2,542
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Reliability of antioxidant potential and in vivo compatibility with extremophilic actinobacterial-mediated magnesium oxide nanoparticle synthesis

, &
Pages 862-872 | Received 18 Sep 2018, Accepted 29 Jan 2019, Published online: 15 Mar 2019

Reference

  • Sathyamoorthy R, Mageshwari K, Mali S. Effect of organic capping agent on the photocatalytic activity of MgO nanoflakes obtained by thermal decomposition route. Ceram Int. 2013;39:323–330.
  • Silva RTD, Mantilaka MMMGPG, Ratnayake SP, et al. Nano-MgO reinforced chitosan nanocomposites for high performance packaging applications with improved mechanical, thermal and barrier properties. Carbohydr Polym. 2017;157:739–747.
  • Ercan I, Kaygili O, Ates T, et al. The effects of urea content on the structural, thermal and morphological properties of MgO nanopowders. Ceram Int. 2018;44:14523–14527.
  • Sabah C, Mulla B, Altan H, et al. Thermally and optically tunable sub-terahertz superconducting fishnet metamaterial. Physica C: Supercond Appl. 2018;544:46–53.
  • Ma B, Yu N, Han Y, et al. Effect of magnesium oxide nanoparticles on microbial diversity and removal performance of sequencing batch reactor. J Environ Manage. 2018;222:475–482.
  • Gajengi L, Sasaki T, Bhanage BM. Mechanistic aspects of formation of MgO nanoparticles under microwave irradiation and its catalytic application. Adv Powder Technol. 2017;28:1185–1192.
  • Yadav LSR, Lingaraju K, Manjunath K, et al. Synergistic effect of MgO nanoparticles for electrochemical sensing, photocatalytic-dye degradation and antibacterial activity. Mat Res Exp. 2017;4:1–12.
  • Rashid1 FL, Hadi A, Al-Garah NH, et al. Novel phase change materials, MgO nanoparticles, and water based nanofluids for thermal energy storage and biomedical applications. Int Pharmaceu Phytopharmacol Res. 2018;8:46–56.
  • Das B, Moumita S, Ghosh S, et al. Biosynthesis of magnesium oxide (MgO) nanoflakes by using leaf extract of Bauhinia purpurea and evaluation of its antibacterial property against Staphylococcus aureus. Mater Sci Eng C Mater Biol Appl. 2018;91:436–444.
  • Hage MP, El-Hajj Fuleihan G. Bone and mineral metabolism in patients undergoing Roux-en-Y gastric bypass. Osteoporos Int. 2014;25:423–439.
  • Alqahtani S, Alomar SY. Induction of apoptosis and cytokine markers in colon cancer cells by magnesium oxide (MgO) nanoparticles. Toxicol Environ Chem. 2016;99(2):302–314.
  • Satyanarayanan M, Eswaramoorthi S, Subramanian S, et al. Factor analysis of rock, soil and water geochemical data from Salem magnesite mines and surrounding area, Salem, southern India. Appl Water Sci. 2017;7:2607–2616.
  • Bull AT, Stach JM, Ward AC, et al. Marine actinobacteria perspectives, challenges, future directions. Antonie Van Leeuwenhoek. 2005;87:65–79.
  • Shanmugasundaram T, Balagurunathan R. Biomedically active zinc oxide nanoparticles synthesized by using extremophilic actinobacterium, Streptomyces sp. (MA30) and its characterization. Artif Cells, Nanomed Biotechnol. 2016;45(8):1–9.
  • Chen M, Xu P, Zeng G, et al. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications. Biotechnol Adv. 2015;33:745–755.
  • Palaniyandi SA, Yang SH, Zhang L, et al. Effects of actinobacteria on plant disease suppression and growth promotion. Appl Microbiol Biotechnol. 2013;97:9621–9636.
  • Otari SV, Patil RM, Ghosh SJ, et al. Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity. Spectrochimica Acta A. 2015;136:1175–1180.
  • Jeevanandam J, Chan YS, Danquah MK. Biosynthesis and characterization of MgO nanoparticles from plant extracts via induced molecular nucleation. New J Chem. 2017;41:2800–2814.
  • Mohanasrinivasan V, Devi CS, Mehra A. Biosynthesis of MgO nanoparticles using Lactobacillus Sp. and its Activity Against Human Leukemia Cell Lines HL-60. Bionanosci. 2018;8:249–253.
  • Kavitha K, Priya G, Banu Priya G, et al. bioactive compound production and microbial reduction of nanographene oxide using mushroom associated actinobacteria. Ind J Appl Microbiol. 2017;20:1–10.
  • Dobrucka R. Synthesis of MgO nanoparticles using Artemisia abrotanum herba extract and their antioxidant and photocatalytic properties. Iran J Sci Technol Trans Sci. 2018;42:547–555.
  • Anantharaman A, Sathyabhama S, George M. Green synthesis of magnesium oxide nanoparticles using Aloe Vera and its applications. Int J Scientific Res Dev. 2016;4:109–111.
  • Raliya R, Tarafdar JC. Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly approach. Int Nano Lett. 2014;4:93.
  • Jhansi K, Jayarambabu N, Reddy KP. Biosynthesis of MgO nanoparticles using mushroom extract: effect on peanut (Arachis hypogaea L.) seed germination. 3 Biotech. 2017;7:263.
  • Mahmoud A, Ezgi Ö, Merve A, et al. In vitro toxicological assessment of magnesium oxide nanoparticle exposure in several mammalian cell types. Int J Toxicol. 2016;35:429–437.
  • Hayat S, Muzammil S, Rasool MH, et al. In vitro antibiofilm and antiadhesion effects of magnesium oxide nanoparticles against antibiotic resistant bacteria. Microbiol Immunol. 2018;62:211–220.
  • Tamilselvi P, Yelilarasi A, Hema M, et al. Synthesis of hierarchical structured MgO by sol–gel method. Nano Bull. 2013;2(1):130106.
  • Sandengen K, Josang LO, Kaasa B. Simple method for synthesis of magnesite (MgCO3). Ind Eng Chem Res. 2008;47:1002–1004.
  • Sushma NJ, Prathyusha D, Swathi G, et al. Facile approach to synthesize magnesium oxide nanoparticles by using Clitoria ternatea—characterization and in vitro antioxidant studies. Appl Nanosci. 2016;6(3):437–444.
  • Balagurunathan R, Radhakrishnan M, Somasundaram SM. L-glutaminase producing actinomycetes from marine sediments- selective isolation, semi quantitative assay and characterization of potential strain. Australian J Basic Appl Sci. 2010;698–705.
  • Shanmugasundaram T, Radhakrishnan M, Gopikrishnan V, et al. Biocompatible silver, gold and silver/gold alloy nanoparticles 1 for enhanced 2 cancer therapy: an in vitro and in vivo perspectives. Nanoscale 2017;9:16773–16790.
  • Kavitha K, Sutha S, Prabhu M, et al . In situ synthesized novel biocompatible titania-chitosan nanocomposites with high surface area and antibacterial activity. Carbohydr Polym. 2013;93:731–739.
  • Kavitha K, Chunyan W, Rajendran V, et al. In vitro and preliminary in vivo toxicity screening of high-surface-area TiO2-chondroitin 4-sulfate nanocomposites for bone regeneration application. Colloids Surf B. 2015;128:347–356.
  • Kavitha K, Prabhu M, Selvam, et al. TiO2–graphene nanocomposites for enhanced osteocalcin induction. Mater Sci Eng C. 2014;48:252–262.
  • Ibrahem J, Karkaz M, Amin T, et al. Antibacterial potential of magnesium oxide nanoparticles synthesized by Aspergillus niger. BJI. 2017;18:1–7.
  • Ghobadian M, Nabiuni M, Parivar K, et al. Toxic effects of magnesium oxide nanoparticles on early developmental and larval stages of zebrafish (Danio rerio). Ecotoxicol Environ Saf. 2015;122:260–267.
  • Kavitha K, Navaneethan D, Vinod A, et al. Scavenging free radicals and soaring osteoinduction by extra cellular matrix protein–based nanocomposites on degenerative bone treatments. Mater Sci Eng C. 2017;77:1189–1195.