4,794
Views
16
CrossRef citations to date
0
Altmetric
Review

Research progress on therapeutic targeting of quiescent cancer cells

, , , , , , , & show all
Pages 2810-2819 | Received 20 May 2019, Accepted 24 Jun 2019, Published online: 09 Jul 2019

References

  • Mohammad K, Dakik P, Medkour Y, et al. Quiescence entry, maintenance, and exit in adult stem cells. Int J Mol Sci. 2019;20:pii: E2158.
  • Sagot I, Laporte D. Quiescence, an individual journey. Curr Genet. 2019;65:695–699.
  • Zeniou M, Feve M, Mameri S, et al. Chemical library screening and structure-function relationship studies identify bisacodyl as a potent and selective cytotoxic agent towards quiescent human glioblastoma tumor stem-like cells. PLoS One. 2015;10:e0134793.
  • Zhu L, Xing S, Zhang L, et al. Involvement of Polo-like kinase 1 (Plk1) in quiescence regulation of cancer stem-like cells of the gastric cancer cell lines. Oncotarget. 2017;8:37633–37645.
  • Legesse-Miller A, Raitman I, Haley EM, et al. Quiescent fibroblasts are protected from proteasome inhibition-mediated toxicity. Mol Biol Cell. 2012;23:3566–3581.
  • Yao M, Xie C, Kiang MY, et al. Targeting of cytosolic phospholipase A2α impedes cell cycle re-entry of quiescent prostate cancer cells. Oncotarget. 2015;6:34458–34474.
  • Dai J, Miller MA, Everetts NJ, et al. Elimination of quiescent slow-cycling cells via reducing quiescence depth by natural compounds purified from Ganoderma lucidum. Oncotarget 2017;8:13770–13781.
  • Cackowski FC, Eber MR, Rhee J, et al. Mer tyrosine kinase regulates disseminated prostate cancer cellular dormancy. J Cell Biochem. 2017;118:891–902.
  • Oki T, Nishimura K, Kitaura J, et al. A novel cell-cycle-indicator, mVenus-p27K-, identifies quiescent cells and visualizes G0–G1 transition. Sci Rep. 2015;4:4012.
  • Sun D, Buttitta L. States of G0 and the proliferation-quiescence decision in cells, tissues and during development. Int J Dev Biol. 2017;61:357–366.
  • Masunaga S, Sakurai Y, Tanaka H, et al. Radiosensitivity of pimonidazole-unlabeled intratumor quiescent cell population to γ-rays, accelerated carbon ion beams and boron neutron capture reaction. Br J Radiol. 2013;86:20120302.
  • Prunier C, Baker D, Ten Dijke P, et al. TGF-β family signaling pathways in cellular dormancy. Trends Cancer. 2019;5:66–78.
  • Pei H, Zhang J, Nie J, et al. RAC2-P38 MAPK-dependent NADPH oxidase activity is associated with the resistance of quiescent cells to ionizing radiation. Cell Cycle. 2017;16:113–122.
  • Masunaga S, Matsumoto Y, Kashino G, et al. Significance of manipulating tumor hypoxia and radiation dose rate in terms of local tumor response and lung metastatic potential, referring to the response of quiescent cell populations. Br J Radiol. 2010;83:776–784.
  • Brown JA, Yonekubo Y, Hanson N, et al. TGF-β-induced quiescence mediates chemoresistance of tumor-propagating cells in squamous cell carcinoma. Cell Stem Cell 2017;21:650–664.
  • Alekseenko LL, Shilina MA, Lyublinskaya OG, et al. Quiescent human mesenchymal stem cells are more resistant to heat stress than cycling cells. Stem Cells Int. 2018;2018:3753547.
  • Sagot I, Laporte D. The cell biology of quiescent yeast – a diversity of individual scenarios. J Cell Sci. 2019;132:213025.
  • Nakazawa N, Teruya T, Sajiki K, et al. The putative ceramide-conjugation protein Cwh43 regulates G0 quiescence, nutrient metabolism and lipid homeostasis in fission yeast. J Cell Sci. 2018;131:217331.
  • Hayashi T, Teruya T, Chaleckis R, et al. S-adenosylmethionine synthetase is required for cell growth, maintenance of G0 phase, and termination of quiescence in fission yeast. iScience. 2018;5:38–51.
  • Miles S, Li LH, Melville Z, et al. Ssd1 and the cell wall integrity pathway promote entry, maintenance and recovery from the quiescent state in budding yeast. Mol Biol Cell 2019;mbcE19040190. doi:10.1091/mbc.E19-04-0190
  • Guidi M, Ruault M, Marbouty M, et al. Spatial reorganization of telomeres in long-lived quiescent cells. Genome Biol. 2015;16:206.
  • Hoffman CS, Wood V, Fantes PA. An ancient yeast for young geneticists: a primer on the Schizosaccharomyces pombe model system. Genetics. 2015;201:403–423.
  • Sajiki K, Tahara Y, Uehara L, et al. Genetic regulation of mitotic competence in G0 quiescent cells. Sci Adv. 2018;4:eaat5685.
  • Aono S, Haruna Y, Watanabe YH, et al. The fission yeast Greatwall-Endosulfine pathway is required for proper quiescence/G0 phase entry and maintenance. Genes Cells. 2019;24:172–186.
  • Nakhaei-Rad S, Nakhaeizadeh H, Gotze S, et al. The role of embryonic stem cell-expressed RAS (ERAS) in the maintenance of quiescent hepatic stellate cells. J Biol Chem. 2016;291:8399–8413.
  • Nobutani K, Shimono Y, Mizutani K, et al. Downregulation of CXCR4 in metastasized breast cancer cells and implication in their dormancy. PLoS One. 2015;10:e0130032.
  • Arora M, Moser J, Phadke H, et al. Endogenous replication stress in mother cells leads to quiescence of daughter cells. Cell Rep. 2017;19:1351–1364.
  • Subramaniam S, Sreenivas P, Cheedipudi S, et al. Distinct transcriptional networks in quiescent myoblasts: a role for Wnt signaling in reversible vs. irreversible arrest. PLoS One 2013;8:e65097.
  • Bartosh TJ, Ullah M, Zeitouni S, et al. Cancer cells enter dormancy after cannibalizing mesenchymal stem/stromal cells (MSCs). Proc Natl Acad Sci USA. 2016;113:E6447–E6456.
  • Shimanuki M, Uehara L, Pluskal T, et al. Klf1, a C2H2 zinc finger-transcription factor, is required for cell wall maintenance during long-term quiescence in differentiated G0 phase. PLoS One 2013;8:e78545.
  • Recasens A, Munoz L. Targeting cancer cell dormancy. Trends Pharmacol Sci. 2019;40:128–141.
  • Sosa MS, Parikh F, Maia AG, et al. NR2F1 controls tumor cell dormancy via SOX9- and RARβ-driven quiescence programmes. Nat Commun. 2015;6:6170.
  • Soppa U, Schumacher J, Florencio Ortiz V, et al. The Down syndrome-related protein kinase DYRK1A phosphorylates p27(Kip1) and Cyclin D1 and induces cell cycle exit and neuronal differentiation. Cell Cycle 2014;13:2084–2100.
  • Becker W. A wake-up call to quiescent cancer cells - potential use of DYRK1B inhibitors in cancer therapy. FEBS J. 2018;285:1203–1211.
  • Perucca P, Cazzalini O, Madine M, et al. Loss of p21 CDKN1A impairs entry to quiescence and activates a DNA damage response in normal fibroblasts induced to quiescence. Cell Cycle. 2009;8:105–114.
  • Cheedipudi S, Puri D, Saleh A, et al. A fine balance: Epigenetic control of cellular quiescence by the tumor suppressor PRDM2/RIZ at a bivalent domain in the cyclin a gene. Nucleic Acids Res. 2015;43:6236–6256.
  • Spencer SL, Cappell SD, Tsai FC, et al. The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell 2013;155:369–383.
  • Kumar MG, Patel NM, Nicholson AM, et al. Reactive oxygen species mediate microRNA-302 regulation of AT-rich interacting domain 4a and C-C motif ligand 5 expression during transitions between quiescence and proliferation. Free Radic Biol Med. 2012;53:974–982.
  • Albrengues J, Shields MA, Ng D, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361:eaao4227.
  • Baell JB, Leaver DJ, Hermans SJ, et al. Inhibitors of histone acetyltransferases KAT6A/B induce senescence and arrest tumor growth. Nature. 2018;560:253–257.
  • Huang F. New KAT6 inhibitors induce senescence and arrest cancer growth. Synth Syst Biotechnol. 2018;3:244–245.
  • Herbert SP, Odell AF, Ponnambalam S, et al. Activation of cytosolic phospholipase A2-{alpha} as a novel mechanism regulating endothelial cell cycle progression and angiogenesis. J Biol Chem. 2009;284:5784–5796.
  • Naini SM, Choukroun GJ, Ryan JR, et al. Cytosolic phospholipase A2α regulates G1 progression through modulating FOXO1 activity. FASEB J. 2016;30:1155–1170.
  • Xu H, Sun Y, Zeng L, et al. Inhibition of cytosolic phospholipase A2 α increases chemosensitivity in cervical carcinoma through suppressing beta-catenin signaling. Cancer Biol Ther. 2019;20:912–921.
  • Ghajar CM. Metastasis prevention by targeting the dormant niche. Nat Rev Cancer. 2015;15:238–247.
  • Elsberger B. Translational evidence on the role of Src kinase and activated Src kinase in invasive breast cancer. Crit Rev Oncol Hematol. 2014;89:343–351.
  • El Touny LH, Vieira A, Mendoza A, et al. Combined SFK/MEK inhibition prevents metastatic outgrowth of dormant tumor cells. J Clin Invest. 2014;124:156–168.
  • Buczacki SJA, Popova S, Biggs E, et al. Itraconazole targets cell cycle heterogeneity in colorectal cancer. J Exp Med. 2018;215:1891–1912.
  • Yang JB, Khan M, He YY, et al. Tubeimoside-1 induces oxidative stress-mediated apoptosis and G0/G1 phase arrest in human prostate carcinoma cells in vitro. Acta Pharmacol Sin. 2016;37:950–962.
  • Li A, Wang J, Wu M, et al. The inhibition of activated hepatic stellate cells proliferation by arctigenin through G0/G1 phase cell cycle arrest: persistent p27(Kip1) induction by interfering with PI3K/Akt/FOXO3a signaling pathway. Eur J Pharmacol. 2015;747:71–87.
  • Laporte D, Jimenez L, Gouleme L, et al. Yeast quiescence exit swiftness is influenced by cell volume and chronological age. Microb Cell. 2017;5:104–111.
  • Fujimaki K, Yao G. Crack the state of silence: Tune the depth of cellular quiescence for cancer therapy. Mol Cell Oncol. 2018;5:e1403531.
  • Boichuk S, Parry JA, Makielski KR, et al. The DREAM complex mediates GIST cell quiescence and is a novel therapeutic target to enhance imatinib-induced apoptosis. Cancer Res. 2013;73:5120–5129.
  • Kyle AH, Baker JH, Minchinton AI. Targeting quiescent tumor cells via oxygen and IGF-I supplementation. Cancer Res. 2012;72:801–809.
  • Facompre ND, Harmeyer KM, Sole X, et al. JARID1B enables transit between distinct states of the stem-like cell population in oral cancers. Cancer Res. 2016;76:5538–5549.
  • Hanna J, Waterman D, Boselli M, et al. Spg5 protein regulates the proteasome in quiescence. J Biol Chem. 2012;287:34400–34409.
  • Zhu W, Liu J, Nie J, et al. MG132 enhances the radiosensitivity of lung cancer cells in vitro and in vivo. Oncol Rep. 2015;34:2083–2089.
  • Shen M, Schmitt S, Buac D, et al. Targeting the ubiquitin-proteasome system for cancer therapy. Expert Opin Ther Targets. 2013;17:1091–1108.
  • Gu ZC, Wu E, Sailer C, et al. Ubiquitin orchestrates proteasome dynamics between proliferation and quiescence in yeast. Mol Biol Cell. 2017;28:2479–2491.
  • Laporte D, Salin B, Daignan-Fornier B, et al. Reversible cytoplasmic localization of the proteasome in quiescent yeast cells. J Cell Biol. 2008;181:737–745.
  • Taromi S, Lewens F, Arsenic R, et al. Proteasome inhibitor bortezomib enhances the effect of standard chemotherapy in small cell lung cancer. Oncotarget. 2017;8:97061–97078.
  • Adomako A, Calvo V, Biran N, et al. Identification of markers that functionally define a quiescent multiple myeloma cell sub-population surviving bortezomib treatment. BMC Cancer. 2015;15:444.
  • Schewe DM, Aguirre-Ghiso JA. Inhibition of eIF2α dephosphorylation maximizes bortezomib efficiency and eliminates quiescent multiple myeloma cells surviving proteasome inhibitor therapy. Cancer Res. 2009;69:1545–1552.
  • Roue G, Perez-Galan P, Mozos A, et al. The Hsp90 inhibitor IPI-504 overcomes bortezomib resistance in mantle cell lymphoma in vitro and in vivo by down-regulation of the prosurvival ER chaperone BiP/Grp78. Blood. 2011;117:1270–1279.
  • Ookura M, Fujii T, Yagi H, et al. YM155 exerts potent cytotoxic activity against quiescent (G0/G1) multiple myeloma and bortezomib resistant cells via inhibition of survivin and Mcl-1. Oncotarget. 2017;8:111535–111550.
  • Dong J, Aulestia FJ, Assad Kahn S, et al. Bisacodyl and its cytotoxic activity on human glioblastoma stem-like cells. Implication of inositol 1,4,5-triphosphate receptor dependent calcium signaling. Biochim Biophys Acta Mol Cell Res. 2017;1864:1018–1027.
  • Chen W, Zebaze LN, Dong J, et al. WNK1 kinase and its partners Akt, SGK1 and NBC-family Na(+)/HCO3(–) cotransporters are potential therapeutic targets for glioblastoma stem-like cells linked to Bisacodyl signaling. Oncotarget. 2018;9:27197–27219.
  • Viale A, Pettazzoni P, Lyssiotis CA, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature. 2014;514:628–632.
  • Zhang X, De Milito A, Demiroglu-Zergeroglu A, et al. Eradicating quiescent tumor cells by targeting mitochondrial bioenergetics. Trends Cancer 2016;2:657–663.
  • Zhang X, Fryknas M, Hernlund E, et al. Induction of mitochondrial dysfunction as a strategy for targeting tumor cells in metabolically compromised microenvironments. Nat Commun. 2014;5:3295.
  • Takahashi H, Yumoto K, Yasuhara K, et al. Anticancer polymers designed for killing dormant prostate cancer cells. Sci Rep. 2019;9:1096.
  • Ledford H. Cancer researchers target the dormant cells that seed tumors. Nature. 2018;558:355–356.
  • Rajbhandari N, Lin WC, Wehde BL, et al. Autocrine IGF1 signaling mediates pancreatic tumor cell dormancy in the absence of oncogenic drivers. Cell Rep. 2017;18:2243–2255.
  • Nakayama T, Otsuka S, Kobayashi T, et al. Dormant cancer cells accumulate high protoporphyrin IX levels and are sensitive to 5-aminolevulinic acid-based photodynamic therapy. Sci Rep. 2016;6:36478.
  • Dai J, Itahana K, Baskar R. Quiescence does not affect p53 and stress response by irradiation in human lung fibroblasts. Biochem Biophys Res Commun. 2015;458:104–109.
  • Muz B, de la Puente P, Azab F, et al. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl). 2015;3:83–92.
  • Kuo P, Le QT. Galectin-1 links tumor hypoxia and radiotherapy. Glycobiology. 2014;24:921–925.
  • Marhold M, Tomasich E, El-Gazzar A, et al. HIF1α regulates mTOR signaling and viability of prostate cancer stem cells. Mol Cancer Res. 2015;13:556–564.
  • Ishii A, Kimura T, Sadahiro H, et al. Histological characterization of the tumorigenic “peri-necrotic niche” harboring quiescent stem-like tumor cells in glioblastoma. PLoS One 2016;11:e0147366.
  • Masunaga SI, Sakurai Y, Tano K, et al. Effect of bevacizumab combined with boron neutron capture therapy on local tumor response and lung metastasis. Exp Ther Med. 2014;8:291–301.
  • Masunaga SI, Sanada Y, Moriwaki T, et al. Significance of fractionated administration of thalidomide combined with γ-ray irradiation in terms of local tumor response and lung metastasis. World J Oncol. 2014;5:155–165.
  • Masunaga S, Hirayama R, Uzawa A, et al. Influence of manipulating hypoxia in solid tumors on the radiation dose-rate effect in vivo, with reference to that in the quiescent cell population. Jpn J Radiol. 2010;28:132–142.
  • Masunaga S, Liu Y, Tanaka H, et al. Reducing intratumor acute hypoxia through bevacizumab treatment, referring to the response of quiescent tumor cells and metastatic potential. Br J Radiol. 2011;84:1131–1138.
  • Masunaga S, Hirayama R, Uzawa A, et al. The effect of post-irradiation tumor oxygenation status on recovery from radiation-induced damage in vivo: with reference to that in quiescent cell populations. J Cancer Res Clin Oncol. 2009;135:1109–1116.
  • Masunaga SI, Tano K, Sanada Y, et al. Effect of tirapazamine, metformin or mild hyperthermia on recovery from radiation-induced damage in pimonidazole-unlabeled quiescent tumor cells. World J Oncol. 2017;8:137–146.
  • Masunaga S, Sakurai Y, Tanaka H, et al. Wortmannin efficiently suppresses the recovery from radiation-induced damage in pimonidazole-unlabeled quiescent tumor cell population. J Radiat Res. 2013;54:221–229.
  • Masunaga SI, Liu Y, Tanaka H, et al. Radiosensitivity and capacity to recover from radiation-induced damage in pimonidazole-unlabeled intratumor quiescent cells depend on p53 status. World J Oncol. 2011;2:1–9.
  • Eckers JC, Kalen AL, Sarsour EH, et al. Forkhead box M1 regulates quiescence-associated radioresistance of human head and neck squamous carcinoma cells. Radiat Res. 2014;182:420–429.
  • Pei H, Guo Z, Wang Z, et al. RAC2 promotes abnormal proliferation of quiescent cells by enhanced JUNB expression via the MAL-SRF pathway. Cell Cycle 2018;17:1115–1123.
  • Kodym E, Kodym R, Reis AE, et al. The small-molecule CDK inhibitor, SNS-032, enhances cellular radiosensitivity in quiescent and hypoxic non-small cell lung cancer cells. Lung Cancer. 2009;66:37–47.
  • Xu MD, Liu SL, Zheng BB, et al. The radiotherapy-sensitization effect of cantharidin: Mechanisms involving cell cycle regulation, enhanced DNA damage, and inhibited DNA damage repair. Pancreatology. 2018;18:822–832.
  • Okamoto E, Yamamoto T, Nakai K, et al. Detection of DNA double-strand breaks in boron neutron capture reaction. Appl Radiat Isot. 2015;106:185–188.
  • Miyabe J, Ohgaki R, Saito K, et al. Boron delivery for boron neutron capture therapy targeting a cancer-upregulated oligopeptide transporter. J Pharmacol Sci. 2019;139:215–222.
  • Sun T, Zhang Z, Li B, et al. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro. Radiat Oncol. 2013;8:195.
  • Wada Y, Hirose K, Harada T, et al. Impact of oxygen status on 10B-BPA uptake into human glioblastoma cells, referring to significance in boron neutron capture therapy. J Radiat Res. 2018;59:122–128.
  • Masunaga S, Sakurai Y, Tanaka H, et al. Effects of employing a 10B-carrier and manipulating intratumor hypoxia on local tumor response and lung metastatic potential in boron neutron capture therapy. Br J Radiol. 2012;85:249–258.