1,421
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

Effect of sodium dodecyl sulfate on the production of L-isoleucine by the fermentation of Corynebacterium glutamicum

ORCID Icon, & ORCID Icon
Pages 1124-1136 | Received 31 Aug 2020, Accepted 28 Sep 2020, Published online: 21 Oct 2020

References

  • Zhang Y, Liu Y, Zhang S, et al. Metabolic engineering of Corynebacterium glutamicum WM001 to improve l-isoleucine production. Biotechnol Appl Biochem. 2020;50;122–141.
  • Shi F, Zhang SP, Li YF, et al. Enhancement of substrate supply and ido expression to improve 4-hydroxyisoleucine production in recombinant Corynebacterium glutamicum ssp. lactofermentum. Appl Microbiol Biotechnol. 2019;103:4113–4124.
  • Wang XY. Strategy for improving L-isoleucine production efficiency in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2019;103:2101–2111.
  • Becker J, Rohles CM, Wittmann C. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng. 2018;50:122–141.
  • Ma WJ, Wang JL, Li Y, et al. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-produced with L-isoleucine in Corynebacterium glutamicum WM001. Microb Cell Fact. 2018;17:12.
  • Chen G, Bei Q, Shi K, et al. Saturation effect and transmembrane conversion of Monascus pigment in nonionic surfactant aqueous solution. AMB Express. 2017;7:24.
  • Zheng Q, Gao S. The effect of surfactant on fermentation of kitasamycin in Streptomyces kitasatoensis. Biotechnol Appl Biochem. 2016;63:895–900.
  • Özçelik B, Aytar P, Gedikli S, et al. Production of an alkaline protease using Bacillus pumilus D3 without inactivation by SDS, its characterization and purification. J Enzyme Inhib Med Chem. 2014;29:388–396.
  • Messina CM, Faggio C, Laudicella VA, et al. Effect of sodium dodecyl sulfate (SDS) on stress response in the mediterranean mussel (Mytilus Galloprovincialis): regulatory volume decrease (Rvd) and modulation of biochemical markers related to oxidative stress. Aquat Toxicol. 2014;157:94–100.
  • Zhao W, Huang PP, Zhu ZD, et al. Production of phenolic compounds and antioxidant activity via bioconversion of wheat straw byInonotus obliquus under submerged fermentation with the aid of a surfactant. J Sci Food Agric.2020, 9.
  • Oliva-Taravilla A, Carrasco C, Jonsson LJ, et al. Effects of biosurfactants on enzymatic saccharification and fermentation of pretreated softwood. Basel, Switzerland: Molecules; 2020. 25.16.
  • Yang XB, Yang YY, Zhang YF, et al. Enhanced exopolysaccharide production in submerged fermentation of Ganoderma lucidumby Tween 80 supplementation. Bioprocess Biosyst Eng.2020. 10.
  • Rodriguez A, Gea T, Sanchez A, et al. Agro-wastes and inert materials as supports for the production of biosurfactants by solid-state fermentation. Waste Biomass Valorization. 2020.14.
  • Xiao WJ, Song HT, Li HN, et al. Effect of different biological surfactants on engineering saccharomyces cerevisiae in simultaneous saccharification and fermentation of corncob. BioResources. 2020;15:2512–2524.
  • Xu N, Liu SX, Xu LJ, et al. Enhanced rhamnolipids production using a novel bioreactor system based on integrated foam-control and repeated fed-batch fermentation strategy. Biotechnol Biofuels. 2020;13:10.
  • Mahato RK, Fatema IT, Rajagopalan G. Thermostable, solvent, surfactant, reducing agent and chelator resistant alpha-amylase from bacillus strain IBT108: a suitable candidate enables one-step fermentation of waste potato for high butanol and hydrogen production. Waste Biomass Valorization. 2020.16.
  • Yang XL, Dong Y, Liu GR, et al. Effects of nonionic surfactants on pigment excretion and cell morphology in extractive fermentation of Monascus sp. NJ1 (vol 99, pg 1233, 2018). J Sci Food Agric.2020. 1.
  • Pasternak G, Askitosari TD, Rosenbaum MA. Biosurfactants and synthetic surfactants in bioelectrochemical systems: a mini-review. Front Microbiol. 2020;11:9.
  • Liu D, Geiselman GM, Coradetti S, et al. Exploiting nonionic surfactants to enhance fatty alcohol production in Rhodosporidium toruloides. Biotechnol Bioeng. 2020;117:1418–1425.
  • Yuan K, Huang BQ, Qin TT, et al. Effect of SDS on release of intracellular pneumocandin B-0 in extractive batch fermentation of Glarea lozoyensis. Appl Microbiol Biotechnol. 2019;103:6061–6069.
  • Xu XQ, Wu P, Wang TZ, et al. Synergistic effects of surfactant-assisted biodegradation of wheat straw and production of polysaccharides by Inonotus obliquus under submerged fermentation. Bioresour Technol. 2019;278:43–50.
  • Yang XL, Dong Y, Liu GR, et al. Effects of nonionic surfactants on pigment excretion and cell morphology in extractive fermentation of Monascus sp. NJ1. J Sci Food Agric. 2019;99:1233–1239.
  • Zhu SY, Sui J, Liu Y, et al. Effects of washing, autoclaving, and surfactants on the enzymatic hydrolysis of negatively valued paper mill sludge for sugar production. Energy Fuels. 2019;33:1219–1226.
  • Singh K, Gedam PS, Raut AN, et al. Enhanced n-butanol production by Clostridium beijerinckii MCMB 581 in presence of selected surfactant. 3 Biotech. 2017;7:161.
  • Sekhon JK, Rosentrater KA, Jung S, et al. Effect of co-products of enzyme-assisted aqueous extraction of soybeans, enzymes, and surfactant on oil recovery from integrated corn-soy fermentation. Ind Crop Prod. 2018;121:441–451.
  • Yang X, Dong Y, Liu G, et al. Effects of nonionic surfactants on pigment excretion and cell morphology in extractive fermentation of Monascus sp. NJ1. J Sci Food Agric. 2019;99:1233–1239.
  • Becker J, Gießelmann G, Hoffmann SL, et al. Corynebacterium glutamicum for sustainable bioproduction: from metabolic physiology to systems metabolic engineering. Adv Biochem Eng Biotechnol. 2018;162:217–263.
  • Ma W, Wang J, Li Y, et al. Cysteine synthase A overexpression in Corynebacterium glutamicum enhances l-isoleucine production. Biotechnol Appl Biochem. 2019;66:74–81.
  • Wang X. Strategy for improving L-isoleucine production efficiency in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2019;103:2101–2111.
  • Chen X, Wang Y, Dong X, et al. Engineering rTCA pathway and C4-dicarboxylate transporter for l -malic acid production. Appl Microbiol Biotechnol. 2017;101:1–12.
  • Yang L, Lübeck M, Lübeck PS. Aspergillus as a versatile cell factory for organic acid production. Fungal Biol Rev. 2016;31:33–49.
  • Yin X, Li J, Shin HD, et al. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: advances and prospects. Biotechnol Adv. 2015;33:830–841.