM, Opitz U, Sahm F, Ochs K, Lutz C, Wick W, Platten M. The indoleamine-2,3-dioxygenase (IDO) inhibitor 1-methyl-D-tryptophan upregulates IDO1 in human cancer cells. PLoS One 2011; 6:e19823; PMID:21625531; https://doi.org/10.1371/journal.pone.0019823
  • Beatty G, O'Dwyer P, Clark J, Shi J, Newton R, Schaub R, et al. Phase I study of the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of the oral inhibitor of indoleamine 2,3-dioxygenase (IDO1) INCB024360 in patients (pts) with advanced malignancies. J Clin Oncol 2013; 31: Abstract 3025; PMID:23775954
  • Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006; 6:295-307; PMID:16557261; https://doi.org/10.1038/nri1806
  • Beyer M, Schultze JL. Regulatory T cells: major players in the tumor microenvironment. Curr Pharm Des 2009; 15:1879-92; PMID:19519430; https://doi.org/10.2174/138161209788453211
  • deLeeuw RJ, Kost SE, Kakal JA, Nelson BH. The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: A critical review of the literature. Clin Cancer Res 2012; 18:3022-9; PMID:22510350; https://doi.org/10.1158/1078-0432.CCR-11-3216
  • Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity. Int J Cancer 2010; 127:759-67; PMID:20518016; https://doi.org/10.1002/ijc.25429
  • Andersson J, Tran DQ, Pesu M, Davidson TS, Ramsey H, O'Shea JJ, Shevach EM. CD4+ FoxP3+ regulatory T cells confer infectious tolerance in a TGF-beta-dependent manner. J Exp Med 2008; 205:1975-81; PMID:18710931; https://doi.org/10.1084/jem.20080308
  • Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J, Schlawe K, Chang HD, Bopp T, Schmitt E, et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol 2007; 5:e38; PMID:17298177; https://doi.org/10.1371/journal.pbio.0050038
  • Morita R, Hirohashi Y, Sato N. Depletion of tregs in vivo: A promising approach to enhance antitumor immunity without autoimmunity. Immunotherapy 2012; 4:1103-5; PMID:23194360; https://doi.org/10.2217/imt.12.116
  • Paschall AV, Liu K. Epigenetic regulation of apoptosis and cell cycle regulatory genes in human colon carcinoma cells. Genom Data 2015; 5:189-91; PMID:26309812; https://doi.org/10.1016/j.gdata.2015.05.043
  • Fulda S. Tumor resistance to apoptosis. Int J Cancer 2009; 124:511-5; PMID:19003982; https://doi.org/10.1002/ijc.24064
  • Hervouet E, Cheray M, Vallette FM, Cartron PF. DNA methylation and apoptosis resistance in cancer cells. Cells 2013; 2:545-73; PMID:24709797; https://doi.org/10.3390/cells2030545
  • Tallen G, Riabowol K. Keep-ING balance: Tumor suppression by epigenetic regulation. FEBS Lett 2014; 588:2728-42; PMID:24632289; https://doi.org/10.1016/j.febslet.2014.03.011
  • Zuckerman V, Wolyniec K, Sionov RV, Haupt S, Haupt Y. Tumour suppression by p53: The importance of apoptosis and cellular senescence. J Pathol 2009; 219:3-15; PMID:19562738; https://doi.org/10.1002/path.2584
  • Suda T, Takahashi T, Golstein P, Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 1993; 75:1169-78; PMID:7505205; https://doi.org/10.1016/0092-8674(93)90326-L
  • Nagata S, Golstein P. The Fas death factor. Science 1995; 267:1449-56; PMID:7533326; https://doi.org/10.1126/science.7533326
  • Green DR, Ferguson TA. The role of Fas ligand in immune privilege. Nat Rev Mol Cell Biol 2001; 2:917-24; PMID:11733771; https://doi.org/10.1038/35103104
  • Maecker HL, Yun Z, Maecker HT, Giaccia AJ. Epigenetic changes in tumor Fas levels determine immune escape and response to therapy. Cancer Cell 2002; 2:139-48; PMID:12204534; https://doi.org/10.1016/S1535-6108(02)00095-8
  • Hahne M, Rimoldi D, Schroter M, Romero P, Schreier M, French LE, Schneider P, Bornand T, Fontana A, Lienard D, et al. Melanoma cell expression of Fas(Apo-1/CD95) ligand: Implications for tumor immune escape. Science 1996; 274:1363-6; PMID:8910274; https://doi.org/10.1126/science.274.5291.1363
  • O'Connell J, O'Sullivan GC, Collins JK, Shanahan F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med 1996; 184:1075-82; PMID:9064324; https://doi.org/10.1084/jem.184.3.1075
  • Favre-Felix N, Fromentin A, Hammann A, Solary E, Martin F, Bonnotte B. Cutting edge: The tumor counterattack hypothesis revisited: Colon cancer cells do not induce T cell apoptosis via the Fas (CD95, APO-1) pathway. J Immunol 2000; 164:5023-7; PMID:10799856; https://doi.org/10.4049/jimmunol.164.10.5023
  • McDermott D, Lebbe C, Hodi FS, Maio M, Weber JS, Wolchok JD, Thompson JA, Balch CM. Durable benefit and the potential for long-term survival with immunotherapy in advanced melanoma. Cancer Treat Rev 2014; 40:1056-64; PMID:25060490; https://doi.org/10.1016/j.ctrv.2014.06.012
  • Mack GS. Epigenetic cancer therapy makes headway. J Natl Cancer Inst 2006; 98:1443-4; PMID:17047192; https://doi.org/10.1093/jnci/djj447
  • Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol 2015; 33:1974-82; PMID:25605845; https://doi.org/10.1200/JCO.2014.59.4358
  • Garcia JS, Jain N, Godley LA. An update on the safety and efficacy of decitabine in the treatment of myelodysplastic syndromes. Onco Targets Ther 2010; 3:1-13; PMID:20616953