55
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Cardiac Dynamics in Auditory-Motor Synchronization: Roles of Short-Term Training and Rhythm Complexity

ORCID Icon & ORCID Icon
Pages 86-109 | Received 29 Aug 2023, Accepted 03 Apr 2024, Published online: 03 May 2024

References

  • Bernardi, L., Porta, C., & Sleight, P. (2006). Cardiovascular, cerebrovascular, and respiratory changes induced by different types of music in musicians and non-musicians: The importance of silence. Heart, 92(4), 445–452. https://doi.org/10.1136/hrt.2005.064600
  • Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., Nagaraja, H. N., Porges, S. W., Saul, J. P., Stone, P. H., & Van der Molen, M. W. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34(6), 623–648. https://doi.org/10.1111/j.1469-8986.1997.tb02140.x
  • Camm, A. J., Malik, M., Bigger, J. T., Breithardt, G., Cerutti, S., Cohen, R. J., Coumel, R., Fallen, E. L., Kenndy, H. L., Kleiger, R. E., Lombardi, F., Malliani, A., Moss, A. J., Rottman, J. N., Schmidt, G., Schwartz, P. J., & Singer, D. H. (1996). Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task force of the European society of cardiology and the North American society of pacing and electrophysiology. Circulation, 93(5), 1043–1065. https://doi.org/10.1161/01.CIR.93.5.1043
  • Carello, C., & Moreno, M. (2005). Why nonlinear methods. In M. A. Riley & G. C. Van Orden (Eds.), Tutorials in contemporary nonlinear methods for the behavioral sciences (pp. 1–25). http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp.
  • Chanwimalueang, T., Aufegger, L., Adjei, T., Wasley, D., Cruder, C., Mandic, D. P., Williamon, A., & Jan, Y.-K. (2017). Stage call: Cardiovascular reactivity to audition stress in musicians. PLOS ONE, 12(4), e0176023. https://doi.org/10.1371/journal.pone.0176023
  • Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Moving on time: Brain network for auditory–motor synchronization is modulated by rhythm complexity and musical training. Journal of cognitive neuroscience, 20(2), 226–239. https://doi.org/10.1162/jocn.2008.20018
  • Chen, J. L., Rae, C., & Watkins, K. E. (2012). Learning to play a melody: An fMRI study examining the formation of auditory-motor associations. Neuroimage: Reports, 59(2), 1200–1208. https://doi.org/10.1016/j.neuroimage.2011.08.012
  • Coles, M. G. H., & Duncan-Johnson, C. C. (1975). Cardiac activity and information processing: The effects of stimulus significance, and detection and response requirements. Journal of Experimental Psychology Human Perception and Performance, 1(4), 418–428. https://doi.org/10.1037//0096-1523.1.4.418
  • Collier, G. L., & Wright, C. E. (1995). Temporal rescaling of simple and complex ratios in rhythmic tapping. Journal of Experimental Psychology Human Perception and Performance, 21(3), 602–627. https://doi.org/10.1037//0096-1523.21.3.602
  • De Gregorio, C., Valente, D., Raimondi, T., Torti, V., Miaretsoa, L., Friard, O., Giacoma, C., Ravignani, A., & Gamba, M. (2021). Categorical rhythms in a singing primate. Current Biology, 31(20), R1379–R1380. https://doi.org/10.1016/j.cub.2021.09.032
  • Demos, A. P., Layeghi, H., Wanderley, M. M., & Palmer, C. (2019). Staying together: A bidirectional delay-coupled approach to joint action. Cognitive science, 43. https://doi.org/10.1111/cogs.12766
  • Deutsch, D. (1983). The generation of two isochronous sequences in parallel. Perception & Psychophysics, 34(4), 331–337. https://doi.org/10.3758/BF03203045
  • Dosseville, F., Moussay, S., Larue, J., Gauthier, A., & Davenne, D. (2002). Physical exercise and time of day: Influences on spontaneous motor tempo. Perceptual and motor skills, 95(3), 965–972.
  • Dotov, D., & Trainor, L. J. (2021). Cross-frequency coupling explains the preference for simple ratios in rhythmic behaviour and the relative stability across non-synchronous patterns. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1835). https://doi.org/10.1098/rstb.2020.0333
  • Drake, C., & Palmer, C. (2000). Skill acquisition in music performance: Relations between planning and temporal control. Cognition, 74(1), 1–32. https://doi.org/10.1016/S0010-0277(99)00061-X
  • Egermann, H., Fernando, N., Chuen, L., & McAdams, S. (2015). Music induces universal emotion-related psychophysiological responses: Comparing Canadian listeners to Congolese pygmies. Frontiers in Psychology, 5, 5. https://doi.org/10.3389/fpsyg.2014.01341
  • Essens, P. J., & Povel, D. J. (1985). Metrical and nonmetrical representations of temporal patterns. Perception & Psychophysics, 37(1), 1–7. https://doi.org/10.3758/BF03207132
  • Fairclough, S. H., Venables, L., & Tattersall, A. (2005). The influence of task demand and learning on the psychophysiological response. International Journal of Psychophysiology, 56(2), 171–184. https://doi.org/10.1016/j.ijpsycho.2004.11.003
  • Finney, S. A. (2001). FTAP: A Linux-based program for tapping and music experiments. Behavior Research Methods Instruments & Computers, 33(1), 65–72.
  • Fraisse, P. (1982). Rhythm and tempo. In D. Deutsch (Ed.), The psychology of music (pp. 149–180). Academic Press, Inc.
  • Gomez, P., & Danuser, B. (2007). Relationships between musical structure and psychophysiological measures of emotion. Emotion, 7(2), 377–387. https://doi.org/10.1037/1528-3542.7.2.377
  • Hessler, E. E., & Amazeen, P. G. (2014). Learning and transfer in motor-respiratory coordination. Human Movement Science, 33, 321–342. https://doi.org/10.1016/j.humov.2013.10.005
  • Iwanaga, M., Ikeda, M., & Iwaki, T. (1996). The effects of repetitive exposure to music on subjective and physiological responses. Journal of Music Therapy, 33(3), 219–230. https://doi.org/10.1093/jmt/33.3.219
  • Jacoby, N., & McDermott, J. H. (2017). Integer ratio priors on musical rhythm revealed cross-culturally by iterated reproduction. Current Biology, 27(3), 359–370. https://doi.org/10.1016/j.cub.2016.12.031
  • Javorka, M., Trunkvalterova, Z., Tonhajzerova, I., Lazarova, Z., Javorkova, J., & Javorka, K. (2008). Recurrences in heart rate dynamics are changed in patients with diabetes mellitus. Clinical Physiology and Functional Imaging, 28(5), 326–331. https://doi.org/10.1111/j.1475-097X.2008.00813.x
  • Javorka, M., Turianikova, Z., Tonhajzerova, I., Javorka, K., & Baumert, M. (2009). The effect of orthostasis on recurrence quantification analysis of heart rate and blood pressure dynamics. Physiological Measurement, 30(1), 29–41. https://doi.org/10.1088/0967-3334/30/1/003
  • Kelso, J. S. (1995). Dynamic patterns: The self-organization of brain and behavior. MIT Press.
  • Kim, J. C., & Large, E. W. (2019). Mode locking in periodically forced gradient frequency neural networks. Physical Review E, 99(2). https://doi.org/10.1103/PhysRevE.99.022421
  • Koelsch, S., & Jancke, L. (2015). Music and the heart. European Heart Journal, 36(44), 3043–3049. https://doi.org/10.1093/eurheartj/ehv430
  • Konvalinka, I., Xygalatas, D., Bulbulia, J., Schjodt, U., Jegindo, E. M., Wallot, S., Van Orden, G., & Roepstorff, A. (2011). Synchronized arousal between performers and related spectators in a fire-walking ritual. Proceedings of the National Academy of Sciences, 108(20), 8514–8519. https://doi.org/10.1073/pnas.1016955108
  • Krabs, R. U., Enk, R., Teich, N., Koelsch, S., & Jaencke, L. (2015). Autonomic effects of music in health and Crohn’s disease: The impact of isochronicity, emotional valence, and tempo. PLOS ONE, 10(5), e0126224. https://doi.org/10.1371/journal.pone.0126224
  • Krause, V., Pollok, B., & Schnitzler, A. (2010). Perception in action: The impact of sensory information on sensorimotor synchronization in musicians and non-musicians. Acta Psychologica, 133(1), 28–37. https://doi.org/10.1016/j.actpsy.2009.08.003
  • Large, E. W., Herrera, J. A., & Velasco, M. J. (2015). Neural networks for beat perception in musical rhythm. Frontiers in Systems Neuroscience, 9, 9. https://doi.org/10.3389/fnsys.2015.00159
  • Large, E. W., & Snyder, J. S. (2009). Pulse and meter as neural resonance. Annals of the New York Academy of Sciences, 1169(1), 46–57. https://doi.org/10.1111/j.1749-6632.2009.04550.x
  • Lawrence, C. A., & Bary, R. J. (2010). Cognitive processing effects on auditory event-related potentials and the evoked cardiac response. International Journal of Psychophysiology, 78(2), 100–106. https://doi.org/10.1016/j.ijpsycho.2010.06.027
  • Madison, G., Karampela, O., Ullen, F., & Holm, L. (2013). Effects of practice on variability in an isochronous serial interval production task: Asymptotical levels of tapping variability after training are similar to those of musicians. Acta Psychologica, 143(1), 119–128. https://doi.org/10.1016/j.actpsy.2013.02.010
  • Manuca, R., & Savit, R. (1996). Stationarity and nonstationarity in time series analysis. Physica D Nonlinear Phenomena, 99(2–3), 134–161. https://doi.org/10.1016/S0167-2789(96)00139-X
  • Marwan, N. (2023, January 27). Cross recurrence plot toolbox for Matlab, Ver. 5.24 (R34). https://tocsy.pik-potsdam.de/CRPtoolbox/
  • Marwan, N., Carmenromano, M., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports, 438(5–6), 237–329. https://doi.org/10.1016/j.physrep.2006.11.001
  • Marwan N., and Webber C. L. (2015 Mathematical and computational foundations of recurrence quantifications. In C. L. Webber & N. Marwan (Eds.), Recurrence quantification analysis: Theory and best practice. Springer International Publishing
  • Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., & Kurths, J. (2002). Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Physical Review E, 66(2). https://doi.org/10.1103/PhysRevE.66.026702
  • Mathias, B., Zamm, A., Gianferrara, P. G., Ross, B., & Palmer, C. (2020). Rhythm complexity modulates behavioral and neural dynamics during auditory-motor synchronization. Journal of cognitive neuroscience, 32(10), 1864–1880. https://doi.org/10.1162/jocn_a_01601
  • Mütze, H., Kopiez, R., & Wolf, A. (2020). The effect of a rhythmic pulse on the heart rate: Little evidence for rhythmical ‘entrainment’ and ‘synchronization’. Musicae Scientiae, 24(3), 377–400. https://doi.org/10.1177/1029864918817805
  • Nagasaki, H. (1990). Rhythm and variability of timing in periodic tapping. Human Movement Science, 9(2), 177–194. https://doi.org/10.1016/0167-9457(90)90026-A
  • Nakahara, H., Furuya, S., Francis, P. R., & Kinoshita, H. (2010). Psycho-physiological responses to expressive piano performance. International Journal of Psychophysiology, 75(3), 268–276. https://doi.org/10.1016/j.ijpsycho.2009.12.008
  • Nakahara, H., Furuya, S., Masuko, T., Francis, P. R., & Kinoshita, H. (2011). Performing music can induce greater modulation of emotion-related psychophysiological responses than listening to music. International Journal of Psychophysiology, 81(3), 152–158. https://doi.org/10.1016/j.ijpsycho.2011.06.003
  • Naschitz, J. E., Itzhak, R., Shaviv, N., Khorshidi, I., Sundick, S., Isseroff, H., Fields, M., Priselac, R. M., & Sabo, E. (2003). Assessment of cardiovascular reactivity by fractal and recurrence quantification analysis of heart rate and pulse transit time. Journal of Human Hypertension, 17(2), 111–118. https://doi.org/10.1038/sj.jhh.1001517
  • Nayak, S. K., Bit, A., Dey, A., Mohapatra, B., & Pal, K. (2018). A review on the nonlinear dynamical system analysis of electrocardiogram signal. Journal of Healthcare Engineering, 2018, 1–19. https://doi.org/10.1155/2018/6920420
  • Nomura, S., Yoshimura, K., & Kurosawa, Y. (2013). A pilot study on the effect of music-heart beat feedback system on human heart activity. Journal of Medical Informatics & Technologies, 22, 251–256.
  • Ooishi, Y., Mukai, H., Watanabe, K., Kawato, S., Kashino, M., & Nater, U. M. (2017). Increase in salivary oxytocin and decrease in salivary cortisol after listening to relaxing slow-tempo and exciting fast-tempo music. PLOS ONE, 12(12), e0189075. https://doi.org/10.1371/journal.pone.0189075
  • Park, H. D., Correia, S., Ducorps, A., & Tallon-Baudry, C. (2014). Spontaneous fluctuations in neural responses to heartbeats predict visual detection. Nature neuroscience, 17(4), 612–618. https://doi.org/10.1038/nn.3671
  • Pfordresher, P. Q., & Chow, K. (2019). A cost of musical training? Sensorimotor flexibility in musical sequence learning. Psychonomic Bulletin & Review, 26(3), 967–973. https://doi.org/10.3758/s13423-018-1535-5
  • Picard, G., Tan, C. O., Zafonte, R., & Taylor, J. A. (2009). Incongruous changes in heart period and heart rate variability with vagotonic atropine: Implications for rehabilitation medicine. PM&R, 1(9), 820–826. https://doi.org/10.1016/j.pmrj.2009.07.017
  • Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization: A universal concept in nonlinear sciences. Cambridge University Press.
  • Polak, R., Jacoby, N., Fischinger, T., Goldberg, D., Holzapfel, A., & London, J. (2018). Rhythmic prototypes across cultures: A comparative study of tapping synchronization. Music Perception: An Interdisciplinary Journal, 36(1), 1–23. https://doi.org/10.1525/mp.2018.36.1.1
  • Repp, B. H., & Doggett, R. (2007). Tapping to a very slow beat: A comparison of musicians and non-musicians. Music Perception, 24(4), 367–376. https://doi.org/10.1525/mp.2007.24.4.367
  • Roeske, T., Larrouy-Maestri, P., Sakamoto, Y., & Poeppel, D. (2020). Listening to birdsong reveals basic features of rate perception and aesthetic judgements. Proceedings of the Royal Society B: Biological Sciences, 287(1923), 20193010. https://doi.org/10.1098/rspb.2019.3010
  • Sakai, K., Hikosaka, O., Miyauchi, S., Takino, R., Tamada, T., Iwata, N. K., & Nielsen, M. (1999). Neural representation of a rhythm depends on its interval ratio. Journal of Neuroscience, 19(22), 10074–10081. https://doi.org/10.1523/JNEUROSCI.19-22-10074.1999
  • Savage, P. E., Brown, S., Sakai, E., & Currie, T. E. (2015). Statistical universals reveal the structures and functions of human music. Proceedings of the National Academy of Sciences, 112(29), 8987–8992. https://doi.org/10.1073/pnas.1414495112
  • Scheurich, R., Pfordresher, P. Q., & Palmer, C. (2020). Musical training enhances temporal adaptation of auditory-motor synchronization. Experimental Brain Research, 238(1), 81–92. https://doi.org/10.1007/s00221-019-05692-y
  • Schlenker, J., Socha, V., Riedlbauchova, L., Nedělka, T., Schlenker, A., Potočková, V., Malá, Š., & Kutilek, P. (2016). Recurrence plot of heart rate variability signal in patients with vasovagal syncopes. Biomedical signal processing and control, 25, 1–11. https://doi.org/10.1016/j.bspc.2015.10.007
  • Sebastiani, L., Mastorci, F., Magrini, M., Paradisi, P., & Pingitore, A. (2022). Synchronization between music dynamics and heart rhythm is modulated by the musician’s emotional involvement: A single case study. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.908488
  • Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5. https://doi.org/10.3389/fpubh.2017.00258
  • Shaffer, F., McCraty, R., & Zerr, C. L. (2014). A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Frontiers in Psychology, 5, 5. https://doi.org/10.3389/fpsyg.2014.01040
  • Slade, K., Kramer, S. E., Fairclough, S., & Richter, M. (2021). Effortful listening: Sympathetic activity varies as a function of listening demand but parasympathetic activity does not. Hearing Research, 410, 108348. https://doi.org/10.1016/j.heares.2021.108348
  • Snyder, J. S., Hannon, E. E., Large, E. W., & Christiansen, M. H. (2006). Synchronization and continuation tapping to complex meters. Music Perception, 24(2), 135–146. https://doi.org/10.1525/mp.2006.24.2.135
  • Stepp, N., & Turvey, M. T. (2010). On strong anticipation. Cognitive Systems Research, 11(2), 148–164. https://doi.org/10.1016/j.cogsys.2009.03.003
  • Tajima, M., & Choshi, K. (2000). Effects of learning and movement frequency on polyrhythmic tapping performance. Perceptual and Motor Skills, 90(2), 675–690. https://doi.org/10.2466/pms.2000.90.2.675
  • Takens, F. (1981). Detecting strange attractors in turbulence. In D. Rand & L.-S. Young (Eds.), Dynamical systems and turbulence (Lecture notes in mathematics) (pp. 366–381). Springer. https://doi.org/10.1007/BFb0091924.
  • Tarvainen, M., Lipponen, J., Niskanen, J.-P., & Ranto-Aho, P. O. (2021). Kubios HRV software user’s guide. Kubios Oy. https://www.kubios.com/publications/
  • Tillmann, B., Stevens, C., & Keller, P. E. (2011). Learning of timing patterns and the development of temporal expectations. Psychological Research, 75(3), 243–258. https://doi.org/10.1007/s00426-010-0302-7
  • Treffner, P. J., & Turvey, M. T. (1993). Resonance constraints on rhythmic movement. Journal of Experimental Psychology Human Perception and Performance, 19(6), 1221–1237. https://doi.org/10.1037//0096-1523.19.6.1221
  • Van Dyck, E., Six, J., Soyer, E., Denys, M., Bardijn, I., & Leman, M. (2017). Adopting a music-to-heart rate alignment strategy to measure the impact of music and its tempo on human heart rate. Musicae Scientiae, 21(4), 390–404. https://doi.org/10.1177/1029864917700706
  • Wallot, S., Fusaroli, R., Tylen, K., & Jegindo, E. M. (2013). Using complexity metrics with R-R intervals and BPM heart rate measures. Frontiers in Physiology, 4, 4. https://doi.org/10.3389/fphys.2013.00211
  • Watanabe, K., Ooishi, Y., & Kashino, M. (2017). Heart rate responses induced by acoustic tempo and its interaction with basal heart rate. Scientific Reports, 7(1). https://doi.org/10.1038/srep43856
  • Watanabe, K., Ooishi, Y., Kashino, M., & Snyder, J. (2015). Sympathetic tone induced by high acoustic tempo requires fast respiration. PLOS ONE, 10(8), e0135589. https://doi.org/10.1371/journal.pone.0135589
  • Webber, C. L., & Zbilut, J. P. (2005). Recurrence quantification analysis of nonlinear dynamical systems. In M. A. Riley & G. C. Van Orden (Eds.), Tutorials in contemporary nonlinear methods for the behavioral sciences (pp. 26–94). http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp/.
  • Williamon, A., Aufegger, L., Wasley, D., Looney, D., & Mandic, D. P. (2013). Complexity of physiological responses decreases in high-stress musical performance. Journal of the Royal Society Interface, 10(89), 20130719. https://doi.org/10.1098/rsif.2013.0719
  • Wright, S. E., Bégel, V., & Palmer, C. (2022). Physiological influences of music in perception and action. In J. T. Enns (Ed.), Elements in Perception (pp. 1–73). Cambridge University Press.
  • Wright, S. E., & Palmer, C. (2020). Physiological and behavioral factors in musicians’ performance tempo. Frontiers in Human Neuroscience, 14, 14. https://doi.org/10.3389/fnhum.2020.00311
  • Wright, S. E., & Palmer, C. (2023). Auditory rhythm complexity affects cardiac dynamics in perception and synchronization. PLoS ONE, 18(11), e0293882. https://doi.org/10.1371/journal.pone.0293882
  • Zbilut, J. P., Koebbe, M., Loeb, H., & Mayer-Kress, G. (1990). Use of recurrence plots in the analysis of heart beat intervals. Proceedings IEEE Computers in Cardiology, Chicago, IL, USA (pp. 263–266).
  • Zimatore, G., Gallotta, M. C., Innocenti, L., Bonavolontà, V., Ciasca, G., De Spirito, M., Guidetti, L., & Baldari, C. (2020). Recurrence quantification analysis of heart rate variability during continuous incremental exercise test in obese subjects. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(3). https://doi.org/10.1063/1.5140455

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.