2,235
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Effects of operating factors on osmotic dehydration of broccoli stalk slices

, & | (Reviewing Editor)
Article: 1134025 | Received 19 Oct 2015, Accepted 08 Dec 2015, Published online: 14 Jan 2016

References

  • An, K., Li, H., Zhao, D., Ding, S., Tao, H., & Wang, Z. (2013). Effect of osmotic dehydration with pulsed vacuum on hot-air drying kinetics and quality attributes of cherry tomatoes. Drying Technology, 31, 698–706.10.1080/07373937.2012.755192
  • Association of Official Analytical Chemists. (2000). Official methods of analysis (17th ed.). Gaithersburg, MD: Author.
  • Azoubel, P. M., & Da Silva, F. O. (2008). Optimisation of osmotic dehydration of ‘Tommy Atkins’ mango fruit. International Journal of Food Science & Technology, 43, 1276–1280.
  • Badwaik, L. S., Choudhury, S., Borah, P. K., & Deka, S. C. (2013). Optimization of osmotic dehydration process of bamboo shoots in mixtures of sucrose and sodium chloride solutions. Journal of Food Processing and Preservation, 37, 1068–1077.10.1111/jfpp.2013.37.issue-6
  • Campas-Baypoli, O. N., Sánchez-Machado, D. I., Bueno-Solano, C., Núñez-Gastélum, J. A., Reyes-Moreno, C., & López-Cervantes, J. (2009). Biochemical composition and physicochemical properties of broccoli flours. International Journal of Food Sciences and Nutrition, 60, 163–173.10.1080/09637480802702015
  • Changrue, V. (2006). Hybrid (osmotic, microwave-vacuum) drying of strawberries and carrots. Montreal: McGill University.
  • Changrue, V., & Orsat, V. (2009). Osmotically dehydrated microwave vacuum drying of carrots. Canadian Biosystems Engineering, 51, 311–319.
  • Corrêa, J., Dev, S., Gariepy, Y., & Raghavan, G. (2011). Drying of pineapple by microwave-vacuum with osmotic pretreatment. Drying Technology, 29, 1556–1561.10.1080/07373937.2011.582558
  • Costa, N. R., Lourenço, J., & Pereira, Z. L. (2011). Desirability function approach: A review and performance evaluation in adverse conditions. Chemometrics and Intelligent Laboratory Systems, 107, 234–244.10.1016/j.chemolab.2011.04.004
  • Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12, 214–219.
  • Draper, N. R., Smith, H., Pownell, E. (1966). Applied regression analysis. New York, NY: Wiley.
  • Eren, İ., & Kaymak-Ertekin, F. (2007). Optimization of osmotic dehydration of potato using response surface methodology. Journal of Food Engineering, 79, 344–352.10.1016/j.jfoodeng.2006.01.069
  • Giovanni, M. (1983). Response surface methodology and product optimization. Food Technology, 37, 41–45.
  • Harrington, E. (1965). The desirability function. Industrial Quality Control, 21, 494–498.
  • Hawkes, J., & Flink, J. M. (1978). Osmotic concentration of fruit slices prior to freeze dehydration. Journal of Food Processing and Preservation, 2, 265–284.10.1111/jfpp.1978.2.issue-4
  • Jones, S. P. (1996). Stability and response surface methodology. In J. H. d. B. Margriet, M. W. B. Hendriks, K. S. Age (Eds.), Data handling in science and technology (Vol. 19, pp. 11–77). Seattle, WA: Elsevier.
  • Kowalski, S. J., & Mierzwa, D. (2013). Influence of osmotic pretreatment on kinetics of convective drying and quality of apples. Drying Technology, 31, 1849–1855.10.1080/07373937.2013.833518
  • Latté, K. P., Appel, K.-E., & Lampen, A. (2011). Health benefits and possible risks of broccoli–An overview. Food and Chemical Toxicology, 49, 3287–3309.10.1016/j.fct.2011.08.019
  • Lazarides, H. N., Gekas, V., & Mavroudis, N. (1997). Apparent mass diffusivities in fruit and vegetable tissues undergoing osmotic processing. Journal of Food Engineering, 31, 315–324.10.1016/S0260-8774(96)00084-2
  • Lee, J. S., & Lim, L. (2011). Osmo-dehydration pretreatment for drying of pumpkin slice. International Food Research Journal, 18, 1223–1230.
  • Lewicki, P., & Lenart, A. (1995). Osmotic dehydration of fruits and vegetables. Handbook of Industrial Drying, 1, 691–714.
  • Menting, L., Hoogstad, B., & Thijssen, H. (1970). Diffusion coefficients of water and organic volatiles in carbohydrate-water systems. International Journal of Food Science & Technology, 5, 111–126.
  • Mohsen, Z., Afshin, E., Abdul Karim Sabo, M., & Nazamid, S. (2013). Modeling of glutamic acid production by Lactobacillus plantarum MNZ. Electronic Journal of Biotechnology, 16, 2013.
  • Moreno, D. A., Carvajal, M., López-Berenguer, C., & García-Viguera, C. (2006). Chemical and biological characterisation of nutraceutical compounds of broccoli. Journal of Pharmaceutical and Biomedical Analysis, 41, 1508–1522.10.1016/j.jpba.2006.04.003
  • Ohnishi, S., & Miyawaki, O. (2005). Osmotic dehydrofreezing for protection of rheological properties of agricultural products from freezing-injury. Food Science and Technology Research, 11, 52–58.10.3136/fstr.11.52
  • Raghavan, G. V., & Valerie, O. (2008). Nonconventional heating sources during drying. In C. Ratti (Ed.), Advances in food dehydration (pp. 401–422). Boca Raton, FL: CRC Press.
  • Rastogi, N. K., Raghavarao, K. S. M. S., Niranjan, K., & Knorr, D. (2002). Recent developments in osmotic dehydration: methods to enhance mass transfer. Trends in Food Science & Technology, 13, 48–59.
  • Reddy, T. A. (2011). Design of experiments. In Applied data analysis and modeling for energy engineers and scientists (pp. 183–208). New York, NY: Springer.10.1007/978-1-4419-9613-8
  • Singh, B., Chaturvedi, S., Walia, S., Kaushik, G., & Thakur, S. (2011). Antioxidant potential of broccoli stalk: A preliminary investigation. Mediterranean Journal of Nutrition and Metabolism, 4, 227–230.10.1007/s12349-011-0058-7
  • Song, M., & Hwang, S. (2003). 12 - Recycling food processing wastes. In B. Mattsson & U. Sonesson (Eds.), Environmentally-friendly food processing (pp. 205–217). Cambridge: Woodhead Publishing.10.1533/9781855737174.2.205
  • Taiwo, K. A., Eshtiaghi, M. N., Ade-Omowaye, B. I. O., & Knorr, D. (2003). Osmotic dehydration of strawberry halves: influence of osmotic agents and pretreatment methods on mass transfer and product characteristics. International Journal of Food Science & Technology, 38, 693–707.
  • Therdthai, N., & Visalrakkij, T. (2012). Effect of osmotic dehydration on dielectric properties, microwave vacuum drying kinetics and quality of mangosteen. International Journal of Food Science & Technology, 47, 2606–2612.
  • Therdthai, N., Zhou, W., & Pattanapa, K. (2011). Microwave vacuum drying of osmotically dehydrated mandarin cv. (Sai-Namphaung). International Journal of Food Science & Technology, 46, 2401–2407.
  • Tortoe, C. (2010). A review of osmodehydration for food industry. African Journal of Food Science, 4, 303–324.
  • Udomkun, P., Nagle, M., Mahayothee, B., Nohr, D., Koza, A., & Müller, J. (2015). Influence of air drying properties on non-enzymatic browning, major bio-active compounds and antioxidant capacity of osmotically pretreated papaya. LWT - Food Science and Technology, 60, 914–922.10.1016/j.lwt.2014.10.036
  • Vallejo, F., Tomás-Barberán, F., & García-Viguera, C. (2002). Glucosinolates and vitamin C content in edible parts of broccoli florets after domestic cooking. European Food Research and Technology, 215, 310–316.
  • Verma, D., Kaushik, N., & Rao, P. S. (2014). Application of high hydrostatic pressure as a pretreatment for osmotic dehydration of banana slices (Musa cavendishii) finish-dried by dehumidified air drying. Food and Bioprocess Technology, 7, 1281–1297.10.1007/s11947-013-1124-6
  • Vieira, G. S., Pereira, L. M., & Hubinger, M. D. (2012). Optimisation of osmotic dehydration process of guavas by response surface methodology and desirability function. International Journal of Food Science & Technology, 47, 132–140.
  • Wang, R., Zhang, M., & Mujumdar, A. S. (2010). Effect of osmotic dehydration on microwave freeze-drying characteristics and quality of potato chips. Drying Technology, 28, 798–806.10.1080/07373937.2010.482700
  • Zhao, D., Zhao, C., Tao, H., An, K., Ding, S., & Wang, Z. (2013). The effect of osmosis pretreatment on hot-air drying and microwave drying characteristics of chili (Capsicum annuum L.) flesh. International Journal of Food Science & Technology, 48, 1589–1595.