855
Views
0
CrossRef citations to date
0
Altmetric
FOOD SCIENCE & TECHNOLOGY

Effects of processing methods on phytate and tannin content of black small common beans (Phaseolus vulgaris L.) cultivated in Mozambique

ORCID Icon, &
Article: 2289713 | Received 22 Feb 2023, Accepted 26 Nov 2023, Published online: 06 Dec 2023

References

  • Abioye, V. F., Ogunlakin, G. O., & Taiwo, G. (2018). Effect of germination on anti-oxidant activity, total phenols, flavonoids, and anti-nutritional content of finger Millet Flour. Journal of Food Processing & Technology, 09(2), 1–15. https://doi.org/10.4172/2157-7110.1000719
  • Afify, A. E. M. M. R., El-Beltagi, H. S., El-Salam, S. M. A., & Omran, A. A. (2011). Bioavailability of iron, zinc, phytate, and phytase activity during soaking and germination of white sorghum varieties. PLoS ONE, 6(10), 1–7. https://doi.org/10.1371/journal.pone.0025512
  • Akeem, S. A., Kolawole, F. L., Joseph, J. K., Monday, R., Kayode, O., & Akintayo, O. A. (2019). Traditional Food Processing Techniques and Micronutrients. Annals Food Science and Technology, 20(1), 30–41.
  • Azeke, M. A., Egielewa, S. J., Eigbogbo, M. U., & Ihimire, I. G. (2011). Effect of germination on the phytase activity, phytate and total phosphorus contents of rice (Oryza sativa), maize (Zea mays), millet (panicum miliaceum), sorghum (sorghum bicolor) and wheat (Triticum aestivum). Journal of Food Science and Technology, 48(6), 724–729. https://doi.org/10.1007/s13197-010-0186-y
  • Balasubramanian, P., Slinkard, A. R., & Tyler, A. V. (1999). Genotype and environment effect on canning quality of kabuli chickpea. Canadian Journal of Plant Science, 82(2), 267–272. https://doi.org/10.4141/P01-082
  • Banti, M., & Bajo, W. (2020). Review on nutritional Importance and anti-nutritional factors of legumes. International Journal of Nutrition and Food Sciences, 9(6), 138–149. https://doi.org/10.11648/j.ijnfs.20200906.11
  • Blair, M. W., Herrera, A. L., Sandoval, T. A., Caldas, G. V., Filleppi, M., & Sparvoli, F. (2012). Inheritance of seed phytate and phosphorus levels in common bean (Phaseolus vulgaris L.) and association with newly-mapped candidate genes. Molecular Breeding, 30(3), 1265–1277. https://doi.org/10.1007/s11032-012-9713-z
  • Broughton, W. J., Hern, G., Blair, M., Beebe, S., Gepts, P., & Vanderleyden, J. (2003). Beans (Phaseolus spp .) – model food legumes. Plant and Soil, 252(1), 55–128. https://doi.org/10.1023/A:1024146710611
  • Burns, R. E. (1971). Method for estimation of tannin in grain sorghum 1. Agronomy Journal, 63(3), 511–512. https://doi.org/10.2134/agronj1971.00021962006300030050x
  • Canani, R. B., Cirillo, P., Buccigrossi, V., Ruotolo, S., Passariello, A., De Luca, P., Porcaro, F., De Marco, G., & Guarino, A. (2005). Zinc inhibits cholera toxin-induced, but not Escherichia coli heat-stable enterotoxin-induced, ion secretion in human enterocytes. Journal of Infectious Diseases, 191(7), 1072–1077. https://doi.org/10.1086/428504
  • Corzo-Ríos, L. J., Sánchez-Chino, X. M., Cardador-Martínez, A., Martínez-Herrera, J., & Jiménez-Martínez, C. (2020). Effect of cooking on nutritional and non-nutritional compounds in two species of Phaseolus (P. vulgaris and P. coccineus) cultivated in Mexico. International Journal of Gastronomy and Food Science, 20(October), 100206. https://doi.org/10.1016/j.ijgfs.2020.100206
  • Diouf, A., Sarr, F., Sene, B., Ndiaye, C., Fall, S. M., & Cyrille Ayesso, N. (2019). Pathways for reducing anti-nutritional factors: Prospects for Vigna unguiculata. Journal of Nutritional Health & Food Science, 7(2), 1–10. https://doi.org/10.15226/jnhfs.2019.001157
  • Dueñas, M., Sarmento, T., Aguilera, Y., Benitez, V., Mollá, E., Esteban, R. M., & Martín-Cabrejas, M. A. (2016). Impact of cooking and germination on phenolic composition and dietary fibre fractions in dark beans (Phaseolus vulgaris L.) and lentils (lens culinaris L.). LWT - Food Science and Technology, 66, 72–78. https://doi.org/10.1016/j.lwt.2015.10.025
  • Emire, S. A., & Rakshit, S. K. (2007, December). Effect of processing on antinutrients and in vitro digestibility of kidney bean (Phaseolus vulgaris L .) varieties grown in East Africa. https://doi.org/10.1016/j.foodchem.2006.08.005.
  • Ertaş, N., & Türker, S. (2014). Bulgur processes increase nutrition value: Possible role in in-vitro protein digestability, phytic acid, trypsin inhibitor activity and mineral bioavailability. Journal of Food Science and Technology, 51(7), 1401–1405. https://doi.org/10.1007/s13197-012-0638-7
  • Fabbri, A. D. T., & Crosby, G. A. (2016). A review of the impact of preparation and cooking on the nutritional quality of vegetables and legumes. International Journal of Gastronomy and Food Science, 3, 2–11. https://doi.org/10.1016/j.ijgfs.2015.11.001
  • Feitosa, S., Greiner, R., Meinhardt, A. K., Müller, A., Almeida, D. T., & Posten, C. (2018). Effect of traditional household processes on iron, zinc and copper bioaccessibility in black bean (Phaseolus vulgaris L.). Foods, 7(8), 123. Www.Mdpi.Com/Journal/Foods. https://doi.org/10.3390/foods7080123
  • Fredrikson, M., Alminger, M. L., Carlsson, N. G., & Sandberg, A. S. (2001). Phytate content and phytate degradation by endogenous phytase in pea (Pisum sativum). Journal of the Science of Food and Agriculture, 81(12), 1139–1144. https://doi.org/10.1002/jsfa.918
  • Frølich, W. (2011). Phytate – a natural component in plant food. National Food Institute, Technical University of Denmark.
  • Ghavidel, R. A., & Prakash, J. (2007). The impact of germination and dehulling on nutrients, antinutrients, in vitro iron and calcium bioavailability and in vitro starch and protein digestibility of some legume seeds. LWT - Food Science and Technology, 40(7), 1292–1299. https://doi.org/10.1016/j.lwt.2006.08.002
  • Gibson, R. S., Bailey, K. B., Gibbs, M., & Ferguson, E. L. (2010). A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food and Nutrition Bulletin, 31(2), S134–S146. https://doi.org/10.1177/15648265100312s206
  • Hauwa Hajjagana, L., Sheriff, M., & Arab Alhaji, M. (2014). Evaluation of the chemical composition, anti-nutrients and mineral element level of a composite meal from pearl millet, wheat, cowpea and groundnut. Sky Journal of Food Science, 3(8), 34–40. http://www.skyjournals.org/SJFS
  • Helbig, E., De Oliveira, A. C., Queiroz, K. D. S., & Reis, S. M. P. M. (2003). Effect of soaking prior to cooking on the levels of phytate and tannin of the common bean (Phaseolus vulgaris, L.) and the protein value. Journal of Nutritional Science and Vitaminology, 49(2), 81–86. https://doi.org/10.3177/jnsv.49.81
  • Hotz, C., & Gibson, R. S. (2001). Assessment of home-based processing methods to reduce the phytate content and phytate/zinc molar ratio of white maize (Zea mays). Journal of Agricultural and Food Chemistry, 49(2), 692–698. https://doi.org/10.1021/jf000462w
  • Hotz, C., & Gibson, R. S. (2007). Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets. The Journal of Nutrition, 137(4), 1097–1100. https://doi.org/10.1093/jn/137.4.1097
  • Jeyakumar, E., & Lawrence, R. (2022). Microbial fermentation for reduction of antinutritional factors. Current Developments in Biotechnology and Bioengineering Elsevier, 239–260. https://doi.org/10.1016/B978-0-12-823506-5.00012-6
  • Jones, A. L. (1999). Phaseolus bean: Post-harvest operations. In Post-harvest compendium. Food and Agriculture Organization of the United Nations. Www.Fao.Org/3/a-Av015e.Pdf
  • Kaur, D., & Kapoor, A. C. (1990). Starch and protein digestibility of rice bean (Vigna umbellata): Effects of domestic processing and cooking methods. Food Chemistry, 38(4), 263–272. https://doi.org/10.1016/0308-8146(90)90183-5
  • Korant, N. P., Ramani, H. R., Patel, P. S., Bk, R., & Sankat, K. B. (2023). Review on nutritional and anti-nutritional factor of raw, cooked and sprouted cowpea. Asian Journal of Dairy & Food Research, 12(4), 585–589. https://doi.org/10.18805/ajdfr.DR-2092
  • Kumar, Y., Basu, S., Goswami, D., Devi, M., Shivhare, U. S., & Vishwakarma, R. K. (2022). Anti-nutritional compounds in pulses: Implications and alleviation methods. Legume Science, 4(2), 1–13. https://doi.org/10.1002/leg3.111
  • Latta, M., & Eskin, M. (1980). A simple and rapid colorimetric method for phytate determination. Journal of Agricultural and Food Chemistry, 28(6), 1313–1315. https://doi.org/10.1021/jf60232a049
  • Lovato, F., Kowaleski, J., Da Silva, S. Z., & Heldt, L. F. S. (2018). Composição centesimal e conteúdo mineral de diferentes cultivares de feijão biorfortificado (Phaseolus vulgaris L.). Brazilian Journal of Food Technology, 21. https://doi.org/10.1590/1981-6723.6817
  • Machado, C. M., Ferruzzi, M. G., & Nielsen, S. S. (2008). Impact of the hard-to-cook phenomenon on phenolic antioxidants in dry beans (Phaseolus vulgaris). Journal of Agricultural and Food Chemistry, 56(9), 3102–3110. https://doi.org/10.1021/jf072861y
  • Martinez Meyer, M. R., Rojas, A., Santanen, A., & Stoddard, F. L. (2013). Content of zinc, iron and their absorption inhibitors in Nicaraguan common beans (Phaseolus vulgaris L.). Food Chemistry, 136(1), 87–93. https://doi.org/10.1016/j.foodchem.2012.07.105
  • Matella, N. J., Dolan, K. D., Stoeckle, A. W., Bennink, M. R., Lee, Y. S., & Uebersax, M. A. (2005). Use of hydration, germination, and α-galactosidase treatments to reduce oligosaccharides in dry beans. Journal of Food Science, 70(3), C203–C207. https://doi.org/10.1111/j.1365-2621.2005.tb07126.x
  • Minuye, M., Bajo, W., & Tejada Moral, M. (2021). Common beans variability on physical, canning quality, nutritional, mineral, and phytate contents. Cogent Food and Agriculture, 7(1). https://doi.org/10.1080/23311932.2021.1914376
  • Mubarak, A. E. (2005). Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chemistry, 89(4), 489–495. https://doi.org/10.1016/j.foodchem.2004.01.007
  • Mumtaz Hamdani, A., & Ahmed Wani, I. (2017). Guar and Locust bean gum: Composition, total phenolic content, antioxidant and antinutritional characterisation. Bioactive Carbohydrates & Dietary Fibre, 11, 53–59. https://doi.org/10.1016/j.bcdf.2017.07.004
  • Myrene, R. D. (2013). Effect of traditional processing methods on nutritional quality of. Advances in Bioresearch, 4(September), 29–33.
  • Naozuka, J., & Oliveira, P. V. (2012). Cooking effects on iron and proteins content of beans (Phaseolus vulgaris L.) by GF AAS and MALDI-TOF MS. Journal of the Brazilian Chemical Society, 23(1), 156–162. https://doi.org/10.1590/S0103-50532012000100022
  • Nikmaram, N., Leong, S. Y., Koubaa, M., Zhu, Z., Barba, F. J., Greiner, R., Oey, I., & Roohinejad, S. (2017). Effect of extrusion on the anti-nutritional factors of food products: An overview. Food Control, 79, 62–73. https://doi.org/10.1016/j.foodcont.2017.03.027
  • Pal, R. S., Bhartiya, A., Yadav, P., Kant, L., Mishra, K. K., Aditya, J. P., & Pattanayak, A. (2017). Effect of dehulling, germination and cooking on nutrients, anti-nutrients, fatty acid composition and antioxidant properties in lentil (Lens culinaris). Journal of Food Science and Technology, 54(4), 909–920. https://doi.org/10.1007/s13197-016-2351-4
  • Pedrosa, M. M., Cuadrado, C., Burbano, C., Muzquiz, M., Cabellos, B., Olmedilla-Alonso, B., & Asensio-Vegas, C. (2015). Effects of industrial canning on the proximate composition, bioactive compounds contents and nutritional profile of two Spanish common dry beans (Phaseolus vulgaris L.). Food Chemistry, 166, 68–75. https://doi.org/10.1016/j.foodchem.2014.05.158
  • Petry, N., Boy, E., Wirth, J. P., & Hurrell, R. F. (2015). Review: The potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification. Nutrients, 7(2), 1144–1173. https://doi.org/10.3390/nu7021144
  • Porch, T. G., Beaver, J. S., Debouck, D. G., Jackson, S. A., Kelly, J. D., Dempewolf, H., Rico, P., Trust, D., Crop, G., Lansing, E., Sciences, M., Program, G. R., Sciences, A., & Rico, P. (2013). Use of wild relatives and closely related species to adapt common bean to climate change. Agronomy, 3(2), 433–461. https://doi.org/10.3390/agronomy3020433
  • Raes, K., Knockaert, D., Struijs, K., & Van Camp, J. (2014). Role of processing on bioaccessibility of minerals: Influence of localization of minerals and anti-nutritional factors in the plant. Trends in Food Science and Technology, 37(1), 32–41. https://doi.org/10.1016/j.tifs.2014.02.002
  • Rahate, K. A., Madhumita, M., & Prabhakar, P. K. (2021). Nutritional composition, anti-nutritional factors, pretreatments-cum-processing impact and food formulation potential of faba bean (vicia faba L .): A comprehensive review. LWT, 138(December), 110796. https://doi.org/10.1016/j.lwt.2020.110796
  • Reddy, N. R., & Sathe, S. K. (Eds.). (2002). Food phytates. CRC Press.
  • Rocha-Guzmán, N. E., González-Laredo, R. F., Ibarra-Pérez, F. J., Nava-Berúmen, C. A., & Gallegos-Infante, J. A. (2007). Effect of pressure cooking on the antioxidant activity of extracts from three common bean (Phaseolus vulgaris L.) cultivars. Food Chemistry, 100(1), 31–35. https://doi.org/10.1016/j.foodchem.2005.09.005
  • Sandberg, A.-S. (2002). Bioavailability of minerals in legumes. British Journal of Nutrition, 88(S3), 281–285. https://doi.org/10.1079/bjn/2002718
  • Saulawa, L. A., Yaradua, A. I., Shuaibu, L., State, K., & State, K. (2014). Effect of different processing methods on proximate, mineral and anti nutritional factors content of Baobab (adansonia digitata) seeds. Pakistan Journal of Nutrition, 13(6), 314–318. https://doi.org/10.3923/pjn.2014.314.318
  • Singh, P. K., Gautam, A. K., Panwar, H., Singh, D. K., Srivastava, N., Bhagyawant, S. S., & Upadhayay, H. (2014). Effects of germination on antioxidant and anti- nutritional factors of commonly used pulses. International Journal of Research in Chemistry and Environment, 4(2), 100–104.
  • Singh, S., Singh, A. K., Singh, K., Singh, B., & Author, C. (2022). Millets processing, nutritional quality & fermented product: A review. The Pharma Innovation Journal, 11(5), 304–308. www.thepharmajournal.com
  • Sinha, K., Khare, V., Scientist, J., & Bharti, L. (2017). Review on: Antinutritional factors in vegetable crops. The Pharma Innovation Journal, 6(12), 353–358. www.thepharmajournal.com
  • Sruthi, N. U., Premjit, Y., Pandiselvam, R., Kothakota, A., & Ramesh, S. V. (2021). An overview of conventional and emerging techniques of roasting: Effect on food bioactive signatures. Food Chemistry, 348(January), 129088. https://doi.org/10.1016/j.foodchem.2021.129088
  • Sue Horton, H. A., & R, J. A. (2008). Copenhagen Consensus 2008 Challenge paper: hunger and malnutrition. http://www.copenhagenconsensus.com/The%2010%20challenges/Malnutrition%20and%20Hunger-1.aspx. Global Crises, Global Solutions, 1–648. https://doi.org/10.1017/CBO9780511492624
  • Suliburska, J., & Krejpcio, Z. (2014). Evaluation of the content and bioaccessibility of iron, zinc, calcium and magnesium from groats, rice, leguminous grains and nuts. Journal of Food Science and Technology, 51(3), 589–594. https://doi.org/10.1007/s13197-011-0535-5
  • Tanasković, S. J., Šekuljica, N., Jovanović, J., Gazikalović, I., Grbavčić, S., Đorđević, N., Sekulić, M. V., Hao, J., Luković, N., & Knežević-Jugović, Z. (2021). Upgrading of valuable food component contents and anti-nutritional factors depletion by solid-state fermentation: A way to valorize wheat bran for nutrition. Journal of Cereal Science, 99(December), 103159. https://doi.org/10.1016/j.jcs.2020.103159
  • Vaintraub, I., & Lapteva, N. (1988). Colorimetric determination of phytate in unpurified extracts of seeds and the products of their processing. Analytical Biochemistry, 175, 227–230. https://doi.org/10.1016/0003-2697(88)90382-X
  • Viadel, B., Barberá, R., & Farré, R. (2006). Uptake and retention of calcium, iron, and zinc from raw legumes and the effect of cooking on lentils in caco-2 cells. Nutrition Research, 26(11), 591–596. https://doi.org/10.1016/j.nutres.2006.09.016
  • Wortmann, C. S., Brink, M., & Belay, G. (2006). Phaseolus vulgaris L.(common bean). In Record from PROTA4U. Brink, M. & Belay, G. PROTA (Plant Resources of Tropical Africa/Ressources Végétales de l’Afrique Tropicale).