2,598
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Enhancement of the effect of BCG vaccine against tuberculosis using DDA/TDB liposomes containing a fusion protein of HspX, PPE44, and EsxV

, , , , , , & show all
Pages 370-377 | Received 11 Nov 2018, Accepted 27 Nov 2018, Published online: 29 Jan 2019

References

  • Kastner E, Hussain MJ, Bramwell VW, et al. Correlating liposomal adjuvant characteristics to in-vivo cell-mediated immunity using a novel Mycobacterium tuberculosis fusion protein: a multivariate analysis study. J Pharm Pharmacol. 2015;67:450–463.
  • Zumla A, George A, Sharma V, et al. The WHO 2014 global tuberculosis report—further to go. The Lancet Global Health. 2015;3:e10–ee2.
  • Anderson ST, Kaforou M, Brent AJ, et al. Diagnosis of childhood tuberculosis and host RNA expression in Africa. N Engl J Med. 2014;370:1712–1723.
  • Trunz BB, Fine P, Dye C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet. 2006;367:1173–1180.
  • Xin Q, Niu H, Li Z, et al. Subunit vaccine consisting of multi-stage antigens has high protective efficacy against Mycobacterium tuberculosis infection in mice. PLoS One. 2013;8:e72745. .
  • Black M, Trent A, Tirrell M, et al. Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists. Expert Rev Vaccines. 2010;9:157–173.
  • Mohammed AR, Bramwell VW, Kirby DJ, et al. Increased potential of a cationic liposome-based delivery system: enhancing stability and sustained immunological activity in pre-clinical development. Eur J Pharma Biopharmaceut. 2010;76:404–412.
  • Andersen P. TB vaccines: progress and problems. Trends Immunol. 2001;22:160–168.
  • Teutschbein J, Schumann G, Möllmann U, et al. A protein linkage map of the ESAT-6 secretion system 1 (ESX-1) of Mycobacterium tuberculosis. Microbiol Res. 2009;164:253–259.
  • Cuccu B, Freer G, Genovesi A, et al. Identification of a human immunodominant T-cell epitope of mycobacterium tuberculosis antigen PPE44. BMC Microbiol. 2011;11:167. .
  • Caccamo N, Meraviglia S, La Mendola C, et al. Characterization of HLA‐DR‐and TCR‐binding residues of an immunodominant and genetically permissive peptide of the 16‐kDa protein of Mycobacterium tuberculosis. Eur J Immunol. 2004;34:2220–2229.
  • Marongiu L, Donini M, Toffali L, et al. ESAT-6 and HspX improve the effectiveness of BCG to induce human dendritic cells-dependent Th1 and NK cells activation. PLoS One. 2013;8:e75684. .
  • Bertholet S, Ireton GC, Kahn M, et al. Identification of human T cell antigens for the development of vaccines against Mycobacterium tuberculosis. J Immunol. 2008;181:7948–7957.
  • O'Hagan DT, De Gregorio E. The path to a successful vaccine adjuvant-'the long and winding road'. Drug Discov Today. 2009;14:541–551.
  • Holten-Andersen L, Doherty T, Korsholm K, et al. Combination of the cationic surfactant dimethyl dioctadecyl ammonium bromide and synthetic mycobacterial cord factor as an efficient adjuvant for tuberculosis subunit vaccines. Infect Immun. 2004;72:1608–1617.
  • Verma I, Pandey R, Khuller G. Liposomes as adjuvant for anti-mycobacterial vaccine development. 2004;42(10):949-954.
  • Barratt G, Tenu J-P, Yapo A, et al. Preparation and characterisation of liposomes containing mannosylated phospholipids capable of targetting drugs to macrophages. Biochim Biophys Acta Biomembr. 1986;862:153–164.
  • Flynn JL. Immunology of tuberculosis and implications in vaccine development. Tuberculosis (Edinb). 2004;84:93–101.
  • Cooper AM, Adams LB, Dalton DK, et al. IFN-gamma and NO in mycobacterial disease: new jobs for old hands. Trends Microbiol. 2002;10:221–226.
  • Ottenhoff TH, Verreck FA, Hoeve MA, et al. Control of human host immunity to mycobacteria. Tuberculosis (Edinb). 2005;85:53–64.
  • Hilgers LT, Snippe H. DDA as an immunological adjuvant. Res Immunol. 1992;143:494–503.
  • Schoenen H, Bodendorfer B, Hitchens K, et al. Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J Immunol. 2010;184:2756–2760.
  • Agger EM, Rosenkrands I, Hansen J, et al. Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): a versatile adjuvant for vaccines with different immunological requirements. PLoS One. 2008;3:e3116.
  • Werninghaus K, Babiak A, Gross O, et al. Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRgamma-Syk-Card9-dependent innate immune activation. J Exp Med. 2009;206:89–97.
  • Amini Y, Tafaghodi M, Amel Jamehdar S, et al. Heterologous expression, purification, and characterization of the HspX, Ppe44, and EsxV proteins of Mycobacterium tuberculosis. Rep Biochem Molecular Biol. 2018;6:125–130.
  • Feitosa E, Barreleiro P, Olofsson G. Phase transition in dioctadecyldimethylammonium bromide and chloride vesicles prepared by different methods. Chem Phys Lipids. 2000;105:201–213.
  • Hojatizade M, Badiee A, Khamesipour A, et al. DDA/TDB liposomes containing soluble Leishmania major antigens induced a mixed Th1/Th2 immune response in BALB/c mice. Nanomed J. 2017;4:71–82.
  • Andersen P, Doherty TM. Opinion: The success and failure of BCG–implications for a novel tuberculosis vaccine. Nat Rev Micro. 2005;3:656.
  • Yuan X, Teng X, Jing Y, et al. A live attenuated BCG vaccine overexpressing multistage antigens Ag85B and HspX provides superior protection against Mycobacterium tuberculosis infection. Appl Microbiol Biotechnol. 2015;99:10587–10595.
  • Niu H, Peng J, Bai C, et al. Multi-stage tuberculosis subunit vaccine candidate LT69 provides high protection against Mycobacterium tuberculosis infection in mice. PLoS One. 2015;10:e0130641.
  • Knudsen NPH, Nørskov-Lauritsen S, Dolganov GM, et al. Tuberculosis vaccine with high predicted population coverage and compatibility with modern diagnostics. Proc Natl Acad Sci. 2014;111:1096–1101.
  • Romano M, Rindi L, Korf H, et al. Immunogenicity and protective efficacy of tuberculosis subunit vaccines expressing PPE44 (Rv2770c). Vaccine 2008;26:6053–6063.
  • Pepponi I, Diogo GR, Stylianou E, et al. Plant‐derived recombinant immune complexes as self‐adjuvanting TB immunogens for mucosal boosting of BCG. Plant Biotechnol J. 2014;12:840–850.
  • Yousef Amini MT, Saeid AJ, Zahra M, et al. Heterologous expression, purification, and characterization of the HspX, Ppe44, and EsxV proteins of Mycobacterium tuberculosis. Rep Biochem Molecular Biol. 2017;6(2):125-130.
  • Gregoriadis G. Immunological adjuvants: a role for liposomes. Immunol Today. 1990;11:89–97.
  • Frezard F. Liposomes: from biophysics to the design of peptide vaccines. Brazilian J Med Biol Res. 1999;32(2):181-189.
  • Jaafari MR, Badiee A, Khamesipour A, et al. The role of CpG ODN in enhancement of immune response and protection in BALB/c mice immunized with recombinant major surface glycoprotein of Leishmania (rgp63) encapsulated in cationic liposome. Vaccine. 2007;25:6107–6117.
  • Badiee A, Jaafari MR, Samiei A, et al. Coencapsulation of CpG oligodeoxynucleotides with recombinant Leishmania major stress-inducible protein 1 in liposome enhances immune response and protection against leishmaniasis in immunized BALB/c mice. Clin Vaccine Immunol. 2008;15:668–674.
  • Larrouy-Maumus G, Layre E, Clark S, et al. Protective efficacy of a lipid antigen vaccine in a guinea pig model of tuberculosis. Vaccine. 2017;35:1395–1402.
  • Davidsen J, Rosenkrands I, Christensen D, et al. Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6, 6′-dibehenate)—a novel adjuvant inducing both strong CMI and antibody responses. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2005;1718:22–31.
  • Shuttleworth SJ, Allin PM, Sharma K. Functionalised polymers: recent developments and new applications in synthetic organic chemistry. Synthesis. 1997;1997:1217–1239.
  • Firouzmand H, Badiee A, Khamesipour A, et al. Induction of protection against leishmaniasis in susceptible BALB/c mice using simple DOTAP cationic nanoliposomes containing soluble Leishmania antigen (SLA). Acta Tropica. 2013;128:528–535.
  • Henriksen-Lacey M, Devitt A, Perrie Y. The vesicle size of DDA: TDB liposomal adjuvants plays a role in the cell-mediated immune response but has no significant effect on antibody production. J Control Release. 2011;154:131–137.
  • Kaur R, Henriksen-Lacey M, Wilkhu J, et al. Effect of incorporating cholesterol into DDA: TDB liposomal adjuvants on bilayer properties, biodistribution, and immune responses. Mol Pharmaceutics. 2014;11:197–207.
  • Bhatt K, Salgame P. Host innate immune response to Mycobacterium tuberculosis. J Clin Immunol. 2007;27:347–362.
  • Seiler P, Aichele P, Bandermann S, et al. Early granuloma formation after aerosol Mycobacterium tuberculosis infection is regulated by neutrophils via CXCR3‐signaling chemokines. Eur J Immunol. 2003;33:2676–2686.
  • Khader SA, Pearl JE, Sakamoto K, et al. IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific IFN-gamma responses if IL-12p70 is available. J Immunol. 2005;175:788–795.
  • Yoshida YO, Umemura M, Yahagi A, et al. Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung. J Immunol. 2010;184:4414–4422.
  • Becattini S, Latorre D, Mele F, et al. T cell immunity. Functional heterogeneity of human memory CD4 T cell clones primed by pathogens or vaccines. Science. 2015;347:400–406.
  • Khader SA, Bell GK, Pearl JE, et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol. 2007;8:369.
  • Rook GA, Hernandez-Pando R, Dheda K, et al. IL-4 in tuberculosis: implications for vaccine design. Trends in Immunol. 2004;25:83–88.
  • Demissie A, Abebe M, Aseffa A, et al. Healthy individuals that control a latent infection with Mycobacterium tuberculosis express high levels of Th1 cytokines and the IL-4 antagonist IL. J Immunol. 2004;172:6938–6943. 4δ2.
  • Ordway DJ, Costa L, Martins M, et al. Increased Interleukin-4 Production by CD8 and gammadelta T cells in health-care workers is associated with the subsequent development of active tuberculosis. J Infect Dis. 2004;190:756–766.
  • Kara EE, Comerford I, Fenix KA, et al. Tailored immune responses: novel effector helper T cell subsets in protective immunity. PLoS Pathog. 2014;10:e1003905.
  • Jacobs AJ, Mongkolsapaya J, Screaton GR, et al. Antibodies and tuberculosis. Tuberculosis (Edinb). 2016;101:102–113.
  • Brandt L, Skeiky YA, Alderson MR, et al. The protective effect of the Mycobacterium bovis BCG vaccine is increased by coadministration with the Mycobacterium tuberculosis 72-kilodalton fusion polyprotein Mtb72F in M. tuberculosis-infected guinea pigs. Infect Immun. 2004;72:6622–6632.
  • Goonetilleke NP, McShane H, Hannan CM, et al. Enhanced immunogenicity and protective efficacy against Mycobacterium tuberculosis of bacille Calmette-Guérin vaccine using mucosal administration and boosting with a recombinant modified vaccinia virus Ankara. J Immunol. 2003;171:1602–1609.