729
Views
0
CrossRef citations to date
0
Altmetric
Empirical Article

Short Latency Effects of Auditory Frequency Change on Human Motor Behavior

&
Pages 98-128 | Received 06 Jun 2019, Accepted 16 Nov 2019, Published online: 26 Dec 2019

References

  • Ammirante, P., & Thompson, W. F. (2012). Continuation tapping to triggered melodies: Motor resonance effects of melodic motion. Experimental Brain Research, 216, 51–60.
  • Ammirante, P., Thompson, W. F., & Russo, F. (2011). Ideomotor effects of pitch on continuation tapping. The Journal of Experimental Psychology, 64(2), 381–393.
  • Anderson, L. A., & Malmierca, M. S. (2013). The effect of auditory cortex deactivation on stimulus‐specific adaptation in the inferior colliculus of the rat. European Journal of Neuroscience, 37(1), 52–62.
  • Antunes, F. M., & Malmierca, M. S. (2011). Effect of auditory cortex deactivation on stimulus-specific adaptation in the medial geniculate body. Journal of Neuroscience, 31(47), 17306–17316.
  • Arlinger, S., & Jerlvall, L. (1981). Early auditory electric responses to fast amplitude and frequency tone glides. Electroencephalography and Clinical Neurophysiology, 51(6), 624–631.
  • Ausmus, D. M., & Clarke, J. A. (2014). Mother knows best: Functionally referential alarm calling in white-tailed ptarmigan. Animal Cognition, 17, 671–679.
  • Baumgartner, R., Reed, D. K., Tóth, B., Best, V., Majdak, P., Colburn, H. S., & Shinn-Cunningham, B. (2017). Asymmetries in behavioral and neural responses to spectral cues demonstrate the generality of auditory looming bias. Proceedings of the National Academy of Sciences, 114(36), 9743–9748.
  • BBC Earth. (n.d.). Drongo bird tricks meerkats. Retrieved from https://www.youtube.com/watch?v=tEYCjJqr21A
  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57, 289–300. Retrieved from https://www.jstor.org/stable/2346101
  • Białuńska, A., Dalla Bella, S., & Jaśkowski, P. (2011). Increasing stimulus intensity does not affect sensorimotor synchronization. Psychological Research, 75, 43–53.
  • Boasson, A. D., & Granot, R. (2012, July 23–28). Melodic direction’s effect on tapping. In E. Cambouropoulos, C. Tsougras, P. Mavromatis, & K. Pastiadis (Eds.), Proceedings of the 12th International Conference on Music Perception and Cognition (ICMPC) and the 8th Triennial Conference of the European Society for the Cognitive Sciences of Music (pp. 110–119). Thessaloniki, Greece. Retrieved from http://icmpc-escom2012.web.auth.gr/files/papers/110_Proc.pdf
  • Boltz, M. G. (2011). Illusory tempo changes due to musical characteristics. Music Perception, 28(4), 367–386.
  • Cacciaglia, R., Escera, C., Slabu, L., Grimm, S., Sanjuán, A., Ventura-Campos, N., & Ávila, C. (2015). Involvement of the human midbrain and thalamus in auditory deviance detection. Neuropsychologia, 68, 51–58.
  • Clément, S., Demany, L., & Semal, C. (1999). Memory for pitch versus memory for loudness. The Journal of the Acoustical Society of America, 106(5), 2805–2811.
  • Cornella, M., Leung, S., Grimm, S., & Escera, C. (2013). Regularity encoding and deviance detection of frequency modulated sweeps: Human middle-and long-latency auditory evoked potentials. Psychophysiology, 50(12), 1275–1281.
  • Cousineau, M., Demany, L., & Pressnitzer, D. (2009). What makes a melody: The perceptual singularity of pitch sequences. The Journal of the Acoustical Society of America, 126(6), 3179–3187.
  • Demany, L., Carcagno, S., & Semal, C. (2013). The perceptual enhancement of tones by frequency shifts. Hearing Research, 298, 10–16.
  • Demany, L., & Ramos, C. (2005). On the binding of successive sounds: Perceiving shifts in nonperceived pitches. The Journal of the Acoustical Society of America, 117(2), 833–841.
  • Demany, L., & Semal, C. (2018). Automatic frequency-shift detection in the auditory system: A review of psychophysical findings. Neuroscience, 389, 30–40.
  • DiGiovanni, J. J., & Schlauch, R. S. (2007). Mechanisms responsible for differences in perceived duration for rising-intensity and falling-intensity sounds. Ecological Psychology, 19(3), 239–264.
  • Duque, D., Wang, X., Nieto-Diego, J., Krumbholz, K., & Malmierca, M. S. (2016). Neurons in the inferior colliculus of the rat show stimulus-specific adaptation for frequency, but not for intensity. Scientific Reports, 6, 1.
  • Escera, C., & Malmierca, M. S. (2014). The auditory novelty system: An attempt to integrate human and animal research. Psychophysiology, 51(2), 111–123.
  • Fernald, A. (1992a). Human maternal vocalizations to infants as biologically relevant signals: An evolutionary perspective. In J. H. Barkow, L. Cosmides, & J. Tooby (Eds.), The adapted mind: Evolutionary psychology and the generation of culture (pp. 391–428). NY: Oxford University Press.
  • Fernald, A. (1992b). Meaningful melodies in mothers’ speech to infants. In H. Papoušek, U. Jürgens, & M. Papoušek (Eds.), Nonverbal vocal communication: Comparative and developmental approaches (pp. 262–282). NY: Cambridge University Press.
  • Freiberg, K., Tually, K., & Crassini, B. (2001). Use of an auditory looming task to test infants’ sensitivity to sound pressure level as an auditory distance cue. British Journal of Developmental Psychology, 19(1), 1–10.
  • Galbraith, G. C., Chae, B. C., Cooper, J. R., Gindi, M. M., Ho, T. N., Kim, B. S., … Lunde, S. E. (2000). Brainstem frequency-following response and simple motor reaction time. International Journal of Psychophysiology, 36(1), 35–44.
  • Galbraith, G. C., Gutterson, R. P., Levy, D. S., Mussey, J. L., Sabatasso, F. A., & Wasserman, R. I. (2004). Correlated brain stem and cortical evoked responses to auditory tone change. Neuroreport, 15(17), 2613–2616.
  • Ghazanfar, A. A., & Maier, J. X. (2009). Rhesus monkeys (Macaca mulatta) hear rising frequency sounds as looming. Behavioral Neuroscience, 123(4), 822.
  • Giard, M. H., Lavikahen, J., Reinikainen, K., Perrin, F., Bertrand, O., Pernier, J., & Näätänen, R. (1995). Separate representation of stimulus frequency, intensity, and duration in auditory sensory memory: An event-related potential and dipole-model analysis. Journal of Cognitive Neuroscience, 7(2), 133–143.
  • Gordon, M., & O’neill, W. E. (2000). An extralemniscal component of the mustached bat inferior colliculus selective for direction and rate of linear frequency modulations. Journal of Comparative Neurology, 426, 165–181.
  • Grieser, D. L., & Kuhl, P. K. (1988). Maternal speech to infants in a tonal language: Support for universal prosodic features in motherese. Developmental Psychology, 24(1), 14–20.
  • Grimm, S., & Escera, C. (2012). Auditory deviance detection revisited: Evidence for a hierarchical novelty system. International Journal of Psychophysiology, 85(1), 88–92.
  • Grimm, S., Escera, C., & Nelken, I. (2016). Early indices of deviance detection in humans and animal models. Biological Psychology, 116, 23–27.
  • Haff, T. M., & Magrath, R. D. (2013). Eavesdropping on the neighbours: Fledglings learn to respond to heterospecific alarm calls. Animal Behaviour, 85, 411–418.
  • Hage, S. R., Jiang, T., Berquist, S. W., Feng, J., & Metzner, W. (2013). Ambient noise induces independent shifts in call frequency and amplitude within the Lombard effect in echolocating bats. PNAS, 110(10), 4063–4068.
  • Hage, S. R., Jürgens, U., & Ehret, G. (2006). Audio-vocal interaction in the pontine brainstem during self-initiated vocalization in the squirrel monkey. European Journal of Neuroscience, 23, 3297–3308.
  • Hentchke, H. (2011/2015). Measures of effect size toolbox (mes.m). Matlab central file exchange. Retrieved from http://www.mathworks.com/matlabcentral/fileexchange/32398-measures-of-effect-size-toolbox/content/mes.m
  • Horstmann, G. (2006). Latency and duration of the action interruption in surprise. Cognition & Emotion, 20(2), 242–273.
  • Kelly, J. B. (1973). The effects of insular and temporal lesions in cats on two types of auditory pattern discrimination. Brain Research, 62(1), 71–87.
  • Kohn, M., Lifshitz, K., & Litchfield, D. (1978). Averaged evoked potentials and frequency modulation. Electroencephalography and Clinical Neurophysiology, 45(2), 236–243.
  • Kohn, M., Lifshitz, K., & Litchfield, D. (1980). Average evoked potentials and amplitude modulation. Electroencephalography and Clinical Neurophysiology, 50(1), 134–140.
  • Krishnan, A., & Parkinson, J. (2000). Human frequency-following response: Representation of tonal sweeps. Audiology and Neurotology, 5(6), 312–321.
  • Krishnan, A., Xu, Y., Gandour, J. T., & Cariani, P. A. (2004). Human frequency-following response: Representation of pitch contours in Chinese tones. Hearing Research, 189, 1–12.
  • Kuo, R. I., & Wu, G. K. (2012). The generation of direction selectivity in the auditory system. Neuron, 73(5), 1016–1027.
  • Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863.
  • Larson, C. R., Sun, J., & Hain, T. C. (2007). Effects of simultaneous perturbations of voice pitch and loudness feedback on voice F0 and amplitude control. Journal of the Acoustical Society of America, 121(5), 2862–2872.
  • Liang, C., Earl, B., Thompson, I., Whitaker, K., Cahn, S., Xiang, J., … Zhang, F. (2016). Musicians are better than non-musicians in frequency change detection: Behavioral and electrophysio-logical evidence. Frontiers in Neuroscience, 10. doi:10.3389/fnins.2016.00464
  • Maier, J. X., & Ghazanfar, A. A. (2004, August). Auditory and multisensory perception of looming signals by rhesus monkeys: A naturalistic behaviour research. 5. Neurowissenschaftliche Nachwuchskonferenz Tübingen (NeNa’04). Retrieved from http://hdl.handle.net/11858/00-001M-0000-0013-D87B-1
  • Maiste, A., & Picton, T. (1989). Human auditory evoked potentials to frequency-modulated tones. Ear and Hearing, 10(3), 153–160.
  • Malmierca, M. S., Anderson, L. A., & Antunes, F. M. (2015). The cortical modulation of stimulus-specific adaptation in the auditory midbrain and thalamus: A potential neuronal correlate for predictive coding. Frontiers in Systems Neuroscience, 9, 19.
  • Malmierca, M. S., Niño-Aguillón, B. E., Nieto-Diego, J., Porteros, Á., Pérez-González, D., & Escera, C. (2019). Pattern-sensitive neurons reveal encoding of complex auditory regularities in the rat inferior colliculus. NeuroImage, 184, 889–900.
  • Manser, M. B., Seyfarth, R. M., & Cheney, D. L. (2002). Suricate alarm calls signal predator class and urgency. Trends in Cognitive Sciences, 6(2), 55–57.
  • Mathews, M. V., Pierce, J. R., Reeves, A., & Roberts, L. A. (1988). Theoretical and experimental explorations of the Bohlen–Pierce scale. The Journal of the Acoustical Society of America, 84(4), 1214–1222.
  • McBeath, M. K., & Neuhoff, J. G. (2002). The Doppler effect is not what you think it is: Dramatic pitch change due to dynamic intensity change. Psychonomic Bulletin & Review, 9(2), 306–313.
  • Miller, C. T., Miller, J., Gil-da-Costa, R., & Hauser, M. D. (2001). Selective phonotaxis by cotton-top tamarins (Saguinus oedipus). Behaviour, 138, 811–826.
  • Morton, E. S. (1977). On the occurrence and significance of motivation-structural rules in some bird and animal sounds. The American Naturalist, 111(981), 855–869.
  • Nelken, I., & Versnel, H. (2000). Responses to linear and logarithmic frequency‐ modulated sweeps in ferret primary auditory cortex. European Journal of Neuroscience, 12(2), 549–562.
  • Nelken, I., Yaron, A., Polterovich, A., & Hershenhoren, I. (2013). Stimulus-specific adaptation beyond pure tones. In Basic aspects of hearing (pp. 411–418). New York: Springer. doi:10.1007/978-1-4614-1590-9_45
  • Neuhoff, J. G. (2016). Looming sounds are perceived as faster than receding sounds. Cognitive Research: Principles and Implications, 1(1), 15.
  • Nissen, M. J. (1977). Stimulus intensity and information processing. Perception & Psychophysics, 22(4), 338–352.
  • Noguchi, Y., Fujiwara, M., & Hamano, S. (2015). Temporal evolution of neural activity underlying auditory discrimination of frequency increase and decrease. Brain Topography, 28(3), 437–444.
  • Ohala, J. J. (1984). An ethological perspective on common cross-language utilization of F0 of voice. Phonetica, 41, 1–16. Germany: Karger.
  • Ohl, F. W., Wetzel, W., Wagner, T., Rech, A., & Scheich, H. (1999). Bilateral ablation of auditory cortex in Mongolian gerbil affects discrimination of frequency modulated tones but not of pure tones. Learning & Memory, 6(4), 347–362. Retrieved from http://learnmem.cshlp.org/content/6/4/347.full.pdf
  • Pardo, P. J., Mäkelä, J. P., & Sams, M. (1999). Hemispheric differences in processing tone frequency and amplitude modulations. Neuroreport, 10(14), 3081–3086.
  • Pardo, P. J., & Sams, M. (1993). Human auditory cortex responses to rising versus falling glides. Neuroscience Letters, 159, 43–45. Elsevier Scientific Publishers Ireland Ltd.
  • Peter, V., McArthur, G., & Thompson, W. F. (2010). Effect of deviance direction and calculation method on duration and frequency mismatch negativity (MMN). Neuroscience Letters, 482(1), 71–75.
  • Peters, M. (1989). The relationship between variability of intertap intervals and interval duration. Psychological Research, 51, 38–42.
  • Pisanski, K., Cartei, V., McGettigan, C., Raine, J., & Reby, D. (2016). Review – Voice modulation: A window into the origins of human vocal control? Trends in Cognitive Sciences, 20, 304–318.
  • Plack, C. J., & Carlyon, R. P. (1995). Loudness perception and intensity coding. In B. C. Moore (Ed.), Hearing (pp. 123–160). Academic Press. doi:10.1016/b978-012505626-7/50006-6
  • Repp, B. (2005). Sensorimotor synchronization: A review of the tapping literature. Psychonomic Bulletin and Review, 12(6), 969–992. [ See p.3, top right, for 1:1 tapping rate limits].
  • Ruch, H., Zürcher, Y., & Burkart, J. M. (2018). The function and mechanism of vocal accommodation in humans and other primates. Biological Reviews, 93(2), 996–1013.
  • Ruusuvirta, T. T., & Astikainen, P. (2012). Mismatch negativity of higher amplitude for melodic ascendance than descendance. Neuroreport, 23(4), 220–223.
  • Ryan, M. J. (1980, July 25). Female mate choice in a neotropical frog. Science, New Series, 209(4455), 523–555.
  • Saarinen, J., Paavilainen, P., Schröger, E., Tervaniemi, M., & Näätänen, R. (1992). Representation of abstract attributes of auditory stimuli in the human brain. NeuroReport, 3(12), 1149–1151.
  • Saenz, M., & Langers, D. R. (2014). Tonotopic mapping of human auditory cortex. Hearing Research, 307, 42–52.
  • Shiga, T., Althen, H., Cornella, M., Zarnowiec, K., Yabe, H., & Escera, C. (2015). Deviance-related responses along the auditory hierarchy: Combined FFR, MLR and MMN evidence. PloS One, 10(9), e0136794.
  • Slugocki, C., Bosnyak, D., & Trainor, L. J. (2017). Simultaneously-evoked auditory potentials (SEAP): A new method for concurrent measurement of cortical and subcortical auditory-evoked activity. Hearing Research, 345, 30–42.
  • Spehar, B., & Kolesarić, V. (2010). The effects of stimulus context on components of simple reaction time. Review of Psychology, 17(1), 59–67. Retrieved from https://hrcak.srce.hr/70662
  • Stevens, S. S. (1957). On the psychophysical law. Psychological Review, 64(3), 153–181.
  • Suzuki, Y., Mellert, V., Richter, U., Møller, H., Nielsen, L., Hellman, R., … Takeshima, H. (2003). Precise and full-range determination of two-dimensional equal loudness contours. Japan: Tohoku University. Retrieved from http://www.mp3-tech.org/programmer/docs/IS-01Y-E.pdf
  • Väljamäe, A. (2009). Auditorily-induced illusory self-motion: A review. Brain Research Reviews, 61(2), 240–255.
  • Van Belle, G. (2011). Sample size. In Statistical rules of thumb (Vol. 699). John Wiley & Sons. Retrieved from https://www.stat.washington.edu/NRCSE/research/struts/chapter2.pdf
  • Verschuure, J., & Van Meeteren, A. A. (1975). The effect of intensity on pitch. Acta Acustica United with Acustica, 32(1), 33–44.
  • Wang, W. J., Tan, C. T., & Martin, B. A. (2013, June). Auditory evoked responses to a frequency glide following a static pure tone. Proceedings of Meetings on Acoustics ICA2013, 19(1), 050122. ASA.
  • Zendel, R., Ross, B., & Fujioka, T. (2011). The effects of stimulus rate and tapping rate on tapping performance. Music Perception, 29(1), 65–78. University of California Press.