31,856
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Teacher beliefs about mathematics teaching and learning: Identifying and clarifying three constructs

ORCID Icon & ORCID Icon | (Reviewing editor)
Article: 1599488 | Received 28 Dec 2018, Accepted 15 Mar 2019, Published online: 16 May 2019

References

  • Adler, J., Ball, D. L., Krainer, K., Lin, F. L., & Novatna, J. (2005). Reflections on an emerging field: Researching mathematics teacher education. Educational Studies in Mathematics, 60, 359–29. doi:10.1007/s10649-005-5072-6
  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407. doi:10.1177/0022487108324554
  • Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice-Hall.
  • Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., … Tsai, Y. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47(1), 133–180. doi:10.3102/0002831209345157
  • Bennett, R. E. (2011). Formative assessment: A critical review. Assessment in Education: Principles, Policy, & Practice, 18(1), 5–25.
  • Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588–606. doi:10.1037/0033-2909.88.3.588
  • Bray, W. S. (2011). A collective case study of the influence of teachers’ beliefs and knowledge on error-handling practices during class discussion of mathematics. Journal for Research in Mathematics Education, 42(1), 2–38. doi:10.5951/jresematheduc.42.1.0002
  • Briggs, D. C., Ruiz-Primo, M. A., Furtak, E., & Shepard, L. (2012). Metaanalytic methodology and inferences about the efficacy of formative assessment. Educational Measurement: Issues and Practice, 31(4), 13–17. doi:10.1111/j.1745-3992.2012.00251.x
  • Brown, T. A. (2015). Confirmatory factor analysis for applied research. New York and London: Guilford Publications.
  • Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods & Research, 21(2), 230–258. doi:10.1177/0049124192021002005
  • Brownell, W. A., & Chazal, C. B. (1935). The effects of premature drill in third-grade arithmetic. The Journal of Educational Research, 29(1), 17–28. doi:10.1080/00220671.1935.10880546
  • Burch, P., & Spillane, J. P. (2003). Elementary school leadership strategies and subject matter: Reforming mathematics and literacy instruction. The Elementary School Journal, 103, 519–535. doi:10.1086/499738
  • Campbell, P. F., Rust, A. H., Nishio, M., DePiper, J. N., Smith, T. M., Frank, T. J., … Choi, Y. (2014). The relationship between teachers‘ mathematical content and pedagogical knowledge, teachers‘ perceptions, and student achievement. Journal for Research in Mathematics Education, 45(4), 419–459. doi:10.5951/jresematheduc.45.4.0419
  • Capraro, M. M. (2001, November). Construct validation and a more parsimonious mathematics beliefs scales. Paper presented at the Mid-South Educational Research Association, Little Rock, AR.
  • Capraro, M. M. (2005). A more parsimonious mathematics beliefs scales. Academic Exchange Quarterly, 9(3). Retrieved from https://www.thefreelibrary.com/A+more+parsimonious+mathematics+beliefs+scales.-a0138703666
  • Carpenter, T. P., & Franke, M. L. (2004). Cognitively guided instruction: Challenging the core of educational practice. In T. K. Glennan, S. J. Bodilly, J. R. Galegher, & K. A. Kerr (Eds.), Expanding the reach of education reforms: Perspectives from leaders in the scale-up of educational interventions (pp. 41–80). Santa Monica, CA: RAND Corporation.
  • Carpenter, T. P., Fennema, E., Franke, M. L., Levi, L., & Empson, S. B. (1999). Children‘s mathematics: Cognitively guided instruction. Portsmouth, NH: Heinemann.
  • Carpenter, T. P., Fennema, E., Peterson, P. L., Chiang, C. P., & Loef, M. (1989). Using knowledge of children‘s mathematics thinking in classroom teaching: An experimental study. American Educational Research Journal, 26(4), 499–531. doi:10.3102/00028312026004499
  • Chen, F., Curran, P. J., Bollen, K. A., Kirby, J., & Paxton, P. (2008). An empirical evaluation of the use of fixed cutoff points in RMSEA test statistic in structural equation models. Sociological Methods & Research, 36(4), 462–494. doi:10.1177/0049124108314720
  • Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling, 14(3), 464–504. doi:10.1080/10705510701301834
  • Clark, L. M., DePiper, J. N., Frank, T. J., Nishio, M., Campbell, P. F., Smith, T. M., … Choi, Y. (2014). Teacher characteristics associated with mathematics teachers‘ beliefs and awareness of their students‘ mathematical dispositions. Journal for Research in Mathematics Education, 45(2), 246–284. doi:10.5951/jresematheduc.45.2.0246
  • Cobb, P., Wood, T., Yackel, E., Nicholls, J., Wheatley, G., Trigatti, B., & Perlwitz, M. (1991). Assessment of a problem-centered second-grade mathematics project. Journal for Research in Mathematics Education, 22(1), 3–29. doi:10.2307/749551
  • Collier, C. P. (1972). Prospective elementary teachers‘ intensity and ambivalence of beliefs about mathematics and mathematics instruction. Journal for Research in Mathematics Education, 3(3), 155–163. doi:10.2307/748499
  • Dewey, J. (1933). How we think. Boston: D. C. Heath & Co.
  • Enochs, L. G., Smith, P. L., & Huinker, D. (2000). Establishing factorial validity of the mathematics teaching efficacy beliefs instrument. School Sciences and Mathematics, 100(4), 184–202.
  • Ernest, P. (1989). The knowledge, beliefs, and attitudes of the mathematics teacher: A model. Journal of Education for Teaching, 15(1), 13–33. doi:10.1080/0260747890150102
  • Ernest, P. (1991). The philosophy of mathematics education. Hampshire: The Falmer Press.
  • Fennema, E., & Franke, M. L. (1992). Teachers‘ knowledge and its impact. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 147–164). New York: MacMillan.
  • Fennema, E., Carpenter, T., & Loef, M. (1990). Mathematics beliefs scales. Madison, WI: University of Wisconsin, Madison.
  • Fennema, E., Carpenter, T. P., Franke, M. L., Levi, L., Jacobs, V. R., & Empson, S. B. (1996). A longitudinal study of learning to use children‘s thinking in mathematics instruction. Journal for Research in Mathematics Education, 27, 403–477. doi:10.2307/749875
  • Flake, J. K., Pek, J., & Hehman, E. (2017). Construct validation in social and personality research: Current practice and recommendations. Social Psychological and Personality Science, 8(4), 370–378. doi:10.1177/1948550617693063
  • Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. New York: Kluwer Academic Publishers.
  • Fuchs, L. S., Fuchs, D., Compton, D. L., Powell, S. R., Seethaler, P. M., Capizzi, A. M., … Fletcher, J. M. (2006). The cognitive correlates of third-grade skill in arithmetic, algorithmic computation, and arithmetic word problems. Journal of Educational Psychology, 98(1), 29–43. doi:10.1037/0022-0663.98.1.29
  • Furinghetti, F., & Pehkonen, E. (2002). Rethinking characterizations of beliefs. In G. C. Leder, E. Pehkonen, & G. Törner (Eds.), Beliefs: A hidden variable in mathematics education? (pp. 39–57). Dordrecht: Kluwer Academic Publishers.
  • Gabriele, A. J., Joram, E., & Park, K. H. (2016). Elementary mathematics teachers’ judgment accuracy and calibration accuracy: Do they predict students’ mathematics achievement outcomes? Learning and Instruction, 45, 49–60. doi:10.1016/j.learninstruc.2016.06.008
  • Gadermann, A. M., Guhn, M., & Zumbo, B. D. (2012). Estimating ordinal reliability for Likert-type and ordinal item response data: A conceptual, empirical, and practical guide. Practical Assessment, Research & Evaluation, 17(3), 1–13.
  • Gage, N. L. (2009). A conception of teaching. New York: Springer-Verlag.
  • Ganley, C. M., Schoen, R. C., LaVenia, M., & Tazaz, A. M. (2019). Construct validation of the math anxiety scale for teachers. Aera Open, 5(1), 1–16.
  • Goldin, G. A. (2002). Affect, meta-affect, and mathematical belief structures. In G. C. Leder, E. Pehkonen, & G. Torner (Eds.), Beliefs: A hidden variable in mathematics education? (pp. 59–72). Dordrecht: Kluwer Academic Publishers.
  • Green, T. F. (1971). The activities of teaching. New York: McGraw-Hill.
  • Grossman, P. (1996). Of regularities and reform: Navigating the subject-specific territory of high schools. In M. W. McLaughlin & I. Oberman (Eds.), Teacher learning: New policies, new practices (pp. 39–47). New York: Teachers College Press.
  • Gustafsson, J.-E., & Åberg-Bengtsson, L. (2010). Unidimensionality and interpretability of psychological instruments. In S. E. Embretson (Ed.), Measuring psychological constructs: Advances in model-based approaches (pp. 97–121). Washington, DC: American Psychological Association.
  • Handal, B. (2003). Teachers’ mathematical beliefs: A review. The Mathematics Educator, 13(2), 47–57.
  • Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 65–97). New York: Macmillan.
  • Hill, H., Charalambous, C. Y., & Chin, M. J. (2018). Teacher characteristics and student learning in mathematics: A comprehensive assessment. Educational Policy, 1–32. doi: 10.1177/0895904818755468.
  • Hill, H. C., Rowan, B., & Ball, D. (2005). Effects of teachers’ mathematical knowledge for teaching on student achievement. American Educational Research Journal, 42(2), 371–406. doi:10.3102/00028312042002371
  • Hill, H. C., Schilling, S. G., & Ball, D. L. (2004). Developing measures of teachers’ mathematics knowledge for teaching. The Elementary School Journal, 105(1), 11–30. doi:10.1086/428763
  • Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424–453. doi:10.1037/1082-989X.3.4.424
  • Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. doi:10.1080/10705519909540118
  • Jong, C., Hodges, T. E., Royal, K. D., & Welder, R. M. (2015). Instruments to measure elementary preservice teachers’ conceptions. Educational Research Quarterly, 39(1), 21–48.
  • Kaplan, D., & Depaoli, S. (2012). Bayesian structural equation modeling. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (pp. 650–673). New York: Guilford Press.
  • Kersting, N. B., Givvin, K. B., Thompson, B. J., Santagata, R., & Stigler, J. W. (2012). Measuring usable knowledge: Teachers’ analyses of mathematics classroom videos predict teaching quality and student learning. American Educational Research Journal, 49, 568–589. doi:10.3102/0002831212437853
  • Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001). Adding it up: Helping children learn mathematics. Washington, DC: National Academy Press.
  • Kingston, N., & Nash, B. (2011). Formative assessment: A metaanalysis and a call for research. Educational Measurement: Issues and Practice, 30(4), 28–37. doi:10.1111/emip.2011.30.issue-4
  • Kuntze, S. (2012). Pedagogical content beliefs: Global, domain-related and situation-specific components. Educational Studies in Mathematics, 79, 273–292. doi:10.1007/s10649-011-9347-9
  • Lance, C. E., Butts, M. M., & Michels, L. C. (2006). The sources of four commonly reported cutoff criteria: What did they really say? Organizational Research Methods, 9(2), 202–220. doi:10.1177/1094428105284919
  • Lewis, H. (1990). A question of values. San Francisco: Harper & Row.
  • MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1(2), 130–149. doi:10.1037/1082-989X.1.2.130
  • Macht, N., Kaiser, J., Schmidt, F. T. C., & Möller, J. (2016). Accuracy of teachers‘ judgments of students‘ cognitive abilities: A meta-analysis. Educational Research Review, 19, 85–103. doi:10.1016/j.edurev.2016.06.003
  • Marsh, H. W., Hau, K.-T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler‘s (1999) findings. Structural Equation Modeling, 11(3), 320–341. doi:10.1207/s15328007sem1103_2
  • Marsh, H. W., Lüdtke, O., Robitzsch, A., Trautwein, U., Asparouhov, T., Muthén, B., & Nagengast, B. (2009). Doubly-latent models of school contextual effects: Integrating multilevel and structural equation approaches to control measurement and sampling error. Multivariate Behavioral Research, 44(6), 764–802. doi:10.1080/00273170903333665
  • Masyn, K. E. (2013). Latent class analysis and finite mixture modeling. In T. D. Little (Ed.), The Oxford handbook of qualtitative methods, Volume 2: Statistical analysis (pp. 551–611). New York: Oxford University Press.
  • Mayer, D. P. (1999). Measuring instructional practice: Can policymakers trust survey data? Educational Evaluation and Policy Analysis, 21(1), 29–45. doi:10.3102/01623737021001029
  • McLeod, D. B. (1992). Research on affect in mathematics education: A reconceptualization. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 575–596). New York: Macmillan.
  • Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. Psychometrika, 58(4), 525–543. doi:10.1007/BF02294825
  • Millsap, R. E. (2011). Statistical approaches to measurement invariance. New York: Routledge.
  • Millsap, R. E., & Yun-Tein, J. (2004). Assessing factorial invariance in ordered-categorical measures. Multivariate Behavioral Research, 39(3), 479–515. doi:10.1207/S15327906MBR3903_4
  • Mohr-Schroeder, M., Ronau, R. N., Peters, S., Lee, C. W., & Bush, W. S. (2017). Predicting student achievement using measures of teachers’ knowledge for teaching geometry. Journal for Research in Mathematics Education, 48(5), 520–566. doi:10.5951/jresematheduc.48.5.0520
  • Muthén, L. K., & Muthén, B. O. (1998-2012). Mplus user‘s guide (Vol. 7). Los Angeles, CA: Muthén & Muthén.
  • Nathan, M. J., Koedinger, K. R., & Tabachneck, H. J. M. (1997). Teachers’ and researchers’ beliefs of early algebra development. In M. G. Shafto & P. Langley (Eds.), Proceedings of the Nineteenth Annual Conference of the Cognitive Science Society, (pp. 554–559). Hillsdale, NJ: Erlbaum.
  • Nespor, J. (1987). The role of beliefs in the practice of teaching. Journal of Curriculum Studies, 19(4), 317–328. doi:10.1080/0022027870190403
  • Nisbett, R. E., & Ross, L. (1980). Human inference: Strategies and shortcomings of social judgment. Ann Arbor, MI: Prentice-Hall.
  • Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York: McGraw-Hill.
  • Pajares, M. F. (1992). Teachers‘ beliefs and educational research: Cleaning up a messy construct. Review of Educational Research, 62(3), 307–332. doi:10.3102/00346543062003307
  • Peterson, P. L., Fennema, E., Carpenter, T. P., & Loef, M. (1989). Teacher‘s pedagogical content beliefs in mathematics. Cognition and Instruction, 6(1), 1–40. doi:10.1207/s1532690xci0601_1
  • Philipp, R. A. (2007). Mathematics teachers’ beliefs and affect. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 257–315). Reston, VA: National Council of Teachers of Mathematics.
  • Philipp, R. A., Ambrose, R., Lamb, L. L. C., Sowder, J. T., Schappelle, B. P., Sowder, L., Thanheiser, E., & Chauvot, J. (2007). Effects of early field experiences on the mathematical content knowledge and beliefs of prospective elementary school teachers: An experimental study. Journal for Research in Mathematics Education, 38(5), 438–476.
  • Pintrich, P. R. (1990). Implications of psychological research on student learning and college teaching for teacher education. In W. R. Houston (Ed.), Handbook of research on teacher education (pp. 826–857). New York: Macmillan.
  • Preacher, K. J., & Merkle, E. C. (2012). The problem of model selection uncertainty in structural equation modeling. Psychological Methods, 17(1), 1–14. doi:10.1037/a0026804
  • Qualtrics. (2005–2014). Qualtrics software, Version April–May 2014. Provo, UT: Author.
  • R Development Core Team. (2014). R: A language and environment for statistical computing. Vienna: Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org
  • Reise, S. P., Horan, W. P., & Blanchard, J. J. (2011). The challenges of fitting an item response theory model to the social anhedonia scale. Journal of Personality Assessment, 93(3), 213–224. doi:10.1080/00223891.2011.558868
  • Reise, S. P., Moore, T. M., & Haviland, M. G. (2010). Bifactor models and rotations: Exploring the extent to which multidimensional data yield univocal scale scores. Journal of Personality Assessment, 92(6), 544–559. doi:10.1080/00223891.2010.496477
  • Revelle, W. (1979). Hierarchical cluster analysis and the internal structure of tests. Multivariate Behavioral Research, 14(1), 57–74. doi:10.1207/s15327906mbr1401_4
  • Revelle, W. (2016). Psych: Procedures for personality and psychological research (Version 1.6.6). Evanston, IL: Northwestern University. Retrieved from http://CRAN.R-project.org/package=psych
  • Richardson, V. (1996). The role of attitudes and beliefs in learning to teach. In J. Sikula (Ed.), Handbook of research on teacher education (2nd ed., pp. 102–119). New York: Macmillan.
  • Rockoff, J. E., Jacob, B. A., Kane, T. J., & Staiger, D. O. (2011). Can you recognize an effective teacher when you recruit one? Education Finance and Policy, 6(1), 43–74. doi:10.1162/EDFP_a_00022
  • Rokeach, M. (1960). The open and closed mind. Oxford, UK: Basic Books.
  • Rokeach, M. (1968). Beliefs, attitudes and values: A theory of organization and change. San Francisco: Jossey-Bass.
  • Ross, J. A., McDougall, D., Hogaboam-Gray, A., & LeSage, A. (2003). A survey measuring elementary teachers‘ implementation of standards-based mathematics teaching. Journal for Research in Mathematics Education, 34(4), 344–363. doi:10.2307/30034787
  • Saderholm, J., Ronau, R., Brown, E. T., & Collins, G. (2010). Validation of the Diagnostic Teacher Assessment of Mathematics and Science (DTAMS) Instrument. School Science and Mathematics, 110(4), 180–192. doi:10.1111/ssm.2010.110.issue-4
  • Saris, W. E., Satorra, A., & van der Veld, W. M. (2009). Testing structural equation models or detection of misspecifications? Structural Equation Modeling, 16(4), 561–582. doi:10.1080/10705510903203433
  • Schmidt, W. H., & Kennedy, M. M. (1990). Teachers‘ and teacher candidates‘ beliefs about subject matter and about teaching responsibilities (Research Report No. 90-4). East Lansing, MI: National Center for Research on Teacher Education. doi:10.1099/00221287-136-2-327
  • Schoen, R. C., Bray, W., Wolfe, C., Nielsen, L., & Tazaz, A. M. (2017). Developing an assessment instrument to measure early elementary teachers’ mathematical knowledge for teaching. The Elementary School Journal, 118(1), 55–81. doi:10.1086/692912
  • Schoen, R. C., & Iuhasz-Velez, N. (2017). Measuring teacher ability to predict student success in solving specific mathematics problems: Procedures and initial findings of accuracy, overprediction, and underprediction (Research Report No. 2017-03). Tallahassee, FL: Learning Systems Institute, Florida State University.
  • Schoen, R. C., Kisa, Z., & Tazaz, A. M. (2019, March). Beyond the horizon: Examining the associations among professional development, teachers‘ subject-matter knowledge, and student achievement. Paper presented at the spring conference of the Society for Research in Educational Effectiveness, Washington, DC.
  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464. doi:10.1214/aos/1176344136
  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14. doi:10.3102/0013189X015002004
  • Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of Cronbach’s alpha. Psychometrika, 74(1), 107–120. doi:10.1007/s11336-008-9101-0
  • Skaalvik, E. M., & Skaalvik, S. (2007). Dimensions of teacher self-efficacy and relations with strain factors, perceived collective teacher efficacy, and teacher burnout. Journal of Educational Psychology, 99(3), 611–625. doi:10.1037/0022-0663.99.3.611
  • Spillane, J. P. (2005). Primary school leadership practice: How the subject matters. School Leadership & Management, 25(4), 383–397. doi:10.1080/13634230500197231
  • Staub, F. C., & Stern, E. (2002). The nature of teachers‘ pedagogical content beliefs matters for students‘ achievement gains: Quasi-experimental evidence from elementary mathematics. Journal of Educational Psychology, 94(2), 344–355. doi:10.1037/0022-0663.94.2.344
  • Stigler, J. W., & Hiebert, J. (1999). The teaching gap: Best ideas from the world’s teachers. New York: Free Press.
  • Stipek, D. J., Givvin, K. B., Salmon, J. M., & MacGyvers, V. L. (2001). Teachers’ beliefs and practices related to mathematics instruction. Teaching and Teacher Education, 17(2), 213–226. doi:10.1016/S0742-051X(00)00052-4
  • Streiner, D. L. (2003). Starting at the beginning: An introduction to coefficient alpha and internal consistency. Journal of Personality Assessment, 80(1), 99–103. doi:10.1207/S15327752JPA8001_18
  • SüDkamp, A., Kaiser, J., & Möller, J. (2012). Accuracy of teachers’ judgments of students’ academic achievement: A meta-analysis. Journal of Educational Psychology, 104(3), 743–762. doi:10.1037/a0027627
  • Tatto. (2013). The teacher education and development study in mathematics (TEDS-M). Policy, practice, and readiness to teach primary and secondary mathematics in 17 countries: Technical report. Amsterdam: International Association for the Evaluation of Educational Achievement.
  • Thompson, A. G. (1992). Teachers’ beliefs and conceptions: A synthesis of the research. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 127–146). New York: Macmillan.
  • Tschannen-Moran, M., & Hoy, A. W. (2001). Teacher efficacy: Capturing an elusive construct. Teaching and Teacher Education, 17, 783–805. doi:10.1016/S0742-051X(01)00036-1
  • Verschaffel, L., & De Corte, E. (1997). Word problems: A vehicle for promoting authentic mathematical understanding and problem solving in the primary school? In T. Nunes & P. Bryant (Eds.), Learning and teaching mathematics: An international perspective (pp. 69–97). Hove: Psychology Press/Erlbaum (UK) Taylor & Francis.
  • Wang, W.-C., & Shih, C.-L. (2010). MIMIC methods for assessing differential item functioning in polytomous items. Applied Psychological Measurement, 34(3), 166–180. doi:10.1177/0146621609355279
  • Wasserman, L. (2000). Bayesian model selection and model averaging. Journal of Mathematical Psychology, 44, 92–107. doi:10.1006/jmps.1999
  • Wilkins, J. L. M. (2008). The relationship among elementary teachers’ content knowledge, attitudes, beliefs, and practices. Journal of Mathematics Teacher Education, 11, 139–164. doi:10.1007/s10857-007-9068-2
  • Woolley, S. L., Benjamin, W.-J.-J., & Woolley, A. W. (2004). Construct validity of a self-report measure of teacher beliefs related to constructivist and traditional approaches to teaching and learning. Educational and Psychological Measurement, 64(2), 319–331. doi:10.1177/0013164403261189
  • Yoon, M., & Millsap, R. E. (2007). Detecting violations of factorial invariance using data-based specification searches: A Monte Carlo study. Structural Equation Modeling, 14(3), 435–463. doi:10.1080/10705510701301677
  • Zinbarg, R. E., Revelle, W., Yovel, I., & Li, W. (2005). Cronbach’s α, Revelle’s β, and McDonald’s ωH: Their relations with each other and two alternative conceptualizations of reliability. Psychometrika, 70(1), 123–133. doi:10.1007/s11336-003-0974-7
  • Zinbarg, R. E., Yovel, I., Revelle, W., & McDonald, R. P. (2006). Estimating generalizability to a latent variable common to all of a scale‘s indicators: A comparison of estimators for ωh. Applied Psychological Measurement, 30(2), 121–144. doi:10.1177/0146621605278814
  • Zumbo, B. D., Gadermann, A. M., & Zeisser, C. (2007). Ordinal versions of coefficients alpha and theta for Likert rating scales. Journal of Modern Applied Statistical Methods, 6(1), 21–29. doi:10.22237/jmasm/1177992180
  • Zwick, R. (2012). A review of ETS differential item functioning assessment procedures: Flagging rules, minimum sample size requirements, and criterion refinement. ETS Research Report Series, 2012(1), i–30. doi:10.1002/j.2333-8504.2012.tb02290.x