6,712
Views
48
CrossRef citations to date
0
Altmetric
Review

Nanoparticle-based drug delivery in the inner ear: current challenges, limitations and opportunities

ORCID Icon, , , , , , & ORCID Icon show all
Pages 1312-1320 | Received 14 Nov 2018, Accepted 20 Dec 2018, Published online: 15 Apr 2019

References

  • Chadha S, Cieza A. Promoting global action on hearing loss: World Hearing Day. Int J Audiol. 2017;56:145–147.
  • Kim DK. Nanomedicine for inner ear diseases: a review of recent in vivo studies. Biomed Res Int. 2017;2017:3098230.
  • Mittal R, Patel AP, Nguyen D, et al. Genetic basis of hearing loss in Spanish, Hispanic and Latino populations. Gene. 2018;647:297–305.
  • Cunningham LL, Tucci DL. Hearing loss in adults. N Engl J Med. 2017;377:2465–2473.
  • Nieman CL, Reed NS, Lin FR. Otolaryngology for the internist: hearing loss. Med Clin North Am. 2018;102:977–992.
  • Eshraghi AA, Jung HD, Mittal R. Recent advancements in gene and stem cell based treatment modalities: Potential implications in noise induced hearing loss. Anatomical Record 2018. In press.
  • Eshraghi AA, Nazarian R, Telischi FF, et al. The cochlear implant: historical aspects and future prospects. Anat Rec (Hoboken). 2012;295:1967–1980.
  • Roche JP, Hansen MR. On the horizon: Cochlear Implant Technology. Otolaryngol Clin North Am. 2015;48:1097–1116.
  • Kil J, Lobarinas E, Spankovich C, et al. Safety and efficacy of ebselen for the prevention of noise-induced hearing loss: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2017;390:969–979.
  • Chen WT, Lee JW, Yuan CH, et al. Oral steroid treatment for idiopathic sudden sensorineural hearing loss. Saudi Med J. 2015;36:291–296.
  • Gilles A, Ihtijarevic B, Wouters K, et al. Using prophylactic antioxidants to prevent noise-induced hearing damage in young adults: a protocol for a double-blind, randomized controlled trial. Trials. 2014;15:110.
  • Coelho DH, Lalwani AK. Medical management of Ménière’s disease. Laryngoscope. 2008;118:1099–1108.
  • Uri N, Doweck I, Cohen KR, et al. Acyclovir in the treatment of idiopathic sudden sensorineural hearing loss. Otolaryngol Head Neck Surg. 2003;128:544–549.
  • Tucci DL, Farmer JC Jr, Kitch RD, et al. Treatment of sudden sensorineural hearing loss with systemic steroids and valacyclovir. Otol Neurotol. 2002;23:301–308.
  • Bowe SN, Jacob A. Round window perfusion dynamics: implications for intracochlear therapy. Curr Opin Otolaryngol Head Neck Surg. 2010;18:377–385.
  • Schuknecht HF. Ablation therapy for the relief of Ménière's disease. Laryngoscope. 1956;66:859–870.
  • Li L, Chao T, Brant J, et al. Advances in nano-based inner ear delivery systems for the treatment of sensorineural hearing loss. Adv Drug Deliv Rev. 2017;108:2–12.
  • Luo J, Xu L. Distribution of gentamicin in inner ear after local administration via a chitosan glycerophosphate hydrogel delivery system. Ann Otol Rhinol Laryngol. 2012;121:208–216.
  • Pyykko I, Zou J, Schrott-Fischer A, et al. An overview of nanoparticle based delivery for treatment of inner ear disorders. Methods Mol Biol. 2016;1427:363–415.
  • Mittal R, Patel AP, Jhaveri VM, et al. Recent advancements in nanoparticle based drug delivery for gastrointestinal disorders. Expert Opin Drug Deliv. 2018;15:301–318.
  • Mittal R, Jhaveri VM, McMurry HS, et al. Recent treatment modalities for cardiovascular diseases with a focus on stem cells, aptamers, exosomes and nanomedicine. Artif Cells Nanomed Biotechnol. 2018;15:1–10.
  • Praetorius M, Brunner C, Lehnert B, et al. Transsynaptic delivery of nanoparticles to the central auditory nervous system. Acta Otolaryngol. 2007;127:486–490.
  • Tamura T, Kita T, Nakagawa T, et al. Drug delivery to the cochlea using PLGA nanoparticles. Laryngoscope. 2005;115:2000–2005.
  • Zou J, Saulnier P, Perrier T, et al. Distribution of lipid nanocapsules in different cochlear cell populations after round window membrane permeation. J Biomed Mater Res. 2008;87:10–18.
  • Ge X, Jackson RL, Liu J, et al. Distribution of PLGA nanoparticles in chinchilla cochleae. Otolaryngol Head Neck Surg. 2007;137:619–623.
  • Nakano K, Matoba T, Koga JI, et al. Safety, tolerability, and pharmacokinetics of NK-104-NP. Int Heart J. 2018;59:1015–1025.
  • Singh SK, Singh S, Lillard JW Jr, et al. Drug delivery approaches for breast cancer. Int J Nanomedicine. 2017;12:6205–6218.
  • Singh P, Pandit S, Mokkapati VRSS, et al. Gold nanoparticles in diagnostics and therapeutics for human cancer. IJMS. 2018;19:1979.
  • Lee JH, Lee MY, Lim Y, et al. Auditory disorders and future therapies with delivery systems. J Tissue Eng. 2018;9:2041731418808455.
  • Roy S, Johnston AH, Newman TA, et al. Cell-specific targeting in the mouse inner ear using nanoparticles conjugated with a neurotrophin-derived peptide ligand: potential tool for drug delivery. Int J Pharm. 2010;390:214–224.
  • Salt AN, Plontke SK. Pharmacokinetic principles in the inner ear: Influence of drug properties on intratympanic applications. Hear Res. 2018;368:28–40.
  • Salt AN, Hirose K. Communication pathways to and from the inner ear and their contributions to drug delivery. Hear Res. 2018;362:25–37.
  • Liu H, Chen S, Zhou Y, et al. The effect of surface charge of glycerol monooleate-based nanoparticles on the round window membrane permeability and cochlear distribution. J Drug Target. 2013;21:846–854.
  • Wen X, Ding S, Cai H, et al. Nanomedicine strategy for optimizing delivery to outer hair cells by surface-modified poly(lactic/glycolic acid) nanoparticles with hydrophilic molecules. Ijn. 2016; 11:5959–5969.
  • Cai H, Liang Z, Huang W, et al. Engineering PLGA nano-based systems through understanding the influence of nanoparticle properties and cell-penetrating peptides for cochlear drug delivery. Int J Pharm. 2017;532:55–65.
  • Frutos S, Hernández JL, Otero A, et al. Site-specific antibody drug conjugates using streamlined expressed protein ligation. Bioconjug Chem. 2018; 29:3503–3508.
  • Valero T, Delgado-González A, Unciti-Broceta JD, et al. Drug “Clicking” on cell-penetrating fluorescent nanoparticles for in cellulo chemical proteomics. Bioconjug Chem. 2018;29:3154–3160.
  • Yi G, Son J, Yoo J, et al. Application of click chemistry in nanoparticle modification and its targeted delivery. Biomater Res. 2018;22:13.
  • Paulson DP, Abuzeid W, Jiang H, et al. A novel controlled local drug delivery system for inner ear disease. Laryngoscope. 2008;118:706–711.
  • Xu L, Heldrich J, Wang H, et al. A controlled and sustained local gentamicin delivery system for inner ear applications. Otol Neurotol. 2010;31:1115–1121.
  • Zhang W, Zhang Y, Löbler M, et al. Nuclear entry of hyperbranched polylysine nanoparticles into cochlear cells. Int J Nanomedicine. 2011;6:535–546.
  • Eshraghi AA, Lang DM, Roell J, et al. Mechanisms of programmed cell death signaling in hair cells and support cells post-electrode insertion trauma. Acta Otolaryngol. 2015;135:328–334.
  • Eshraghi AA, Ahmed J, Krysiak E, et al. Clinical, surgical, and electrical factors impacting residual hearing in cochlear implant surgery. Acta Otolaryngol. 2017;137:384–388.
  • Sun W, Wang W. Advances in research on labyrinth membranous barriers. J Otol. 2015;10:99–104.
  • Juhn SK. Barrier systems in the inner ear. Acta Otolaryngol Suppl. 1988;458:79–83.
  • Eckhard A, Müller M, Salt A, et al. Water permeability of the mammalian cochlea: functional features of an aquaporin-facilitated water shunt at the perilymph–endolymph barrier. Pflugers Arch - Eur J Physiol. 2014;466:1963–1985.
  • Eckhard A, Dos Santos A, Liu W, et al. Regulation of the perilymphatic–endolymphatic water shunt in the cochlea by membrane translocation of aquaporin-5. Pflugers Arch – Eur J Physiol. 2015;467:2571–2588.
  • Mikulec AA, Hartsock JJ, Salt AN. Permeability of the round window membrane is influenced by the composition of applied drug solutions and by common surgical procedures. Otol Neurotol. 2008;29:1020–1026.
  • Goycoolea MV. Clinical aspects of round window membrane permeability under normal and pathological conditions. Acta Otolaryngol. 2001;121:437–447.
  • Engel F, Blatz R, Kellner J, et al. Breakdown of the round window membrane permeability barrier evoked by streptolysin O: possible etiologic role in development of sensorineural hearing loss in acute otitis media. Infect Immun. 1995;63:1305–1310.
  • Salt AN, Ma Y. Quantification of solute entry into cochlear perilymph through the round window membrane. Hear Res. 2001;154:88–97.
  • Martin-Saldana S, Palao-Suay R, Aguilar MR, et al. Polymeric nanoparticles loaded with dexamethasone or α-tocopheryl succinate to prevent cisplatin-induced ototoxicity. Acta Biomater. 2017;53:199–210.
  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941–951.
  • Dong X, Liu L, Zhu D, et al. Transactivator of transcription (TAT) peptide-chitosan functionalized multiwalled carbon nanotubes as a potential drug delivery vehicle for cancer therapy. Int J Nanomed. 2015;10:3829–3840.
  • Gao G, Liu Y, Zhou CH, et al. Solid lipid nanoparticles loaded with edaravone for inner ear protection after noise exposure. Chin Med J. 2015;128:203–209.
  • Meyer H, Stover T, Fouchet F, et al. Lipidic nanocapsule drug delivery: neuronal protection for cochlear implant optimization. Int J Nanomed. 2012;7:2449–2464.
  • Kayyali MN, Wooltorton JRA, Ramsey AJ, et al. A novel nanoparticle delivery system for targeted therapy of noise-induced hearing loss. J Control Release. 2018;279:243–250.
  • Lajud SA, Nagda DA, Qiao P, et al. A novel chitosan-hydrogel-based nanoparticle delivery system for local inner ear application. Otol Neurotol. 2015;36:341–347.
  • Hu YB, Dammer EB, Ren RJ, et al. The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. Transl Neurodegener. 2015;4:18.
  • Xu C, Haque F, Jasinski DL, et al. Favorable biodistribution, specific targeting and conditional endosomal escape of RNA nanoparticles in cancer therapy. Cancer Lett. 2018;414:57–70.
  • Selby LI, Cortez-Jugo CM, Such GK, et al. Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9:e1452.
  • Ulbrich K, Hola K, Subr V, et al. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev. 2016;116:5338–5431.
  • Lu XY, Wu DC, Li ZJ, et al. Polymer nanoparticles. Prog Mol Biol Transl Sci. 2011;104:299–323.
  • Veronese FM, Mero A. The impact of PEGylation on biological therapies. Biodrugs. 2008;22:315–329.
  • Zylberberg C, Gaskill K, Pasley S, et al. Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther. 2017;24:441–452.
  • Panahi Y, Farshbaf M, Mohammadhosseini M, et al. Recent advances on liposomal nanoparticles: synthesis, characterization and biomedical applications. Artif Cells Nanomed Biotechnol. 2017;45:788–799.
  • Gao W, Zhang Y, Zhang Q, et al. Nanoparticle-hydrogel: a hybrid biomaterial system for localized drug delivery. Ann Biomed Eng. 2016;44:2049–2061.
  • Clark A, Milbrandt TA, Hilt JZ, et al. Mechanical properties and dual drug delivery application of poly(lactic-co-glycolic acid) scaffolds fabricated with a poly(β-amino ester) porogen. Acta Biomater. 2014;10:2125–2132.
  • Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3:1377–1397.
  • Lohcharoenkal W, Wang L, Chen YC, et al. Protein nanoparticles as drug delivery carriers for cancer therapy. Biomed Res Int. 2014;2014:180549.
  • Salatin S, Jelvehgari M, Maleki-Dizaj S, et al. A sight on protein-based nanoparticles as drug/gene delivery systems. Ther Deliv. 2015;6:1017–1029.
  • Chen S, Hao X, Liang X, et al. Inorganic nanomaterials as carriers for drug delivery. J Biomed Nanotechnol. 2016;12:1–27.
  • Pérez-Ortiz M, Zapata-Urzúa C, Acosta GA, et al. Gold nanoparticles as an efficient drug delivery system for GLP-1 peptides. Colloids Surf B Biointerfaces. 2017;158:25–32.
  • Amendola V, Pilot R, Frasconi M, et al. Surface plasmon resonance in gold nanoparticles: a review. J Phys Condens Matter. 2017;29:203002.
  • Kayyali MN, Brake L, Ramsey AJ, et al. A novel nano-approach for targeted inner ear imaging. J Nanomed Nanotechnol. 2017;8:456.
  • Zakeri-Milani P, Mussa Farkhani S, Shirani A, et al. Cellular uptake and anti-tumor activity of gemcitabine conjugated with new amphiphilic cell penetrating peptides. Excli J. 2017;16:650–662.
  • Mohammadi S, Zakeri-Milani P, Golkar N, et al. Synthesis and cellular characterization of various nano-assemblies of cell penetrating peptide–epirubicin–polyglutamate conjugates for the enhancement of antitumor activity. Artif Cells Nanomed Biotechnol. 2018;46:1572–1585.