7,165
Views
74
CrossRef citations to date
0
Altmetric
Review

Tailoring synthetic polymeric biomaterials towards nerve tissue engineering: a review

, , ORCID Icon, &
Pages 3524-3539 | Received 22 Jun 2019, Accepted 26 Jun 2019, Published online: 22 Aug 2019

References

  • Mahar M, Cavalli V. Intrinsic mechanisms of neuronal axon regeneration. Nat Rev Neurosci. 2018;19:323.
  • Chamorro Á, Dirnagl U, Urra X, et al. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016;15:869–881.
  • Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci. 2006;7:617.
  • Zigmond RE, Echevarria FD. Macrophage biology in the peripheral nervous system after injury. Prog Neurobiol. 2018;173:102–121.
  • Chen P, Piao X, Bonaldo P. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol. 2015;130:605–618.
  • Zuo M, Guo H, Wan T, et al. Wallerian degeneration in experimental focal cortical ischemia. Brain Res Bull. 2019;149:194–202.
  • Belanger K, Dinis TM, Taourirt S, et al. Recent strategies in tissue engineering for guided peripheral nerve regeneration. Macromol Biosci. 2016;16:472–481.
  • Houschyar KS, Momeni A, Pyles MN, et al. The role of current techniques and concepts in peripheral nerve repair. Plastic Surg Int. 2016;2016:1.
  • Alvites RD, Santos ARC, Varejão ASP, et al., Olfactory mucosa mesenchymal stem cells and biomaterials: A new combination to regenerative therapies after peripheral nerve injury, in mesenchymal stem cells–isolation, characterization and applications. Rijeka: InTech; 2017.
  • Schmidt CE, Leach JB. Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng. 2003;5:293–347.
  • Luca L. Chapter 10 – Nerve repair. In: Saunders RJ, et al., editors. Hand and upper extremity rehabilitation. 4th ed. St. Louis: Churchill Livingstone; 2016. p. 95–102.
  • Meyer C, Stenberg L, Gonzalez-Perez F, et al. Chitosan-film enhanced chitosan nerve guides for long-distance regeneration of peripheral nerves. Biomaterials. 2016;76:33–51.
  • Gu X, Ding F, Yang Y, et al. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol. 2011;93:204–230.
  • Santos D, Wieringa P, Moroni L, et al. PEOT/PBT guides enhance nerve regeneration in long gap defects. Adv Healthcare Mater. 2017;6:1600298.
  • Zhu W, Tringale KR, Woller SA, et al. Rapid continuous 3D printing of customizable peripheral nerve guidance conduits. Mater Today. 2018;21:951–959.
  • Amani H, Ajami M, Nasseri Maleki S, et al. Targeting signal transducers and activators of transcription (STAT) in human cancer by dietary polyphenolic antioxidants. Biochimie. 2017;142:63–79.
  • Zarch AV, Toroudi HP, Soleimani M, et al. Neuroprotective effects of diazoxide and its antagonism by glibenclamide in pyramidal neurons of rat hippocampus subjected to ischemia-reperfusion-induced injury. Int J Neurosci. 2009;119:1346–1361.
  • Javedan G, Shidfar F, Davoodi SH, et al. Conjugated linoleic acid rat pretreatment reduces renal damage in ischemia/reperfusion injury: unraveling antiapoptotic mechanisms and regulation of phosphorylated mammalian target of rapamycin. Mol Nutr Food Res. 2016;60:2665–2677.
  • Habibey R, Pazoki‐Toroudi H. Morphine dependence protects rat kidney against ischaemia–reperfusion injury. Clin Exp Pharmacol Physiol. 2008;35:1209–1214.
  • Langer R, Vacanti J. Advances in tissue engineering. J Pediatr Surg. 2016;51:8–12.
  • Amani H, Mostafavi E, Arzaghi H, et al. Three-dimensional graphene foams: synthesis, properties, biocompatibility, biodegradability, and applications in tissue engineering. ACS Biomater Sci Eng. 2018;5:193–214.
  • Spearman BS, Desai VH, Mobini S, et al. Tissue‐engineered peripheral nerve interfaces. Adv Funct Mater. 2018;28:1701713.
  • Harris JP, Struzyna LA, Murphy PL, et al. Advanced biomaterial strategies to transplant preformed micro-tissue engineered neural networks into the brain. J Neural Eng. 2016;13:016019.
  • Mobasseri A, Faroni A, Minogue BM, et al. Polymer scaffolds with preferential parallel grooves enhance nerve regeneration. Tissue Eng A. 2015;21:1152–1162.
  • Wong FS, Tsang KK, Lo AC. Nanoengineered biomaterial for brain tissue reconstruction and functional repairment. In: Mozafari M, Rajadas J, Kaplan D, editors. Nanoengineered biomaterials for regenerative medicine. Amsterdam; Oxford; Cambridge (MA): Elsevier; 2019. p. 145–166.
  • Gaudin A, Yemisci M, Eroglu H, et al. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury. Nature Nanotech. 2014;9:1054.
  • Assunção-Silva R, et al., Nanoengineered biomaterials for spinal cord regeneration. In: Mozafari M, Rajadas J, Kaplan D, editors. Nanoengineered biomaterials for regenerative medicine. Amsterdam; Oxford; Cambridge (MA): Elsevier; 2019. p. 167–185.
  • Kayalioglu G. The vertebral column and spinal meninges. In: Watson C, Paxinos G, Kayalioglu G, editors. The spinal cord. Cambridge (MA): Elsevier; 2009. p. 17–36.
  • Falavigna A, Righesso O, Guarise da Silva P, et al. Epidemiology and management of spinal trauma in children and adolescents <18 years Old. World Neurosurg. 2018;110:e479–e483.
  • Guertin PA. Central pattern generator for locomotion: anatomical, physiological, and pathophysiological considerations. Front Neur. 2013;3:183.
  • Badea S, Wu W. Nanoengineered biomaterials for bridging gaps in damaged nerve tissue. In: Mozafari M, Rajadas J, Kaplan D, editors. Nanoengineered biomaterials for regenerative medicine. Cambridge (MA): Elsevier; 2019. p. 187–214.
  • Amani H, Habibey R, Shokri F, et al. Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling. Sci Rep. 2019;9:6044.
  • Kowal SL, Dall TM, Chakrabarti R, et al. The current and projected economic burden of Parkinson's disease in the United States. Mov Disord. 2013;28:311–318.
  • Olesen J, Gustavsson A, Svensson M, et al. The economic cost of brain disorders in Europe. Eur J Neurol. 2012;19:155–162.
  • Dalamagkas K, Tsintou M, Seifalian A. Advances in peripheral nervous system regenerative therapeutic strategies: a biomaterials approach. Mater Sci Eng C. 2016;65:425–432.
  • Chang W, Shah MB, Lee P, et al. Tissue-engineered spiral nerve guidance conduit for peripheral nerve regeneration. Acta Biomater. 2018;73:302–311.
  • Lackington WA, Ryan AJ, O’Brien FJ. Advances in nerve guidance conduit-based therapeutics for peripheral nerve repair. ACS Biomater Sci Eng. 2017;3:1221–1235.
  • Lee DJ, et al. Biomimetic nerve guidance conduit containing intraluminal microchannels with aligned nanofibers markedly facilitates in nerve regeneration. ACS Biomater Sci Eng. 2016;2:1403–1410.
  • Zhou Z-F, et al. Electrospinning of PELA/PPY fibrous conduits: promoting peripheral nerve regeneration in rats by self-originated electrical stimulation. ACS Biomater Sci Eng. 2016;2:1572–1581.
  • Ebrahimi M, Ai J, Biazar E, et al. In vivo assessment of a nanofibrous silk tube as nerve guide for sciatic nerve regeneration. Artif Cells Nanomed Biotechnol. 2018;46:394–401.
  • Mohamadi F, Ebrahimi-Barough S, Nourani MR, et al. Use new poly (ε-caprolactone/collagen/NBG) nerve conduits along with NGF for promoting peripheral (sciatic) nerve regeneration in a rat. Artif Cells Nanomed Biotechnol. 2018;46:34–45.
  • Wang G-W, Yang H, Wu W-F, et al. Design and optimization of a biodegradable porous zein conduit using microtubes as a guide for rat sciatic nerve defect repair. Biomaterials. 2017;131:145–159.
  • Tuan RS, Alexander P. Adult stem cell-based enhancement of nerve conduit for peripheral nerve repair. Pittsburgh: University of Pittsburgh; 2018.
  • Chiono V, Tonda-Turo C. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Prog Neurobiol. 2015;131:87–104.
  • Salmoria GV, Paggi RA, Kanis LA. Manufacturing of PCL/SAg tubes by melt-extrusion for nerve regeneration: structure and mechanical properties. Polymer Testing. 2016;55:160–165.
  • Pawelec KM, Koffler J, Shahriari D, et al. Microstructure and in vivo characterization of multi-channel nerve guidance scaffolds. Biomed Mater. 2018;13:044104.
  • Carballo-Molina OA, Velasco I. Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries. Front Cell Neurosci. 2015;9:13.
  • Vishnoi T, Singh A, Teotia AK, et al. Chitosan-gelatin-polypyrrole cryogel matrix for stem cell differentiation into neural lineage and sciatic nerve regeneration in peripheral nerve injury model. ACS Biomater Sci Eng. 2019;5:3007
  • Ratheesh G, Venugopal JR, Chinappan A, et al. 3D fabrication of polymeric scaffolds for regenerative therapy. ACS Biomater Sci Eng. 2017;3:1175–1194.
  • Yao L, O'Brien N, Windebank A, et al. Orienting neurite growth in electrospun fibrous neural conduits. J Biomed Mater Res. 2009;90:483–491.
  • Lee S, Hongo C, Nishino T. Crystal modulus of poly (glycolic acid) and its temperature dependence. Macromolecules 2017;50:5074–5079.
  • Södergård A, Stolt M. Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci. 2002;27:1123–1163.
  • Chanfreau S, Mena M, Porras-Domínguez JR, et al. Enzymatic synthesis of poly-L-lactide and poly-L-lactide-co-glycolide in an ionic liquid. Bioprocess Biosyst Eng. 2010;33:629–638.
  • Omay D, Guvenilir Y. Synthesis and characterization of poly (d, l-lactic acid) via enzymatic ring opening polymerization by using free and immobilized lipase. Biocatal Biotransf. 2013;31:132–140.
  • Zeng J-B, Li K-A, Du A-K. Compatibilization strategies in poly (lactic acid)-based blends. Rsc Adv. 2015;5:32546–32565.
  • Tyler B, Gullotti D, Mangraviti A, et al. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev. 2016;107:163–175.
  • Santoro M, Shah SR, Walker JL, et al. Poly (lactic acid) nanofibrous scaffolds for tissue engineering. Adv Drug Deliv Rev. 2016;107:206–212.
  • Saini P, Arora M, Kumar MR. Poly (lactic acid) blends in biomedical applications. Adv Drug Deliv Rev. 2016;107:47–59.
  • Lasprilla AJR, Martinez GAR, Lunelli BH, et al. Poly-lactic acid synthesis for application in biomedical devices - a review. Biotechnol Adv. 2012;30:321–328.
  • Mir M, Ahmed N, ur Rehman A. Recent applications of PLGA based nanostructures in drug delivery. Colloids and Surfaces B: Biointerfaces. 2017;159:217–231.
  • Baican MC. Polymeric nanobiosensors. In: Vasile C, editors. Polymeric nanomaterials in nanotherapeutics. Cambridge (MA): Elsevier; 2019. p. 151–181.
  • Liang X, et al. Bilayered PLGA/PLGA-HAp composite scaffold for osteochondral tissue engineering and tissue regeneration. ACS Biomater Sci Eng. 2018;4:3506–3521.
  • Qian C, et al. Targeting early apoptosis in acute ischemic stroke with a small-molecule probe. ACS Biomater Sci Eng. 2018;4:1862–1870.
  • Jain RA. The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide)(PLGA) devices. Biomaterials. 2000;21:2475–2490.
  • Kapoor DN, Bhatia A, Kaur R, et al. PLGA: a unique polymer for drug delivery. Ther Deliv. 2015;6:41–58.
  • dos Santos FP, Peruch T, Katami SJV, et al. Poly (lactide-co-glycolide)(PLGA) scaffold induces short-term nerve regeneration and functional recovery following sciatic nerve transection in rats. Neuroscience. 2019;396:94–107.
  • Ferreira CL, Valente CA, Zanini ML, et al. Biocompatible PCL/PLGA/polypyrrole composites for regenerating nerves. In Macromolecular symposia. Hoboken (NJ): Wiley Online Library; 2019.
  • Lanao RPF, Jonker AM, Wolke JGC, et al. Physicochemical properties and applications of poly (lactic-co-glycolic acid) for use in bone regeneration. Tissue Eng B Rev. 2013;19:380–390.
  • Lü J-M, Wang X, Marin-Muller C, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Exp Rev Mol Diagn. 2009;9:325–341.
  • Basu A, Domb AJ. Recent advances in polyanhydride based biomaterials. Adv Mater. 2018;30:1706815.
  • Labet M, Thielemans W. Synthesis of polycaprolactone: a review. Chem Soc Rev. 2009;38:3484–3504.
  • Mondal D, Griffith M, Venkatraman SS. Polycaprolactone-based biomaterials for tissue engineering and drug delivery: current scenario and challenges. Int J Polym Mater Polym Biomater. 2016;65:255–265.
  • Chang SH, Lee HJ, Park S, et al. Fast degradable polycaprolactone for drug delivery. Biomacromolecules. 2018;19:2302–2307.
  • Sun H, Mei L, Song C, et al. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials. 2006;27:1735–1740.
  • Surnar B, Jayakannan M. Structural engineering of biodegradable PCL block copolymer nanoassemblies for enzyme-controlled drug delivery in cancer cells. ACS Biomater Sci Eng. 2016;2:1926–1941.
  • Palamà IE, Arcadio V, D’Amone S, et al. Therapeutic PCL scaffold for reparation of resected osteosarcoma defect. Sci Rep. 2017;7:12672.
  • Zhou XHu, Shi G, Fan B, et al. Polycaprolactone electrospun fiber scaffold loaded with iPSCs-NSCs and ASCs as a novel tissue engineering scaffold for the treatment of spinal cord injury. IJN. 2018;13:6265.
  • Kasper FK, Tanahashi K, Fisher JP, et al. Synthesis of poly(propylene fumarate)). Nat Protoc. 2009;4:518.
  • Wang K, Cai L, Hao F, et al. Distinct cell responses to substrates consisting of poly (ε-caprolactone) and poly (propylene fumarate) in the presence or absence of cross-links. Biomacromolecules. 2010;11:2748–2759.
  • Chen X, Zhao Y, Li X, et al. Functional multichannel poly (propylene fumarate)‐collagen scaffold with collagen‐binding neurotrophic factor 3 promotes neural regeneration after transected spinal cord injury. Adv Healthcare Mater. 2018;7:1800315.
  • Cui J, Björnmalm M, Ju Y, et al. Nanoengineering of poly(ethylene glycol) particles for stealth and targeting. Langmuir. 2018;34:10817–10827.
  • Pape A, Ippel BD, Dankers PY. Cell and protein fouling properties of polymeric mixtures containing supramolecular poly (ethylene glycol) additives. Langmuir. 2017;33:4076–4082.
  • Suk JS, Xu Q, Kim N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99:28–51.
  • Temenoff JS, Athanasiou KA, Lebaron RG, et al. Effect of poly (ethylene glycol) molecular weight on tensile and swelling properties of oligo (poly (ethylene glycol) fumarate) hydrogels for cartilage tissue engineering. J Biomed Mater Res. 2002;59:429–437.
  • Gaaz T, Sulong A, Akhtar M, et al. Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules. 2015;20:22833–22847.
  • Bayer O. Das di‐isocyanat‐polyadditionsverfahren (polyurethane). Angew Chem. 1947;59:257–272.
  • Zhang Q, Zhang G, Xu J, et al. Recent advances on ligin-derived polyurethane polymers. Rev Adv Mater Sci. 2015;40:146–154.
  • Howard GT. Biodegradation of polyurethane: a review. Int Biodeter Biodegr. 2002;49:245–252.
  • Duquesne S, Le Bras M, Bourbigot S, et al. Thermal degradation of polyurethane and polyurethane/expandable graphite coatings. Polym Degrad Stab. 2001;74:493–499.
  • Gautam R, Bassi AS, Yanful EK. Candida rugosa lipase-catalyzed polyurethane degradation in aqueous medium. Biotechnol Lett. 2007;29:1081–1086.
  • Wu Y, Wang L, Guo B, et al. Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. Biomaterials. 2016;87:18–31.
  • Hsieh F-Y, Lin H-H, Hsu S-h. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials. 2015;71:48–57.
  • Weber RA, Breidenbach WC, Brown RE, et al. A randomized prospective study of polyglycolic acid conduits for digital nerve reconstruction in humans. Plast Reconstr Surg. 2000;106:1036–1045.
  • Shimizu M, Matsumine H, Osaki H, et al. Adipose‐derived stem cells and the stromal vascular fraction in polyglycolic acid‐collagen nerve conduits promote rat facial nerve regeneration. Wound Rep and Reg. 2018;26:446–455.
  • Matsumoto K, Ohnishi K, Kiyotani T, et al. Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)–collagen tube filled with laminin-coated collagen fibers: a histological and electrophysiological evaluation of regenerated nerves. Brain Res. 2000;868:315–328.
  • Amani H, Arzaghi H, Bayandori M, et al. Controlling cell behavior through the design of biomaterial surfaces: a focus on surface modification techniques. Adv Mater Interfaces. 2019;1900572.
  • Kojima C, Fusaoka-Nishioka E, Imai T, et al. Dendrigraft polylysine coated‐poly (glycolic acid) fibrous scaffolds for hippocampal neurons. J Biomed Mater Res. 2016;104:2744–2750.
  • Zhang K, Huang D, Yan Z, et al. Heparin/collagen encapsulating nerve growth factor multilayers coated aligned PLLA nanofibrous scaffolds for nerve tissue engineering. J Biomed Mater Res. 2017;105:1900–1910.
  • Haddad T, Noel S, Liberelle B, et al. Fabrication and surface modification of poly lactic acid (PLA) scaffolds with epidermal growth factor for neural tissue engineering. Biomatter. 2016;6:e1231276.
  • Hoveizi E, Tavakol S, Ebrahimi-Barough S. Neuroprotective effect of transplanted neural precursors embedded on PLA/CS scaffold in an animal model of multiple sclerosis. Mol Neurobiol. 2015;51:1334–1342.
  • Yang F, Murugan R, Ramakrishna S, et al. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials. 2004;25:1891–1900.
  • Yang F, Murugan R, Wang S, et al. Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26:2603–2610.
  • Zhang K, Zheng H, Liang S, et al. Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth. Acta Biomater. 2016;37:131–142.
  • Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, et al. Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering. Tissue Eng A. 2009;15:3605–3619.
  • Jin L, Feng Z-Q, Zhu M-L, et al. A novel fluffy conductive polypyrrole nano-layer coated PLLA fibrous scaffold for nerve tissue engineering. J Biomed Nanotechnol. 2012;8:779–785.
  • Lee JY, Bashur CA, Goldstein AS, et al. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials. 2009;30:4325–4335.
  • Mehrasa M, Asadollahi MA, Ghaedi K, et al. Electrospun aligned PLGA and PLGA/gelatin nanofibers embedded with silica nanoparticles for tissue engineering. Int J Biol Macromol. 2015;79:687–695.
  • Wang J, Tian L, Chen N, et al. The cellular response of nerve cells on poly-l-lysine coated PLGA-MWCNTs aligned nanofibers under electrical stimulation. Mater Sci Eng C. 2018;91:715–726.
  • Reis KP, Sperling LE, Teixeira C, et al. Application of PLGA/FGF-2 coaxial microfibers in spinal cord tissue engineering: an in vitro and in vivo investigation. Regen Med. 2018;13:785–801.
  • Griffin J, Delgado-Rivera R, Meiners S, et al. Salicylic acid‐derived poly (anhydride‐ester) electrospun fibers designed for regenerating the peripheral nervous system. J Biomed Mater Res. 2011;97:230–242.
  • Lee YS, Griffin J, Masand SN, et al. Salicylic acid‐based poly (anhydride‐ester) nerve guidance conduits: impact of localized drug release on nerve regeneration. J Biomed Mater Res. 2016;104:975–982.
  • Panahi-Joo Y, Karkhaneh A, Nourinia A, et al. Design and fabrication of a nanofibrous polycaprolactone tubular nerve guide for peripheral nerve tissue engineering using a two-pole electrospinning system. Biomed Mater. 2016;11:025017.
  • Bolaina-Lorenzo E, Martínez-Ramos C, Monleón-Pradas M, et al. Electrospun polycaprolactone/chitosan scaffolds for nerve tissue engineering: physicochemical characterization and Schwann cell biocompatibility. Biomed Mater. 2016;12:015008.
  • Saderi N, et al. Fabrication and characterization of gold nanoparticle-doped electrospun PCL/chitosan nanofibrous scaffolds for nerve tissue engineering. J Mater Sci: Mater Med. 2018;29:134.
  • Entekhabi E, Haghbin Nazarpak M, Moztarzadeh F, et al. Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity. Mater Sci Eng C. 2016;69:380–387.
  • Pan X, Sun B, Mo X. Electrospun polypyrrole-coated polycaprolactone nanoyarn nerve guidance conduits for nerve tissue engineering. Front Mater Sci. 2018;12:438–446.
  • Wang S, Kempen DH, Simha NK, et al. Photo-cross-linked hybrid polymer networks consisting of poly (propylene fumarate) and poly (caprolactone fumarate): controlled physical properties and regulated bone and nerve cell responses. Biomacromolecules. 2008;9:1229–1241.
  • Guo J, Liu X, Lee Miller A, et al. Novel porous poly (propylene fumarate‐co‐caprolactone) scaffolds fabricated by thermally induced phase separation. J Biomed Mater Res. 2017;105:226–235.
  • Riley DC, Bittner GD, Mikesh M, et al. Polyethylene glycol‐fused allografts produce rapid behavioral recovery after ablation of sciatic nerve segments. J Neurosci Res. 2015;93:572–583.
  • Ghergherehchi CL, Mikesh M, Sengelaub DR, et al. Polyethylene glycol (PEG) and other bioactive solutions with neurorrhaphy for rapid and dramatic repair of peripheral nerve lesions by PEG-fusion. J Neurosci Methods. 2019;314:1–12.
  • Robinson GA, Madison RD. Polyethylene glycol fusion repair prevents reinnervation accuracy in rat peripheral nerve. J Neurosci Res. 2016;94:636–644.
  • Brown BL, Asante T, Welch HR, et al. Functional and anatomical outcomes of facial nerve injury with application of polyethylene glycol in a rat model. JAMA Facial Plast Surg. 2019;21:61–68.
  • Bittner GD, Sengelaub DR, Trevino RC, et al. Robinson and madison have published no data on whether polyethylene glycol fusion repair prevents reinnervation accuracy in rat peripheral nerve. J Neurosci Res. 2017;95:863–866.
  • Stocco E, Barbon S, Lora L, et al. Partially oxidized polyvinyl alcohol conduitfor peripheral nerve regeneration. Sci Rep. 2018;8:604.
  • Alhosseini SN, et al. Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. Int J Nanomed. 2012;7:25.
  • Golafshan N, Kharaziha M, Fathi M. Tough and conductive hybrid graphene-PVA: alginate fibrous scaffolds for engineering neural construct. Carbon. 2017;111:752–763.
  • Guo T, Yang X, Deng J, et al. Keratin nanoparticles-coating electrospun PVA nanofibers for potential neural tissue applications. J Mater Sci: Mater Med. 2019;30:9.
  • Singh A, Shiekh PA, Das M, et al. Aligned chitosan-gelatin cryogel-filled polyurethane nerve guidance channel for neural tissue engineering: fabrication, characterization, and in vitro evaluation. Biomacromolecules. 2019;20:662
  • Wu Y, Wang L, Hu T, et al. Conductive micropatterned polyurethane films as tissue engineering scaffolds for Schwann cells and PC12 cells. J Colloid Interface Sci. 2018;518:252–262.
  • Yin D, Wang XH, Yan Y, et al. Preliminary studies on peripheral nerve regeneration using a new polyurethane conduit. J Bioact Compat Polym. 2007;22:143–159.
  • Niu Y, Chen KC, He T, et al. Scaffolds from block polyurethanes based on poly (ɛ-caprolactone)(PCL) and poly (ethylene glycol)(PEG) for peripheral nerve regeneration. Biomaterials. 2014;35:4266–4277.
  • Shrestha S, Shrestha BK, Kim JI, et al. Electrodeless coating polypyrrole on chitosan grafted polyurethane with functionalized multiwall carbon nanotubes electrospun scaffold for nerve tissue engineering. Carbon. 2018;136:430–443.