467
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Synergistic strengthening of crack-free Al–Zn–Mg–Cu alloys with hierarchical microstructures achieved via laser powder bed fusion

, ORCID Icon, , , , , , & ORCID Icon show all
Pages 598-605 | Received 28 Feb 2024, Published online: 06 Jun 2024

References

  • Li G, Tunca B, Senol S, et al. Revealing the precipitation behavior of crack-free TiB2/Al-Zn-Mg-Cu composites manufactured by Laser Powder Bed Fusion. Addit Manuf. 2023;66:103460. doi:10.1016/j.addma.2023.103460
  • Martin JH, Yahata BD, Hundley JM, et al. 3D printing of high-strength aluminium alloys. Nature. 2017;549(7672):365–369. doi:10.1038/nature23894
  • Zhou L, Pan H, Hyer H, et al. Microstructure and tensile property of a novel AlZnMgScZr alloy additively manufactured by gas atomization and laser powder bed fusion. Scr Mater. 2019;158:24–28. doi:10.1016/j.scriptamat.2018.08.025
  • Patel M, Aggarwal A, Kumar A. Investigation of cracking susceptibility and porosity formation and its mitigation techniques in laser powder bed fusion of Al 7075 alloy. Met Mater Int. 2023;29(8):2358–2373. doi:10.1007/s12540-023-01387-w
  • Liu X, Liu Y, Zhou Z, et al. Enhanced strength and ductility in Al-Zn-Mg-Cu alloys fabricated by laser powder bed fusion using a synergistic grain-refining strategy. J Mater Sci Technol. 2022;124:41–52. doi:10.1016/j.jmst.2021.12.078
  • Xiao F, Wang S, Wang Y, et al. Niobium nanoparticle-enabled grain refinement of a crack-free high strength Al-Zn-Mg-Cu alloy manufactured by selective laser melting. J Alloys Compd. 2022;900:163427. doi:10.1016/j.jallcom.2021.163427
  • Zhu Z, Ng FL, Seet HL, et al. Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation. Mater Today. 2022;52:90–101. doi:10.1016/j.mattod.2021.11.019
  • Choe J, Kim KT, Yu JH, et al. A novel route for predicting the cracking of inoculant-added AA7075 processed via laser powder bed fusion. Addit Manuf. 2023;62:103370. doi:10.1016/j.addma.2022.103370
  • Qi Y, Hu Z, Zhang H, et al. High strength Al–Li alloy development for laser powder bed fusion. Addit Manuf. 2021;47:102249. doi:10.1016/j.addma.2021.102249
  • Qi Y, Zhang H, Yang X, et al. Achieving superior high-temperature mechanical properties in Al-Cu-Li-Sc-Zr alloy with nano-scale microstructure via laser additive manufacturing. Mater Res Lett. 2024;12(1):17–25. doi:10.1080/21663831.2023.2285388
  • Lee JA, Choe J, Kim HS. Prediction of Crack Density in additive manufactured AA7075 alloy reinforced with ZrH2 inoculant via response surface method. J Powder Mater. 2023;30(3):203–209. doi:10.4150/KPMI.2023.30.3.203
  • Bayoumy D, Kwak K, Boll T, et al. Origin of non-uniform plasticity in a high-strength Al-Mn-Sc based alloy produced by laser powder bed fusion. J Mater Sci Technol. 2022;103:121–133. doi:10.1016/j.jmst.2021.06.042
  • Jeong SG, Karthik GM, Kim ES, et al. Architectured heterogeneous alloys with selective laser melting. Scr Mater. 2022;208:114332. doi:10.1016/j.scriptamat.2021.114332
  • Park JM, Choe J, Park HK, et al. Synergetic strengthening of additively manufactured (CoCrFeMnNi)99C1 high-entropy alloy by heterogeneous anisotropic microstructure. Addit Manuf. 2020;35:101333. doi:10.1016/j.addma.2020.101333
  • Yang M, Pan Y, Yuan F, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4(3):145–151. doi:10.1080/21663831.2016.1153004
  • Gu GH, Kim RE, Kim ES, et al. Multi-scale investigation on local strain and damage evolution of Al1050/steel/Al1050 clad sheet. J Mater Res Technol. 2022;20:128–138. doi:10.1016/j.jmrt.2022.07.056
  • Zhu Y, Wu X. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater Res Lett. 2019;7(10):393–398. doi:10.1080/21663831.2019.1616331
  • Wang Z, Lin X, Kang N, et al. Laser powder bed fusion of high-strength Sc/Zr-modified Al–Mg alloy: phase selection, microstructural/mechanical heterogeneity, and tensile deformation behavior. J Mater Sci Technol. 2021;95:40–56. doi:10.1016/j.jmst.2021.03.069
  • Liu X, Liu Y, Zhou Z, et al. A combination strategy for additive manufacturing of AA2024 high-strength aluminium alloys fabricated by laser powder bed fusion: role of hot isostatic pressing. Mater Sci Eng, A. 2022;850:143597. doi:10.1016/j.msea.2022.143597
  • Li Y-z, Zeng G-j, Lu D-d, et al. Effect of sub-structure and precipitation behavior on mechanical properties of Al–xCu–Li alloys. Met Mater Int. 2023;29(11):3204–3221. doi:10.1007/s12540-023-01439-1
  • Tian S, Li J, Zhang J, et al. Effect of Zr and Sc on microstructure and properties of 7136 aluminum alloy. J Mater Res Technol. 2019;8(5):4130–4140. doi:10.1016/j.jmrt.2019.07.022
  • Wang Z, Lin X, Tang Y, et al. Laser-based directed energy deposition of novel Sc/Zr-modified Al-Mg alloys: columnar-to-equiaxed transition and aging hardening behavior. J Mater Sci Technol. 2021;69:168–179. doi:10.1016/j.jmst.2020.08.003
  • Mukherjee T, Wei HL, De A, et al. Heat and fluid flow in additive manufacturing – Part II: powder bed fusion of stainless steel, and titanium, nickel and aluminum base alloys. Comput Mater Sci. 2018;150:369–380. doi:10.1016/j.commatsci.2018.04.027
  • Wang Y, Lin X, Kang N, et al. Laser powder bed fusion of Zr-modified Al-Cu-Mg alloy: Crack-inhibiting, grain refinement, and mechanical properties. Mater Sci Eng, A. 2022;838:142618. doi:10.1016/j.msea.2022.142618
  • Opprecht M, Garandet J-P, Roux G, et al. A solution to the hot cracking problem for aluminium alloys manufactured by laser beam melting. Acta Mater. 2020;197:40–53. doi:10.1016/j.actamat.2020.07.015
  • Yang W, Jung Y-G, Kwak TY, et al. Effects of volumetric energy density and build plate preheating on the mechanical properties of a high-Mg AlMg10ScZr alloy processed by powder bed fusion. Met Mater Int. 2022;29(6):1596–1606. doi:10.1007/s12540-022-01318-1
  • Munusamy S, Jerald J. Effect of in-situ intrinsic heat treatment in metal additive manufacturing: a comprehensive review. Met Mater Int. 2023;29(12):3423–3441. doi:10.1007/s12540-023-01462-2
  • Czerwinski F. Thermal stability of aluminum alloys. Materials (Basel). 2020;13(15):3441. doi:10.3390/ma13153441
  • Raabe D, Herbig M, Sandlöbes S, et al. Grain boundary segregation engineering in metallic alloys: a pathway to the design of interfaces. Curr Opin Solid State Mater Sci. 2014;18(4):253–261. doi:10.1016/j.cossms.2014.06.002
  • Hall E. The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc B. 1951;64(9):747. doi:10.1088/0370-1301/64/9/303
  • Petch N. The cleavage strength of polycrystals. J Iron Steel Inst. 1953;174:25–28.
  • Xu R, Li R, Yuan T, et al. Laser powder bed fusion of Al–Mg–Zr alloy: Microstructure, mechanical properties and dynamic precipitation. Mater Sci Eng, A. 2022;859:144181. doi:10.1016/j.msea.2022.144181
  • Bouaziz O, Kim HS, Lee J, et al. Bauschinger effect or kinematic hardening: bridging microstructure and continuum mechanics. Met Mater Int. 2022;29(2):280–292. doi:10.1007/s12540-022-01227-3
  • Zhou H, Huang C, Sha X, et al. In-situ observation of dislocation dynamics near heterostructured interfaces. Mater Res Lett. 2019;7(9):376–382. doi:10.1080/21663831.2019.1616330
  • Wang YF, Huang CX, Fang XT, et al. Hetero-deformation induced (HDI) hardening does not increase linearly with strain gradient. Scr Mater. 2020;174:19–23. doi:10.1016/j.scriptamat.2019.08.022
  • Tan Q, Zhang J, Sun Q, et al. Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles. Acta Mater. 2020;196:1–16. doi:10.1016/j.actamat.2020.06.026
  • Ma K, Wen H, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 2014;62:141–155. doi:10.1016/j.actamat.2013.09.042
  • Wang J, Zhang S, Lu R, et al. A crack-free and high-strength Al-Cu-Mg-Mn-Zr alloy fabricated by laser powder bed fusion. Mater Sci Eng A. 2022;854:143731. doi:10.1016/j.msea.2022.143731
  • Wang Y, Lin X, Zhao Y, et al. Microstructure and strengthening mechanisms of Zr-modified Al–Cu–Mg alloy processed by selective laser melting. Mater Sci Eng A. 2023;870:144874. doi:10.1016/j.msea.2023.144874
  • Li X, Liu Y, Zhou Z. Grain refinement and performance enhancement of laser powder bed fusion in-situ processed Al-Mg alloy modified by ScH3 and ZrH2. Mater Charact. 2022;190:112068. doi:10.1016/j.matchar.2022.112068