6,355
Views
44
CrossRef citations to date
0
Altmetric
Review Article

MPEG–PCL copolymeric nanoparticles in drug delivery systems

ORCID Icon | (Reviewing Editor)
Article: 1142411 | Received 29 Nov 2015, Accepted 12 Jan 2016, Published online: 10 Mar 2016

References

  • Ahlin, P., Kristl, J., Kristl, A., & Vrečer, F. (2002). Investigation of polymeric nanoparticles as carriers of enalaprilat for oral administration. International Journal of Pharmaceutics, 239, 113–120.10.1016/S0378-5173(02)00076-5
  • Ahmed, F., Discher, D. E. (2004). Self-porating polymersomes of PEG-PLA and PEG-PCL: Hydrolysis-triggered controlled release vesicles, Journal of Controlled Release, 96, 37–53.10.1016/j.jconrel.2003.12.021
  • Barichello, J. M., Morishita, M., Takayama, K., & Nagai, T. (1999). Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Development and Industrial Pharmacy, 25, 471–476.10.1081/DDC-100102197
  • Cerrai, P., Guerra, G. D., Lelli, L., Tricoli, M., Sbarbati Del Guerra, R., Cascone, M. G., & Giusti, P. (1994). Poly(ester-ether-ester) block copolymers as biomaterials. Journal of Materials Science: Materials in Medicine, 5, 33–39.
  • Chawla, J. S., & Amiji, M. M. (2002). Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. International Journal of Pharmaceutics, 249, 127–138.10.1016/S0378-5173(02)00483-0
  • Chen, D. R., Bei, J. Z., & Wang, S. G. (2000). Polycaprolactone microparticles and their biodegradation. Polymer Degradation and Stability, 67, 455–459.10.1016/S0141-3910(99)00145-7
  • Chiellini, E., & Solaro, R. (1996). Biodegradable polymeric materials. Advanced Materials, 8, 305–313.10.1002/(ISSN)1521-4095
  • Choi, C. Y., Chae, S. Y., & Nah, J. W. (2006). Thermosensitive poly(N-isopropylacrylamide)-b-poly(ε-caprolactone) nanoparticles for efficient drug delivery systemfi. Polymer, 47, 4571–4580.10.1016/j.polymer.2006.05.011
  • Choi, M. J., Ruktanonchai, U., Soottitantawat, A., & Min, S. G. (2009). Morphological characterization of encapsulated fish oil with beta-cyclodextrin and polycaprolactone. Food research international, 42, 989–997.
  • Connor, E. F., Nyce, G. W., Myers, M., Möck, A., & Hedrick, J. L. (2002). First example of N-heterocyclic carbenes as catalysts for living polymerization: Organocatalyticring-opening polymerization of cyclic esters. Journal of the American Chemical Society, 124, 914–915.10.1021/ja0173324
  • Danafar, H., Rostamizadeh, K., Davaran, S., & Hamidi, M. (2016). Drug-conjugated PLA–PEG–PLA copolymers: A novel approach for controlled delivery of hydrophilic drugs by micelle formation. Pharmaceutical Development and Technology, doi: 10.3109/10837450.2015.1125920.
  • Danafar, H., Rostamizadeh, K., Davaran, S., Valizadeh, H., & Hamidi, M. (2014). Biodegradable m- PEG/PCL core-Shell Micelles: Preparation and characterization as a sustained release formulation for curcumin. Advanced Pharmaceutical Bulletin., 4, 501–510.
  • Danafar, H., Rostamizadeh, K., Davaran, S., & Hamidi, M. (2014). PLA-PEG-PLA copolymer-based polymersomes as nanocarriers for delivery of hydrophilic and hydrophobic drugs: Preparation and evaluation with atorvastatin and lisinopril. Drug Development and Industrial Pharmacy, 40, 1411–1420.10.3109/03639045.2013.828223
  • Deng, C., Rong, G., Tian, H., Tang, Z., Chen, X., & Jing, X. (2005). Synthesis and characterization of poly(ethylene glycol)-b-poly (l-lactide)-b-poly(l-glutamic acid) triblock copolymer. Polymer, 46, 653–659.10.1016/j.polymer.2004.11.100
  • Gref, R., Minamitake, Y., Peracchia, M. T., Trubetskoy, V., Torchilin, V., & Langer, R. (1994). Biodegradable long-circulating polymeric nanospheres. Science, 263, 1600–1603.10.1126/science.8128245
  • Hans, M. L., & Lowman, A. M. (2002). Biodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State and Materials Science, 6, 319–327.10.1016/S1359-0286(02)00117-1
  • Hariharan, S., Bhardwaj, V., Bala, I., Sitterberg, J., Bakowsky, U., & Ravi Kumar, M. N. V. (2006). Design of estradiol loaded PLGA nanoparticulate formulations: A potential oral delivery system for hormone therapy. Pharmaceutical Research, 23, 184–195.10.1007/s11095-005-8418-y
  • Huang, M. H., Li, S., Hutmacher, D. W., Schantz, J. T., Vacanti, C. A., Braud, C., & Vert, M. (2004). Degradation and cell culture studies on block copolymers prepared by ring opening polymerization of ?-caprolactone in the presence of poly(ethylene glycol). Journal of Biomedical Materials Research, 69, 417–427.10.1002/(ISSN)1097-4636
  • Jain, A. K., Goyal, A. K., Mishra, N., Vaidya, B., Mangal, S., & Vyas, S. P. (2010). PEG–PLA–PEG block copolymeric nanoparticles for oral immunization against hepatitis B. International Journal of Pharmaceutics, 387, 253–262.10.1016/j.ijpharm.2009.12.013
  • Jarmer, D. J., Lengsfeld, C. S., & Randolph, T. W. (2003). Manipulation of particle size distribution of poly(l-lactic acid) nanoparticles with a jet-swirl nozzle during precipitation with a compressed antisolvent. The Journal of Supercritical Fluids, 27, 317–336.10.1016/S0896-8446(02)00245-0
  • Kawashima, Y., Yamamoto, H., Takeuchi, H., Hino, T., & Niwa, T. (1998). Properties of a peptide containing dl-lactide/glycolide copolymer nanospheres prepared by novel emulsion solvent diffusion methods. European Journal of Pharmaceutics and Biopharmaceutics, 45, 41–48.10.1016/S0939-6411(97)00121-5
  • Kheiri, H., Sharafi, A., Danafar, H., & Ghasemi, H. (2016). Poly (caprolactone)-poly (ethylene glycol) - poly (caprolactone) (PCL-PEG-PCL) nanoparticles: A costly and efficient system for in vitro and in-vivo delivery of curcumin. RSC Advances, 6, 14403–14415.
  • Kim, J., & Bae, Y. (2004). Albumin loaded microsphere of amphiphilic poly(ethylene glycol)/ poly(α-ester) multiblock copolymer. European Journal of Pharmaceutical Sciences, 23, 245–251.10.1016/j.ejps.2004.07.011
  • Lee, J., Oh, S., Joo, M. K., & Jeong, B. (2008). Solvent-free preparation of caprolactone oligomer microspheres. Journal of Physics and Chemistry of Solids, 69, 1596–1599.10.1016/j.jpcs.2007.09.016
  • Li, G., Cai, Q., Bei, J., & Wang, S. (2003). Morphology and levonorgestrel release behavior ofpolycaprolactone/poly(ethylene oxide)/polylactide tri-component copolymericmicrospheres. Polymers for Advanced Technologies, 14, 239–244.10.1002/(ISSN)1099-1581
  • Lim Soo, P., Cho, J., Grant, J., Ho, E., Piquette-Miller, M., Allen, C. (2008). Drug release mechanism of paclitaxel from a chitosan–lipid implant system: Effect of swelling, degradation and morphology. European Journal of Pharmaceutics and Biopharmaceutics. ,69, 149–157.10.1016/j.ejpb.2007.11.003
  • Lowery, J. L., Datta, N., & Rutledge, G. C. (2009). Effect of fiber diameter, pore sizeand seeding method on growth of human dermal fibroblasts in electrospunpoly(epsilon-caprolactone) fibrous mats. Biomaterials, 31, 491–504.
  • Maeda, H., Wu, J., Sawa, T., Matsumura, Y., & Hori, K. (2000). Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. Journal of Controlled Release, 65, 271–284.10.1016/S0168-3659(99)00248-5
  • Masahiko, O. (2002). Chemical syntheses of biodegradable polymers. Progress in Polymer Science, 27, 87–133.
  • Maulding, H. V., Tice, T. R., Cowsar, D. R., Fong, J. W., Pearson, J. E., & Nazareno, J. P. (1986). Biodegradable microcapsules: Acceleration of polymeric excipient hydrolytic rate by incorporation of a basic medicament. Journal of Controlled Release, 3, 103–117.10.1016/0168-3659(86)90071-4
  • Molina, J., Urbina, J., Gref, R., Brener, Z., Junior, J. M. R., (2001). Cure of experimental Chagas’ disease by the bis-triazole DO870 incorporated into ‘stealth’ polyethyleneglycol-polylactide nanospheres. Journal of Antimicrobial Chemotherapy, 47, 101–104.
  • Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21, 2335–2346.10.1016/S0142-9612(00)00101-0
  • Mondrinos, M. J., Dembzynski, R., Lu, L., Byrapogu, V. K., Wootton, D. M., Lelkes, P. I., & Zhou, J. (2006). Porogen-based solid freeform fabrication of polycaprolactone–calcium phosphate scaffolds for tissue engineering. Biomaterials, 27, 4399–4408.10.1016/j.biomaterials.2006.03.049
  • Moon, H. T., Lee, Y. K., Han, J. K., & Byun, Y. J. (2002). Improved blood compatibility by sustained release of heparin–deoxycholic acid conjugates in a PCL–PEG multiblock copolymer matrix. Journal of Biomaterials Science, Polymer Edition, 13, 817–828.10.1163/156856202760197438
  • Myers, M., Connor, E. F., Glauser, T., Möck, A., Nyce, G. W., & Hedrick, J. L. (2002). Phosphines: Nucleophilic organic catalysts for the controlled ring-opening polymerization of lactides. Journal of Polymer Science Part A: Polymer Chemistry, 40, 844–851.10.1002/pola.v40:7
  • Nyce, G. W., Glauser, T., Connor, E. F., Möck, A., Waymouth, R. M., & Hedrick, J. L. (2003). Insitu generation of carbenes: A general and versatile platform for organo catalytic living polymerization. Journal of the American Chemical Society, 125, 3046–3056.10.1021/ja021084+
  • Park, T. G. (1994). Degradation of poly(d,l-lactic acid) microspheres: Effect of molecular weight. Journal of Controlled Release, 30, 161–173.10.1016/0168-3659(94)90263-1
  • Park, E. K., Kim, S. Y., Lee, S. B., & Lee, Y. M. (2005). Folate-conjugated methoxy poly(ethylene glycol)/poly(ɛ-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. Journal of Controlled Release, 109, 158–168.10.1016/j.jconrel.2005.09.039
  • Painbeni, T., Venier-Julienne, M. C., & Benoit, J. P. (1998). Internal morphology of poly(d,l-lactide-co-glycolide) BCNU-loaded microspheres. Influence on drug stability. European Journal of Pharmaceutics and Biopharmaceutics, 45, 31–39.10.1016/S0939-6411(97)00120-3
  • Pecora, R. (2000). Dynamic light scattering measurement of nanometer particles in liquids. Journal of Nanoparticle Research, 2, 123–131.10.1023/A:1010067107182
  • Rashkov, I., Manolova, N., Li, S. M., Espartero, J. L., & Vert, M. (1996). Synthesis charac-terization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymerswithshort poly(l-lactic acid) chains. Macromolecules, 29, 50–56.10.1021/ma950530t
  • Ropert, C., Bazile, D., Bredenbach, J., Marlard, M., Veillard, M., & Spenlehauer, G. (1993). Fate of 14C radiolabeled poly(dl-lactic acid) nanoparticles following oral administration to rats. Colloids and Surfaces B: Biointerfaces, 1, 233–239.10.1016/0927-7765(93)80023-R
  • Robert, L., & Vancanti, J. P. (1993). Tissue engineering. Science, 260, 920–926.
  • Rosen, H., & Abribat, T. (2005). Timeline: The rise and rise of drug delivery. Nature Reviews Drug Discovery, 4, 381–385.10.1038/nrd1721
  • Seregin, V. V., & Coffer, J. L. (2006). Biomineralization of calcium disilicide in porous polycaprolactone scaffolds. Biomaterials, 27, 4745–4754.10.1016/j.biomaterials.2006.04.031
  • Suryanarayanan, R. (1995). X-ray powder diffractometry. In H. G. Brittain (Ed.), Physical characterization of pharmaceutical solids, vol. 70 (pp. 187–221). New York, NY: Marcel Dekker.10.1201/IHCDRUPHASCI
  • Youxin, L., & Kissel, T. (1993). Synthesis and properties of biodegradable ABA triblock copolymers consisting of poly(l-lactic acid) or poly (l-lactic-co-glycolic acid) A-blocks attached to central poly ( oxyethylene ) B-blocks. Journal of Controlled Release, 27, 247–257.10.1016/0168-3659(93)90155-X
  • Yuan, M. L., Wang, Y. H., Li, X. H., Xiong, C. D., & Deng, X. M. (2000). Polymerizatioof lactides and lactones. 10. Synthesis, characterization, and application oamino-terminated poly(ethylene glycol)-co-poly(-caprolactone) block copolymer. Macromolecules, 33, 1613–1617.10.1021/ma991388p
  • Wang, S. G., & Qiu, B. (1993). Polycaprolactone–poly(ethylene glycol) block copoly-mer. I. Synthesis and degradability in vitro. Polymers for Advanced Technologies, 4, 363–366.
  • Wei, Q., Wei, W., Tian, R., Wang, L. Y., Su, Z. G., & Ma, G. H. (2008). Preparation of uniform-sized PELA microspheres with high encapsulation efficiency of antigen by premix membrane emulsification. Journal of Colloid and Interface Science, 323, 267–273.10.1016/j.jcis.2008.04.058