6,145
Views
4
CrossRef citations to date
0
Altmetric
Research Article

DNA barcoding approach to characterize microalgae isolated from freshwater systems in Ecuador

ORCID Icon, , , , & ORCID Icon
Pages 170-183 | Received 29 Sep 2020, Accepted 12 Apr 2021, Published online: 05 May 2021

References

  • Guiry MD. How many species of algae are there? J Phycol. 2012;48(5):1057–1063.
  • Hollingsworth PM. Refining the DNA barcode for land plants. Proc Natl Acad Sci U S A. 2011;108(49):19451–19452.
  • Hubert N, Hanner R, Holm E, et al. Identifying Canadian freshwater fishes through DNA barcodes. PLoS One. 2008;3(6):e2490.
  • Torres MA, Barros MP, Campos SCG, et al. Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol Environ Saf. 2008;71(1):1–15.
  • Omar WMW. Perspectives on the use of algae as biological indicators for monitoring and protecting aquatic environments, with special reference to Malaysian freshwater ecosystems. Trop Life Sci Res. 2010;21(2):51–67.
  • Al-Haj L, Lui Y, Abed R, et al. Cyanobacteria as chassis for industrial biotechnology: progress and prospects. Life. 2016;6(4):42.
  • Mišurcová L, Škrovánková S, Samek D, et al. Health benefits of Algal Polysaccharides in human nutrition. Adv Food Nutr Res. 2012; 66:75–145. Elsevier Inc.
  • Khanna N, Lindblad P. Cyanobacterial hydrogenases and hydrogen metabolism revisited: recent progress and future prospects. Int J Mol Sci. 2015;16(12):10537–10561.
  • Zehr JP. Nitrogen fixation by marine cyanobacteria. Trends Microbiol. 2011;19(4):162–173.
  • Jagielski T, Bakuła Z, Gawor J, et al. The genus Prototheca (Trebouxiophyceae, Chlorophyta) revisited: implications from molecular taxonomic studies. Algal Res. 2019;43:101639.
  • Guamán C, Nory B, Romero PG. Catálogo de microalgas y cianobacterias de agua dulce del Ecuador. Quito: Laboratorio de Biotecnología Energética; 2016.
  • Nakayama T, Watanabe S, Mitsui K, et al. The phylogenetic relationship between the Chlamydomonadales and Chlorococcales inferred from 18SrDNA sequence data. Phycol Res. 1996;44(1):47–55.
  • Škaloud P, Neustupa J, Radochová B, et al. Confocal microscopy of chloroplast morphology and ontogeny in three strains of Dictyochloropsis (Trebouxiophyceae, Chlorophyta). Phycologia. 2005;44(3):261–269.
  • Komárek J, Kaštovský J, Mareš J, et al. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia. 2014;86:295–335.
  • Gugger M, Lyra C, Henriksen P, et al. Phylogenetic comparison of the cyanobacterial genera Anabaena and Aphanizomenon. Int J Syst Evol Microbiol. 2002;52(Pt 5):1867–1880.
  • Lehtimäki J, Lyra C, Suomalainen S, et al. Characterization of Nodularia strains, cyanobacteria from brackish waters, by genotypic and phenotypic methods. Int J Syst Evol Microbiol. 2000;50(3):1043–1053.
  • Manoylov KM, Graham L. Taxonomic identification of algae (morphological and molecular): species concepts, methodologies, and their implications for ecological bioassessment. J Phycol. 2014;50(3):409–424. Graham L, editor.
  • Hall JD, Fučíková K, Lo C, et al. An assessment of proposed DNA barcodes in freshwater green algae. Cryptogam Algol. 2010;31:529–555.
  • Alemzadeh E, Haddad R, Ahmadi A. Phytoplanktons and DNA barcoding : characterization and molecular analysis of phytoplanktons on the Persian Gulf. Iran J Microbiol. 2014;6(4):296–302.
  • Bock C, Krienitz L, Pröschold T. Taxonomic reassessment of the genus Chlorella (Trebouxiophyceae) using molecular signatures (barcodes), including description of seven new species. Fottea. 2011;11(2):293–312.
  • Esling P, Lejzerowicz F, Pawlowski J. Accurate multiplexing and filtering for high-throughput amplicon-sequencing. Nucleic Acids Res. 2015;43(5):2513–2524.
  • Pawlowski J, Holzmann M. A plea for DNA barcoding of foraminifera. J Foraminiferal Res. 2014;44(1):62–67.
  • Hebert P, Cywinska A, Ball S, et al. Biological identifications through DNA barcodes. Proc Biol Sci. 2003;270(1512):313–321.
  • Hebert PDN, Ratnasingham S, Dewaard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B. 2003;270(suppl_1):S96–S99.
  • Schloss PD, Handelsman J, Relman D. Toward a census of bacteria in soil. PLoS Comput Biol. 2006;2(7):0786–0793.
  • Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rDNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol Microbiol Soc. 1994;44(4):846–849.
  • Blaxter ML, Godfray HCJ, Knapp S. The promise of a DNA taxonomy. Philos Trans R Soc B Biol Sci. 2004;359(1444):669–679.
  • Pawlowski J, Lejzerowicz F, Apotheloz-Perret-Gentil L, et al. Protist metabarcoding and environmental biomonitoring: time for change. Eur J Protistol. 2016;55:12–25.
  • Pernice MC, Logares R, Guillou L, et al. General patterns of diversity in major marine Microeukaryote Lineages. PLoS One. 2013;8(2):e57170.
  • DeSalle R, Goldstein P. Review and interpretation of trends in DNA barcoding. Front Ecol Evol. 2019;7:1–11.
  • Pawlowski J, Audic S, Adl S, et al. CBOL Protist Working Group: barcoding Eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol. 2012;10(11):e1001419.
  • Buchheim MA, Keller A, Koetschan C, et al. Internal transcribed spacer 2 (nu ITS2 rDNA) sequence-structure phylogenetics: towards an automated reconstruction of the green algal tree of life. PLoS One. 2011;6(2):e16931.
  • Fawley MW, Fawley KP, Buchheim MA. Molecular diversity among communities of freshwater microchlorophytes. Microb Ecol. 2004;48(4):489–499.
  • Medlin LK, Metfies K, Mehl H, et al. Picoeukaryotic plankton diversity at the Helgoland time series site as assessed by three molecular methods. Microb Ecol. 2006;52(1):53–71.
  • Not F, Del Campo J, Balagué V, et al. New insights into the diversity of Marine Picoeukaryotes. PLoS One. 2009;4(9):e7143.
  • Hadziavdic K, Lekang K, Lanzen A, et al. Characterization of the 18S rDNA gene for designing universal Eukaryote specific primers. PLoS One. 2014;9(2):e87624.
  • Zimmermann J, Jahn R, Gemeinholzer B. Barcoding diatoms: evaluation of the V4 subregion on the 18S rDNA gene, including new primers and protocols. Org Divers Evol. 2011;11(3):173–192.
  • Hadi SIIA, Santana H, Brunale PPM, et al. DNA barcoding green microalgae isolated from neotropical Inland waters. PLoS One. 2016;11(2):e0149284.
  • Lortou U, Gkelis S. Polyphasic taxonomy of green algae strains isolated from Mediterranean freshwaters. Biol Res-Thessaloniki. 2019;26(1):11.
  • Dadheech PK, Glöckner G, Casper P, et al. Cyanobacterial diversity in the hot spring, pelagic and benthic habitats of a tropical soda lake. FEMS Microbiol Ecol. 2013;85(2):389–401.
  • Rosselló-Mora R. Updating prokaryotic taxonomy. J Bacteriol. 2005;187(18):6255–6257.
  • Boyer SL, Flechtner VR, Johansen JR. Is the 16S-23S rDNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol. 2001;18(6):1057–1069.
  • Otsuka S, Suda S, Li R, et al. Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence. FEMS Microbiol Lett. 1999;172(1):15–21.
  • Rocap G, Distel DL, Waterbury JB, et al. Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl Environ Microbiol. 2002;68(3):1180–1191.
  • Wilmotte A. Molecular evolution and taxonomy of the Cyanobacteria. In: D.A. B, editor. Mol Biol Cyanobacteria. Dordrecht: Springer Netherlands; 1994. p. 1–25.
  • Wilmotte A, Neefs JM, De Wachter R. Evolutionary affiliation of the marine nitrogen-fixing cyanobacterium Trichodesmium sp. strain NIBB 1067, derived by 16S ribosomal RNA sequence analysis. Microbiology. 1994;140(8):2159–2164.
  • Mikhailyuk T, Glaser K, Tsarenko P, et al. Composition of biological soil crusts from sand dunes of the Baltic Sea coast in the context of an integrative approach to the taxonomy of microalgae and cyanobacteria. Eur J Phycol. 2019;54(3):263–290.
  • Ríos-Touma B, Holzenthal RW, Huisman J, et al. Diversity and distribution of the Caddisflies (Insecta: trichoptera) of Ecuador. Peer J. 2017;5:e2851.
  • Gunkel G, Beulker C. Limnology of the crater Lake Cuicocha, Ecuador, a cold water tropical lake. Int Rev Hydrobiol. 2009;94(1):103–125.
  • Andersen RA. Algal culturing techniques. London: Elsevier Academic Press; 2005.
  • Bellinger EG, Sigee DC. Freshwater algae: identification, enumeration and use as bioindicators. Wileyblackwell; United States of America, 2015.
  • Serediak N, Huynh M. Algae identification lab guide : accompanying manual to the algae identification field guide. Canada. CA and A-F, editor. Ottawa: Agriculture and Agri-Food Canada; 2011.
  • Guiry MD, Guiry GM. AlgaeBase. Galway: World-wide electronic publication, National University of Ireland. https://www.algaebase.org; searched on 01 November 2020.
  • Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–1549.
  • Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–1797.
  • Mareš J, Hrouzek P, Kaňa R, et al. The primitive Thylakoid-Less Cyanobacterium Gloeobacter is a Common Rock-Dwelling Organism. PLoS One. 2013;8(6):e66323.
  • Mora D, Abarca N, Proft S, et al. Morphology and metabarcoding: a test with stream diatoms from Mexico highlights the complementarity of identification methods. Freshw Sci. 2019;38(3):448–464.
  • Zimmermann J, Abarca N, Enk N, et al. Taxonomic reference libraries for environmental barcoding: a best practice example from diatom research. PLoS One. 2014;9(9):e114758.
  • Zimmermann J, Glöckner G, Jahn R, et al. Metabarcoding vs. morphological identification to assess diatom diversity in environmental studies. Mol Ecol Resour. 2015;15(3):526–542.
  • Correia N, Pereira H, Silva JT, et al. Isolation, identification and biotechnological applications of a novel, robust, free-living Chlorococcum (Oophila) amblystomatis strain isolated from a local pond. Appl Sci. 2020;10(9):3040.
  • Hoshina R, Fujiwara Y. Molecular characterization of Chlorella cultures of the National Institute for Environmental Studies culture collection with description of Micractinium inermum sp. nov., Didymogenes sphaerica sp. nov., and Didymogenes soliella sp. nov. (Chlorellaceae, Tr.). Phycol Res. 2013;61:124–132.
  • Leliaert F, Verbruggen H, Vanormelingen P, et al. DNA-based species delimitation in algae. Eur J Phycol. 2014;49(2):179–196.
  • Lee SR, Oak JH, Chung IK, et al. Effective molecular examination of eukaryotic plankton species diversity in environmental seawater using environmental PCR, PCR-RFLP, and sequencing. J Appl Phycol. 2010;22(6):699–707.
  • Wang Q, Song H, Liu X, et al. Morphology and molecular phylogeny of coccoid green algae Coelastrella sensu lato (Scenedesmaceae, Sphaeropeales), including the description of three new species and two new varieties. J Phycol. 2019;55(6):1290–1305.
  • Ancona-Canché K, López-Adrián S, Espinosa-Aguilar M, et al. Molecular phylogeny and morphologic data of strains of the genus Coelastrella (Chlorophyta, Scenedesmaceae) from a tropical region in North America (Yucatan Peninsula). Bot Sci. 2017;95(3):527–537.
  • Hegewald E, Wolf M. Phylogenetic relationships of Scenedesmus and Acutodesmus (Chlorophyta, Chlorophyceae) as inferred from 18S rDNA and ITS-2 sequence comparisons. Plant Syst Evol. 2003;241(3–4):185–191.
  • Zou S, Fei C, Wang C, et al. How DNA barcoding can be more effective in microalgae identification: a case of cryptic diversity revelation in Scenedesmus (Chlorophyceae). Sci Rep. 2016;6(1):1–13.
  • Krienitz L, Hegewald EH, Hepperle D, et al. Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycologia. 2004;43(5):529–542.
  • Sciuto K, Lewis LA, Verleyen E, et al. Chodatodesmus australis sp. nov. (Scenedesmaceae, Chlorophyta) from Antarctica, with the emended description of the genus Chodatodesmus, and circumscription of Flechtneria rotunda gen. et sp. nov. J Phycol. 2015;51(6):1172–1188.
  • Eliáš M, Němcová Y, Škaloud P, et al. Hylodesmus singaporensis gen. et sp. nov., a new autosporic subaerial green alga (Scenedesmaceae, Chlorophyta) from Singapore. Int J Syst Evol Microbiol. 2010;60(5):1224–1235.
  • Hegewald E. A new subdivision of the genus Scenedesmus Meyen. Nov Hedwigia. 1978;30(1–4):343–376.
  • An SS, Friedl T, Hegewald E. Phylogenetic relationships of Scenedesmus and Scenedesmus-like Coccoid Green Algae as Inferred from ITS-2 rDNA Sequence Comparisons. Plant Biol. 1999;1(4):418–428.
  • Huss VAR, Frank C, Hartmann EC, et al. Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J Phycol. 1999;35(3):587–598.
  • Darienko T, Pröschold T. The genus Jaagichlorella Reisigl (Trebouxiophyceae, Chlorophyta) and its close relatives: an evolutionary puzzle. Phytotaxa. 2019;388(1):047–068.
  • Cadillo-Quiroz H, Didelot X, Held NL, et al. Patterns of gene flow define species of Thermophilic Archaea. PLOS Biol. 2012;10(2):e1001265.
  • Eckert EM, Fontaneto D, Coci M, et al. Does a barcoding gap exist in prokaryotes? Evidences from species delimitation in cyanobacteria. Life. 2015;5(1):50–64.
  • Schleifer KH. Classification of bacteria and archaea: past, present and future. Syst Appl Microbiol. 2009;32(8):533–542. Dec 1.
  • Valério E, Chambel L, Paulino S, et al. Molecular identification, typing and traceability of cyanobacteria from freshwater reservoirs. Microbiology. 2009;155(2):642–656.
  • Komárek J, Anagnostidis K. Modern approach to the classification system of Cyanophytes 4 - Nostocales. Algol Stud für Hydrobiol. 1989; Suppl Vol. 56:247–345.
  • Moreira C, Vasconcelos V, Antunes A. Genetic characterization of Microcystis aeruginosa isolates from Portuguese freshwater systems. World J Microbiol Biotechnol. 2016;32(7):32.
  • Kurobe T, Lehman PW, Hammock BG, et al. Biodiversity of cyanobacteria and other aquatic microorganisms across a freshwater to brackish water gradient determined by shotgun metagenomic sequencing analysis in the San Francisco Estuary, USA. PLoS One. 2018;13(9):1–20.
  • Yoshida M, Yoshida T, Satomi M, et al. Intra-specific phenotypic and genotypic variation in toxic cyanobacterial Microcystis strains. J Appl Microbiol. 2008;105(2):407–415.
  • Singh R, Parihar P, Singh M, et al. Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: current status and future prospects. Front Microbiol. 2017;8:1–37.
  • Włodarczyk A, Selão TT, Norling B, et al. Newly discovered Synechococcus sp. PCC 11901 is a robust cyanobacterial strain for high biomass production. Commun Biol. 2020;3(1):215.
  • Vela-garcía N, Guamán-Burneo MC, González-Romero NP. Efficient bioremediation from metallurgical effluents through the use of microalgae isolated from the Amazonic and highlands of Ecuador. Rev Int Contam Ambie. 2019;35(4):917–929.
  • Hodač L, Hodač H, Hallmann C, et al. Widespread green algae Chlorella and Stichococcus exhibit polar-temperate and tropical-temperate biogeography. FEMS Microbiol Ecol. 2016;92(8):122.
  • Aray-Andrade MM, Uyaguari-Diaz MI, Rafael Bermú Dez J, et al. Short-term deleterious effects of standard isolation and cultivation methods on new tropical freshwater microalgae strains dist. PeerJ. 2018;6:e5143.
  • Ballesteros I, Castillejo P, Haro AP, et al. Genetic barcoding of Ecuadorian epilithic diatom species suitable as water quality bioindicators. C R Biol. 2020;343(1):41–52.
  • Chagnon PL, Magain N, Miadlikowska J, et al. Strong specificity and network modularity at a very fine phylogenetic scale in the lichen genus Peltigera. Oecologia. 2018;187(3):767–782.
  • Nübel U, Muyzer G, Garcia-pichel F, et al. PCR primers to amplify 16S rDNA genes from cyanobacteria PCR primers to amplify 16S rDNA genes from Cyanobacteria. Microbiology. 1997;63:3327–3332.
  • Visco JA, Apothéloz-Perret-Gentil L, Cordonier A, et al. Environmental monitoring: inferring the diatom index from next-generation sequencing data. Environ Sci Technol. 2015;49(13):7597–7605.