3,108
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Bioconjugation as a smart immobilization approach for α-amylase enzyme using stimuli-responsive Eudragit-L100 polymer: a robust biocatalyst for applications in pharmaceutical industry

, , , , , & show all
Pages 2361-2368 | Received 07 May 2019, Accepted 28 May 2019, Published online: 13 Jun 2019

References

  • Rodrigues A, Emeje M. Recent applications of starch derivatives in nanodrug delivery. Carbohyd Polym. 2012;87:987–994.
  • Mohamed S, Al-Harbi M, Almulaiky Y, et al. Immobilization of Trichoderma harzianum α-amylase on PPyAgNp/Fe3O4-nanocomposite: chemical and physical properties. Artif Cells Nanomed Biotechn. 2018;46:201–206.
  • Abdel-Mageed H, Fouad S, Teaima M, et al. Optimization of nano spray drying parameters for production of α-amylase nanopowder for biotheraputic applications using factorial design. Drying Technol. 2019.
  • Homaei AA, Sariri R, Vianello F, et al. Enzyme immobilization: an update. J Chem Biol. 2013;6:185–205.
  • Cooney MJ. Kinetic measurements for enzyme immobilization. Meth Mol Biol. 2017;1504:215–232.
  • Knežević Ž, Grbavčić RB, Stefanović I, et al. Covalent immobilization of enzymes on Eupergit® supports: effect of the immobilization protocol. In: Minteer S, editor. Enzyme stabilization and immobilization. Methods in molecular biology, Vol 1504. New York (NY): Humana Press; 2017.
  • Li X, Yu Z, Bian Z, et al. Physiochemical characterization of α-amylase as cross linked enzyme aggregates. Catalysts 2018;8:299.
  • Kumar A, Gupta MN. Immobilization of trypsin on an enteric polymer Eudragit S-100 for the biocatalysis of macromolecular substrate. J Mol Catal B: Enzym. 1998;5:289–294.
  • Silva C, Sousa F, Gübitz G, et al. Chemical modifications on proteins using glutaraldehyde. Food Technol Biotechnol. 2004. p. 51–56.
  • Majid H, Hamdy MAS, editors. Industrial applications for intelligent polymers and coatings. Cham, Switzerland: Springer International Publishing; 2016. p. 973–978.
  • Yu Y, Yuan J, Wang Q, et al. Noncovalent immobilization of cellulases using the reversibly soluble polymers for biopolishing of cotton fabric. Biotechnol Appl Biochem. 2015;62:494–501.
  • Smith E, Schroeder M, Guebitz G, et al. Covalent bonding of protease to different sized enteric polymers and their potential use in wool processing. Enz Microb Technol. 2010;47:105–111.
  • Qiao J, Jiang J, Liu L, et al. Enzyme reactor based on reversible pH-controlled catalytic polymer porous membrane. ACS Appl Mater Interf. 2019;11:15133–15141.
  • Knežević Z, Milosavić N, Bezbradica D. Immobilization of lipase from Candida rugosa on Eupergit® C supports by covalent attachment. Biochem Eng J. 2006;30:269–278.
  • Ahmed S, Abdel Wahab W, Abdel-Hameed S. Comparative study in kinetics and thermodynamic characteristics of immobilized caseinase on novel support from basalt by physical adsorption and covalent binding. Biocatal Agric Biotechnol. 2019;18:101028.
  • Bernfeld PA. Amylase α and β. Meth Enzymol. 1955;1:149–151.
  • Silva M, Zhang Q, Shen J, et al. Immobilization of proteases with a water soluble-insoluble reversible polymer for treatment of wool. Enz Microb Technol. 2006;39:634–640.
  • Dourado F, Bastos M, Mota M, et al. Studies on the properties of Celluclast/Eudragit L-100 conjugate F. J Biotechnol. 2002;99:121–131.
  • Madhu A, Chakraborty JN. Recovery and reuse of immobilized α-amylase during desizing of cotton fabric. Textile and Apparel. 2018;22:271–290.
  • Smith E, Zhang Q, Shen J, et al. Modification of esperase by covalent bonding to Eudragit polymers L 100 and S 100 for wool fiber surface treatment. Biocat Biotrans. 2008;26:391–398.
  • Zhou J. Immobilization of cellulase on a reversibly soluble-insoluble support: properties and application. J Agric Food Chem. 2010;58:6741–6746.
  • Abdel-Mageed H, Fahmy AS. Shaker DS, et al. Development of novel delivery system for nanoencapsulation of catalase: formulation, characterization, and in vivo evaluation using oxidative skin injury model. Artif Cells Nanomed Biotechnol. 2018;24:362–371.
  • Sharma S, Kaur P, Jain A, et al. A smart bioconjugate of chymotrypsin. Biomacromolecules 2003;4:330–336.
  • Yu Y, Yuan J, Wang Q. Covalent immobilization of cellulases onto a water-soluble–insoluble reversible polymer. Appl Biochem Biotechnol. 2012;166:1433.
  • Yu Y, Yuan J, Wang Q, et al. Cellulase immobilization onto the reversibly soluble methacrylate copolymer for denim washing. Carbohyd Polym. 2013;95:675–680.
  • Chang M-Y, Juang R-S. Activities, stabilities, and reaction kinetics of three free and chitosan–clay composite immobilized enzymes. Enz Microb Technol. 2005;36:75–82.
  • Rodrigues RC, Ortiz C, Berenguer-Murcia Á, et al. Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev. 2013;42:6290–6307.
  • Homaei A, Saberi D. Immobilization of α-amylase on gold nanorods: an ideal system forstarch processing. Process Biochem. 2015;50:1394–1399.
  • Tavano OL, Fernandez-Lafuente R, Goulart AJ, et al. Optimization of the immobilization of sweet potato amylase using glutaraldehyde-agarose support characterization of the immobilized enzyme. Process Biochem. 2013;48:1054–1058.
  • Jaiswal N, Prakash O. Immobilization of soybean α-amylase on gelatin and its application as a detergent additive. Asian J Biochem. 2011;6:337–346.
  • Lee J, Park I, Cho J. Immobilization of the Antarctic Bacillus sp. LX-1 β-Galactosidase on Eudragit L-100 for the production of a functional feed additive. Asian Australas J Anim Sci. 2013;26:552–557.
  • Talekar S, Chavare S. Optimization of immobilization of α-amylase in alginate gel and its comparative biochemical studies with free α-amylase. Rec Res Sci Technol. 2012;4:1–5.
  • Mohamed S, Abdel-Mageed H, Tayel S, et al. Characterization of Mucor racemosus lipase with potential application for the treatment of cellulite. Process Biochem. 2011;46:642–648.
  • Arasaratnam V, Galaev IY, Mattiasson B. Reversibly soluble biocatalyst: optimization of trypsin coupling to Eudragit S-100 and biocatalyst activity in soluble and precipitated forms. Enzyme Microb Technol. 2000;27:254–263.
  • Godoy CA. New strategy for the immobilization of lipases on glyoxyl–agarose supports: production of robust biocatalysts for natural oil transformation. IJMS. 2017;18:2130.