2,469
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Characterization of synergistic antibacterial effect of silver nanoparticles and ebselen

, , , , , , , , , & show all
Pages 3338-3349 | Received 29 Apr 2019, Accepted 18 Jul 2019, Published online: 07 Aug 2019

References

  • Sirijatuphat R, Sripanidkulchai K, Boonyasiri A, et al. Implementation of global antimicrobial resistance surveillance system (GLASS) in patients with bacteremia. PLoS One. 2018;13:e0190132.
  • Mullard A, O'Neill J. Jim O'Neill. Nat Rev Drug Discov. 2016;15:526–526.
  • Dharmaraja AT. Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria. J Med Chem. 2017;60:3221–3240.
  • Yu H, Qu F, Shan B, et al. Detection of the MCR-1 colistin resistance gene in carbapenem-resistant Enterobacteriaceae from different hospitals in China. Antimicrob Agents Chemother. 2016;60:5033–5035.
  • Organization WH. Antimicrobial resistance: global report on surveillance. Australasian Med J. 2014;7:237.
  • Newton GL, Arnold K, Price MS, et al. Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol. 1996;178:1990–1995.
  • Newton GL, Rawat M, La Clair JJ, et al. Bacillithiol is an antioxidant thiol produced in Bacilli. Nat Chem Biol. 2009;5:625–627.
  • Fahey RC, Brown WC, Adams WB, et al. Occurrence of glutathione in bacteria. J Bacteriol. 1978;133:1126–1129.
  • Seaver LC, Imlay JA. Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J Bacteriol. 2001;183:7182.
  • Aslund F, Zheng M, Beckwith J, et al. Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc Natl Acad Sci USA. 1999;96:6161–6165.
  • Kashef N, Hamblin MR. Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation? Drug Resist Updat. 2017;31:31–42.
  • Sanyasi S, Majhi RK, Kumar S, et al. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Sci Rep. 2016;6:24929.
  • Sharma RK, Cwiklinski K, Aalinkeel R, et al. Immunomodulatory activities of curcumin-stabilized silver nanoparticles: Efficacy as an antiretroviral therapeutic. Immunol Invest. 2017;46:833–846.
  • Suganya KS, Govindaraju K, Kumar VG, et al. Size controlled biogenic silver nanoparticles as antibacterial agent against isolates from HIV infected patients. Spectrochim Acta A Mol Biomol Spectrosc. 2015;144:266–272.
  • Rai M, Deshmukh SD, Ingle AP, et al. Metal nanoparticles: The protective nanoshield against virus infection. Critical Reviews in Microbiology. 2014;42:46.
  • Habash MB, Goodyear MC, Park AJ, et al. Potentiation of tobramycin by silver nanoparticles against Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2017;61:pii: e00415–17.
  • Zou L, Wang J, Gao Y, et al. Synergistic antibacterial activity of silver with antibiotics correlating with the upregulation of the ROS production. Sci Rep. 2018;8:11131.
  • Steffen Foss H, Anders B. When enough is enough. Nat Nanotechnol. 2012;7:409.
  • Thangamani S, Younis W, Seleem MN. Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections. Sci Rep. 2015;5:11596.
  • Younis W, Thangamani S, Seleem MN. Repurposing non-antimicrobial drugs and clinical molecules to treat bacterial infections. CPD. 2015;21:4106–4111.
  • Zou L, Lu J, Wang J, et al. Synergistic antibacterial effect of silver and ebselen against multidrug-resistant Gram-negative bacterial infections. Embo Mol Med. 2017;9:1165.
  • Williams CH, Arscott LD, Müller S, et al. Thioredoxin reductase two modes of catalysis have evolved. Eur J Biochem. 2000;267:6110–6117.
  • Sandalova T, Zhong L, Lindqvist Y, et al. Three-dimensional structure of a mammalian thioredoxin reductase: implications for mechanism and evolution of a selenocysteine-dependent enzyme. Proc Natl Acad Sci USA. 2001;98:9533–9538.
  • Lu J, Holmgren A. The thioredoxin antioxidant system. Free Radic Biol Med. 2014;66:75–87.
  • Bai L, Hurley D, Li J, et al. Characterisation of multidrug-resistant Shiga toxin-producing Escherichia coli cultured from pigs in China: co-occurrence of extended-spectrum β-lactamase- and mcr-1-encoding genes on plasmids. Int J Antimicrob Agents. 2016;48:445–448.
  • Qin G, Xiong Y, Tang S, et al. Impact of predator cues on responses to silver nanoparticles in Daphnia carinata. Arch Environ Contam Toxicol. 2015;69:494–505.
  • Hauser AR, Mecsas J, Moir DT. Beyond antibiotics: new therapeutic approaches for bacterial infections. Clin Infect Dis. 2016;63:ciw200.
  • Du D, van Veen HW, Murakami S, et al. Structure, mechanism and cooperation of bacterial multidrug transporters. Curr Opin Struct Biol. 2015;33:76–91.
  • Nguyen L. Antibiotic resistance mechanisms in M. tuberculosis: an update. Arch Toxicol. 2016;90:1585–1604.
  • Courvalin P. Vancomycin resistance in Gram-positive cocci. Clin Infect Dis. 2006;42:(Suppl 1):S25.
  • Grzelak A, Wojewódzka M, Meczynskawielgosz S, et al. Crucial role of chelatable iron in silver nanoparticles induced DNA damage and cytotoxicity. Redox Biol. 2018;15(C):435–440.
  • Zhang C, Hu Z, Deng B. Silver nanoparticles in aquatic environments: physiochemical behavior and antimicrobial mechanisms. Water Res. 2016;88:403–427.
  • Xiu Z-M, Zhang Q-B, Puppala HL, et al. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012;12:4271–4275.
  • Vazquezmuñoz R, Borrego B, Juárezmoreno K, et al. Toxicity of silver nanoparticles in biological systems: does the complexity of biological systems matter? Toxicol Lett. 2016;259:S190–S191.
  • Nozawa R, Yokota T, Fujimoto T. Susceptibility of methicillin-resistant Staphylococcus aureus to the selenium-containing compound 2-phenyl-1,2-benzoisoselenazol-3(2H)-one (PZ51). Antimicrob Agents Chemother. 1989;33:1388–1390.
  • Zhao R, Masayasu H, Holmgren A. Ebselen: A substrate for human thioredoxin reductase strongly stimulating its hydroperoxide reductase activity and a superfast thioredoxin oxidant. Proc Natl Acad Sci USA. 2002;99:8579–8584.
  • Bhowmick D, Srivastava S, D'Silva P, et al. Highly Efficient Glutathione Peroxidase and Peroxiredoxin Mimetics Protect Mammalian Cells against Oxidative Damage. Angew Chem Int Ed. 2015;54:8449–8453.
  • Chiang SM, Schellhorn HE. Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Arch Biochem Biophs. 2012;525:161–169.
  • Mironov A, Seregina T, Nagornykh M, et al. Mechanism of H2S-mediated protection against oxidative stress in Escherichia coli. Proc Natl Acad Sci USA. 2017;114:6022.
  • Salvati A, Pitek AS, Monopoli MP, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nature Nanotech. 2013;8:137–143.
  • Monteiro-Riviere NA, Samberg ME, Oldenburg SJ, et al. Protein binding modulates the cellular uptake of silver nanoparticles into human cells: implications for in vitro to in vivo extrapolations? Toxicol Lett.. 2013;220:286–293.
  • Cai H, Ma Y, Wu Z, et al. Protein corona influences liver accumulation and hepatotoxicity of gold nanorods. Nanoimpact. 2016;3-4:40–46.
  • Miclăuş T, Beer C, Chevallier J, et al. Dynamic protein coronas revealed as a modulator of silver nanoparticle sulphidation in vitro. Nat Commun. 2016;7:11770.
  • Barbalinardo M, Caicci F, Cavallini M, et al. Protein corona mediated uptake and cytotoxicity of silver nanoparticles in mouse embryonic fibroblast. Small. 2018;14:e1801219.
  • Ramstedt M, Ekstrand-Hammarstrom B, Shchukarev AV, et al. Bacterial and mammalian cell response to poly(3-sulfopropyl methacrylate) brushes loaded with silver halide salts [Research Support, Non-U.S. Gov't]. Biomaterials. 2009;30:1524–1531.
  • Gnanadhas DP, Ben Thomas M, Thomas R, et al. Interaction of silver nanoparticles with serum proteins affects their antimicrobial activity in vivo. Antimicrob Agents Chemother. 2013;57:4945–4955.