386
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Influence of co-sputtering AlB2 to TaB2 on stoichiometry of non-reactively sputtered boride thin films

, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 561-570 | Received 10 May 2024, Published online: 02 Jun 2024

References

  • Moraes V, Riedl H, Fuger C, et al. Ab initio inspired design of ternary boride thin films. Sci Rep. 2018;8:9288. doi:10.1038/s41598-018-27426-w
  • Euchner H, Mayrhofer PH. Designing thin film materials — ternary borides from first principles. Thin Solid Films. 2015;583:46–49. doi:10.1016/j.tsf.2015.03.035
  • Magnuson M, Hultman L, Högberg H. Review of transition-metal diboride thin films. Vacuum. 2022;196:110567. doi:10.1016/j.vacuum.2021.110567
  • Fuger C, Hahn R, Hirle A, et al. Revisiting the origins of super-hardness in TiB2+z thin films – impact of growth conditions and anisotropy. Surf Coat Technol. 2022;446:128806. doi:10.1016/j.surfcoat.2022.128806
  • Cao Y, Li T, Xu Y, et al. Theoretical predictions of stability, electronic properties, elastic anisotropy, thermodynamics, and optical properties of MB2 (M = V, Nb, Zr). J. Mater. Sci. 2022;57:4605–4624. doi:10.1007/s10853-022-06898-2
  • Yu H, Namini AS, Shakeri MS, et al. HRTEM study and mechanical properties of ZrB2–SiC composite: An insight into in-situ carbon formation over the SPS process. Int J Refract Met Hard Mater. 2022;104:105789. doi:10.1016/j.ijrmhm.2022.105789
  • Nedfors N, Tengstrand O, Lu J, et al. Superhard NbB2− thin films deposited by dc magnetron sputtering. Surf Coat Technol. 2014;257:295–300. doi:10.1016/j.surfcoat.2014.07.087
  • Nayak S, Singh CK, Dahlqvist M, et al. First-principles study on the superconductivity of doped zirconium diborides. Phys. Rev. Mater. 2022;6:044805. doi:10.1103/PhysRevMaterials.6.044805
  • Šroba V, Fiantok T, Truchlý M, et al. Structure evolution and mechanical properties of hard tantalum diboride films. J Vac Sci Technol A. 2020;38:033408. doi:10.1116/6.0000155.
  • Ding L-P, Shao P, Zhang F-H, et al. Crystal structures, stabilities, electronic properties, and hardness of mob2: first-principles calculations. Inorg. Chem. 2016;55:7033–7040. doi:10.1021/acsmorgchem.6b00899
  • Hahn R, Moraes V, Limbeck A, et al. Electron-configuration stabilized (W. Al)B2 solid solutions. Acta Mater. 2019;174:398–405. doi:10.1016/j.actamat.2019.05.056
  • Moraes V, Fuger C, Paneta V, et al. Substoichiometry and tantalum dependent thermal stability of α-structured W-Ta-B thin films. Scr Mater 2018;155:5–10. doi:10.1016/j.scriptamat.2018.06.005
  • Dahlqvist M, Jansson U, Rosen J. Influence of boron vacancies on phase stability, bonding and structure of MB2 (M  =  Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) with AlB2 type structure. J. Phys. Condens. Matter. 2015;27:435702. doi:10.1088/0953-8984/27/43/435702
  • Bakhit B, Palisaitis J, Thörnberg J, et al. Improving the high-temperature oxidation resistance of TiB2 thin films by alloying with Al. Acta Mater. 2020;196:677–689. doi:10.1016/j.actamat.2020.07.025
  • Navidi Kashani AH, Mráz S, Holzapfel DM, et al. Synthesis and oxidation behavior of Ti0.35Al0.65By (y = 1.7–2.4) coatings. Surf Coat Technol. 2022;442:128190. doi:10.1016/j.surfcoat.2022.128190
  • Navidi Kashani AH, Hans M, Lellig S, et al. Morphology, mechanical properties, and oxidation behavior of stoichiometric Ti0.33-xAlxB0.67 coatings (x = 0.04, 0.15, 0.21, and 0.28). Acta Mater. 2024;270:119829. doi:10.1016/j.actamat.2024.119829
  • Bliem P, Mráz S, Sen S, et al. Self-passivating (Re,Al)B2 coatings synthesized by magnetron sputtering. Sci Rep 2018;8:15570. doi:10.1038/s41598-018-34042-1
  • Šroba V, Fiantok T, Truchlý M, et al. Structure evolution and mechanical properties of Al-alloyed tantalum diboride films prepared by magnetron sputtering co-deposition. J Vac Sci Technol A. 2023;41:023410. doi:10.1116/6.0002390
  • Goncharov AA, Konovalov VA, Stupak VA. Effect of bias voltage on the structure of thin tantalum boride films. Tech Phys Lett. 2007;33:190–191. doi:10.1134/S1063785007030029
  • Lin S-T, Lee C. Growth of tantalum boride films by RF magnetron sputtering effect of bias. J. Electrochem. Soc. 2003;150:G607–G611. doi:10.1149/1.1603253
  • Liu C, Gu X, Zhang K, et al. Superhard metallic compound TaB2 via crystal orientation resolved strain stiffening. Phys. Rev. B. 2022;105:024105. doi:10.1103/PhysRevB.105.024105
  • Pettifor DG. Theoretical predictions of structure and related properties of intermetallics. Mater Sci Technol. 1992;8:345–349. doi:10.1179/mst.1992.8.4.345
  • Pugh SF. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dubl. Phil. Mag. 1954;45:823–843. doi:10.1080/14786440808520496
  • Glechner T, Oemer HG, Wojcik T, et al. Influence of Si on the oxidation behavior of TM-Si-B2 ± z coatings (TM = Ti, Cr, Hf. Ta, W). Surf. Coat. Technol. 2022;434:128178. doi:10.1016/j.surfcoat.2022.128178
  • Neidhardt J, Mráz S, Schneider JM, et al. Experiment and simulation of the compositional evolution of Ti–B thin films deposited by sputtering of a compound target. J. Appl. Phys. 2008;104:063304. doi:10.1063/1.2978211
  • Petrov I, Hall A, Mei AB, et al. Controlling the boron-to-titanium ratio in magnetron-sputter-deposited TiBx thin films. J Vac Sci Technol A. 2017;35:050601. doi:10.1116/1.4982649
  • Hellgren N, Thörnberg J, Zhirkov I, et al. High-power impulse magnetron sputter deposition of TiBx thin films: Effects of pressure and growth temperature. Vacuum. 2019;169:108884. doi:10.1016/j.vacuum.2019.108884
  • Dahlqvist M, Rosen J. Impact of vacancies on structure, stability and properties of hexagonal transition metal diborides, MB2 (M = Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, and Fe). Materialia. 2022;26:101629. doi:10.1016/j.mtla.2022.101629
  • Cakara A, Bonta M, Riedl H, et al. Development of a multi-variate calibration approach for quantitative analysis of oxidation resistant Mo–Si–B coatings using laser ablation inductively coupled plasma mass spectrometry. Spectrochim Acta Part B. 2016;120:57–62. doi:10.1016/j.sab.2016.04.004
  • Bahr A, Richter S, Hahn R, et al. Oxidation behaviour and mechanical properties of sputter-deposited TMSi2 coatings (TM = Mo, Ta, Nb). J. Alloys. Compd. 2023;931:167532. doi:10.1016/j.jallcom.2022.167532
  • Ziegler JF, Ziegler MD, Biersack JP. SRIM – the stopping and range of ions in matter (2010). Nucl. Inst. Meth. Phys. Res. B. 2010;268:1818–1823. doi:10.1016/j.nimb.2010.02.091
  • Chien Y-P, Mráz S, Fekete M, et al. Deviations between film and target compositions induced by backscattered Ar during sputtering from M2-Al-C (M = Cr, Zr, and Hf) composite targets. Surf. Coat. Technol. 2022;446:128764. doi:10.1016/j.surfcoat.2022.128764
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992;7:1564–1583. doi:10.1557/JMR.1992.1564
  • Fischer-Cripps AC. Critical review of analysis and interpretation of nanoindentation test data. Surf Coat Technol. 2006;200:4153–4165. doi:10.1016/j.surfcoat.2005.03.018
  • Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi:10.1103/PhysRevB.47.558
  • Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996;6:15–50. doi:10.1016/0927-0256(96)00008-0
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi:10.1103/PhysRevB.54.11169
  • Perdew JP, Ruzsinszky A, Csonka GI, et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 2008;100:136406. doi:10.1103/PhysRevLett.100.136406
  • Nöger D. A command line tool written in Python/Cython for finding optimized SQS structures, 13 (2019).
  • Nedfors N, Primetzhofer D, Zhirkov I, et al. The influence of pressure and magnetic field on the deposition of epitaxial TiBx thin films from DC magnetron sputtering. Vacuum. 2020;177:109355. doi:10.1016/j.vacuum.2020.109355
  • Delisle DA, Krzanowski JE. Surface morphology and texture of TiAlN/CrN multilayer coatings. Thin Solid Films. 2012;524:100–106. doi:10.1016/j.tsf.2012.09.073
  • Ivanovskii AL. Hardness of hexagonal AlB2-like diborides of s, p and d metals from semi-empirical estimations. Int J Refract Met Hard Mater. 2013;36:179–182. doi:10.1016/j.ijrmhm.2012.08.013
  • Fuger C, Hahn R, Zauner L, et al. Anisotropic super-hardness of hexagonal WB2 ± z thin films. Mater. Res. Lett. 2022;10:70–77. doi:10.1080/21663831.2021.2021308
  • Mayrhofer PH, Mitterer C, Wen JG, et al. Self-organized nanocolumnar structure in superhard TiB2 thin films. Appl. Phys. Lett. 2005;86; doi:10.1063/1.1887824