721
Views
0
CrossRef citations to date
0
Altmetric
Materials data analysis and utilization

Cylindrically symmetric rotating crystals observed in crystallization process of InSiO film

, ORCID Icon, , , , , , , , , ORCID Icon, , , , & show all
Article: 2230870 | Received 22 Oct 2022, Accepted 25 Jun 2023, Published online: 13 Jul 2023

References

  • McMullan D. Scanning electron microscopy 1928–1965. Scanning. 1995;17:175–14. doi: 10.1002/sca.4950170309
  • Ding ZJ, Shimizu R. A monte carlo modeling of electron interaction with solids including cascade secondary electron production. Scanning. 1996;18:92–113. doi: 10.1002/sca.1996.4950180204
  • Zou YB, Mao SF, Da B, et al. Surface sensitivity of secondary electrons emitted from amorphous solids: calculation of mean escape depth by a monte carlo method. J Appl Phys. 2016;120(23):235102. doi: 10.1063/1.4972196
  • Adams WIL, Plump CH. Half-tone photo-engraving. The photographic times. Waterbury: Scoville Manufacturing Co.; 1894.
  • Zworykin VA, Hillier J, Snyder RL. A scanning electron microscope. ASTM Bull. 1942;117:15–23.
  • Smith KC, Oatley CW. The scanning electron microscope and its fields of application. Br J Appl Phys. 1955;6(11):391–399. doi: 10.1088/0508-3443/6/11/304
  • Hejna J. Detection of topographic contrast in the scanning electron microscope at low and medium resolution by different detectors and detector systems. Scanning Microsc. 1994;8:143–164.
  • Da B, Mao SF, Zhang GH, et al. Monte carlo modeling of surface excitation in reflection electron energy loss spectroscopy spectrum for rough surfaces. J Appl Phys. 2012;112(3):034310. doi: 10.1063/1.4739491
  • Da B, Mao SF, Zhang GH, et al. Influence of surface roughness on elastically backscattered electrons. Surf Interface Anal. 2012;44(6):647–652. doi: 10.1002/sia.4807
  • Da B, Salma K, Ji H, et al. Surface excitation parameter for rough surfaces. Appl Surf Sci. 2015;356:142–149. doi: 10.1016/j.apsusc.2015.08.056
  • Lloyd GE. Atomic number and crystallographic contrast images with the SEM: a review of backscattered electron techniques. Mineral Mag. 1987;51(359):3–19. doi: 10.1180/minmag.1987.051.359.02
  • Allen LJ, D’Alfonso AJ, Findlay SD, et al. Elemental mapping in scanning transmission electron microscopy. J Phys Conf Ser. 2010;241:012061. doi: 10.1088/1742-6596/241/1/012061
  • Da B, Mao SF, Ding ZJ. Validity of the semi-classical approach for calculation of the surface excitation parameter. J Phys Condens Matter. 2011;23(39):395003. doi: 10.1088/0953-8984/23/39/395003
  • Da B, Sun Y, Mao SF, et al. Systematic calculation of the surface excitation parameters for 22 materials. Surf Interface Anal. 2013;45(3):773–780. doi: 10.1002/sia.5164
  • Shibata N, Findlay SD, Sasaki H, et al. Imaging of built-in electric field at a pn junction by scanning transmission electron microscopy. Sci Rep. 2015;5:1–8. doi: 10.1038/srep10040
  • Hachtel JA, Idrobo JC, Chi M. Sub-Ångstrom electric field measurements on a universal detector in a scanning transmission electron microscope. Adv Struct Chem Imaging. 2018;4(1):1–10. doi: 10.1186/s40679-018-0059-4
  • Jones GA. Magnetic contrast in the scanning electron microscope: an appraisal of techniques and their applications. J Magn Magn Mater. 1978;8(4):263–285. doi: 10.1016/0304-8853(78)90096-3
  • Kotera M, Katoh M, Suga HSH. Observation technique of surface magnetic structure using type-I magnetic contrast in the scanning electron microscope. Jpn J Appl Phys. 1995;34(12S):6903. doi: 10.1143/JJAP.34.6903
  • Li C, Da B, Ding ZJ. Monte carlo study on the surface potential measurement using the peak-shift method. Appl Surf Sci. 2020;504:144138. doi: 10.1016/j.apsusc.2019.144138
  • Li C, Tőkési K, Repetto L, et al. A monte carlo calculation of the secondary electron emission in the backward direction from a SiO2 macro-capillary. Eur Phys J D. 2020;74(2):37. doi: 10.1140/epjd/e2020-100268-6
  • Ding ZJ, Li C, Da B, et al. Charging effect induced by electron beam irradiation: a review. Sci Technol Adv Mater. 2021;22(1):932–971. doi: 10.1080/14686996.2021.1976597
  • Da B, Liu J, Yamamoto M, et al. Virtual substrate method for nanomaterials characterization. Nature Commun. 2017;8(1):1–9. doi: 10.1038/ncomms15629
  • Da B, Liu J, Harada Y, et al. Observation of plasmon energy gain for emitted secondary electron in vacuo. J Phy Chem Lett. 2019;10:5770–5775. doi: 10.1021/acs.jpclett.9b02135
  • Da B, Liu X, Gong JM, et al. Emitted secondary electrons: in vacuo plasmon energy gain observation using a three-point probe method. Appl Surf Sci. 2022;596:153616. doi: 10.1016/j.apsusc.2022.153616
  • Howie A, Whelan MJ. Diffraction contrast of electron microscope images of crystal lattice defects-II. The development of a dynamical theory. Proc R Soc A Math Phys Eng Sci. 1961;263:217–237.
  • Crimp MA. Scanning electron microscopy imaging of dislocations in bulk materials, using electron channeling contrast. Microsc Res Tech. 2006;69(5):374–381. doi: 10.1002/jemt.20293
  • Gutierrez-Urrutia I, Zaefferer S, Raabe D. Electron channeling contrast imaging of twins and dislocations in twinning-induced plasticity steels under controlled diffraction conditions in a scanning electron microscope. Scr Mater. 2009;61(7):737–740. doi: 10.1016/j.scriptamat.2009.06.018
  • Ruan Z, Zeng RG, Ming Y, et al. Quantum-trajectory monte carlo method for study of electron–crystal interaction in STEM. Phys Chem Chem Phys. 2015;17(27):17628–17637. doi: 10.1039/C5CP02300A
  • Kriaa H, Guitton A, Maloufi N. Fundamental and experimental aspects of diffraction for characterizing dislocations by electron channeling contrast imaging in scanning electron microscope. Sci Rep. 2017;7(1):9742. doi: 10.1038/s41598-017-09756-3
  • Hata S, Furukawa H, Gondo T, et al. Electron tomography imaging methods with diffraction contrast for materials research. Microsc. 2020;69:141–155. doi: 10.1093/jmicro/dfaa002
  • Cheng L, Yang L, Zeng R, et al. Theoretical perspective of atomic resolution secondary electron imaging. J Phys Chem C. 2021;125(19):10458–10472. doi: 10.1021/acs.jpcc.1c01382
  • Schwartz AJ, Kumar M, Adams BL, et al. Electron backscatter diffraction in materials science. New York: Springer US; 2009. doi: 10.1007/978-0-387-88136-2
  • Ding X, Da B, Gong JB, et al. Quantification of surface roughness effect on elastically backscattered electrons. Surf Interface Anal. 2014;46(7):489–496. doi: 10.1002/sia.5554
  • Hussain A, Yang L, Mao SF, et al. Determination of electron backscattering coefficient of beryllium by a high-precision monte carlo simulation. Nucl Mater Energy. 2021;26:100862. doi: 10.1016/j.nme.2020.100862
  • Yang L, Hussain A, Mao SF, et al. Electron backscattering coefficients of molybdenum and tungsten based on the monte carlo simulations. J Nucl Mater. 2021;553:153042. doi: 10.1016/j.jnucmat.2021.153042
  • Bragg WL. The diffraction of short electromagnetic waves by a crystal. Proc Camb Philos Soc. 1913;17:43–57.
  • Cheng L, Ming Y, Ding ZJ. Bohmian trajectory-bloch wave approach to dynamical simulation of electron diffraction in crystal. New J Phys. 2018;20(11):113004. doi: 10.1088/1367-2630/aae8f1
  • Hirsch PB, Howie A, Nicholson RB, et al. Electron microscopy of thin crystals. London: Butterworths; 1977.
  • Kikuchi S. Electron diffraction in single crystals. Jpn J Appl Phys. 1928;5:83–96.
  • Coates DG. Kikuchi-like reflection patterns obtained with the scanning electron microscope. Philos Mag. 1967;16(144):1179–1184. doi: 10.1080/14786436708229968
  • Joy DC, Newbury DE, Davidson DL. Electron channeling patterns in the scanning electron microscope. J Appl Phys. 1982;53(8):R81–R122. doi: 10.1063/1.331668
  • Venables JA, Harland CJ. Electron backscattering patterns—A new technique for obtaining crystallographic information in the scanning electron microscope. Philos Mag. 1973;27:1193–1200. doi: 10.1080/14786437308225827
  • Langer E, Däbritz S. Investigation of HOLZ rings in EBSD patterns. Phys Status Solidi C. 2007;4(6):1867–1872. doi: 10.1002/pssc.200675229
  • Mitoma N, Da B, Yoshikawa H, et al. Phase transitions from semiconductive amorphous to conductive polycrystalline in indium silicon oxide thin films. Appl Phys Lett. 2016;109(22):221903. doi: 10.1063/1.4968810
  • Aikawa S, Nabatame T, Tsukagoshi K. Effects of dopants in InOx-based amorphous oxide semiconductors for thin-film transistor applications. Appl Phys Lett. 2013;103(17):172105. doi: 10.1063/1.4822175
  • Mitoma N, Aikawa S, Gao X, et al. Stable amorphous In2O3-based thin-film transistors by incorporating SiO2 to suppress oxygen vacancies. Appl Phys Lett. 2014;104(10):102103. doi: 10.1063/1.4868303
  • Venables JA, Spiller GDT. Nucleation and growth of thin films. In: Binh VT, editor. Surface mobilities on solid materials. MA: Springer US; 1983. p. 341–404. doi: 10.1007/978-1-4684-4343-1_16
  • Evans JW, Thiel PA, Bartelt MC. Morphological evolution during epitaxial thin film growth: formation of 2D islands and 3D mounds. Surf Sci Rep. 2006;61(1–2):1–128. doi: 10.1016/j.surfrep.2005.08.004
  • Gonzalez D, Kelleher JF, da Fonseca JQ, et al. Macro and intergranular stress responses of austenitic stainless steel to 90 strain path changes. Mater Sci Eng A. 2012;546:263–271. doi: 10.1016/j.msea.2012.03.064
  • Shigeto K, Kizu T, Tsukagoshi K, et al. Radial interference contrast in in-situ SEM observation of metal oxide semiconductor film crystallization. Microsc Microanal. 2017;23(S1):1512–1513. doi: 10.1017/S1431927617008224
  • Zhou S, Antoja-Lleonart J, Nukala P, et al. Crystallization of GeO2 thin films into α-quartz: from spherulites to single crystals. Acta Mater. 2021;215:117069. doi: 10.1016/j.actamat.2021.117069
  • Tanuma S, Powell CJ, Penn DR. Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50–2000 eV range. Surf Interface Anal. 1994;21:165–176. doi: 10.1002/sia.740210302
  • Liu X, Hou Z, Lu D, et al. Unveiling the principle descriptor for predicting the electron inelastic mean free path based on a machine learning framework. Sci Technol Adv Mater. 2019;20(1):1090–1102. doi: 10.1080/14686996.2019.1689785
  • Liu X, Yang LH, Hou Z, et al. Machine learning approach for the prediction of electron inelastic mean free paths. Phys Rev Mater. 2021;5(3):033802. doi: 10.1103/PhysRevMaterials.5.033802
  • Mehnaz YL, Da B, Ding ZJ. Ensemble machine learning methods: predicting electron stopping powers from a small experimental database. Phys Chem Chem Phys. 2021;23:6062–6074. doi: 10.1039/D0CP06521H
  • Da B, Mao SF, Sun Y. A new analytical method in surface electron spectroscopy: reverse monte carlo method. E-J Surf Sci Nanotechnol. 2012;10:441–446. doi: 10.1380/ejssnt.2012.441
  • Da B, Sun Y, Mao SF, et al. A reverse monte carlo method for deriving optical constants of solids from reflection electron energy-loss spectroscopy spectra. J Appl Phys. 2013;113(21):214303. doi: 10.1063/1.4809544
  • Xu H, Da B, Tóth J, et al. Absolute determination of optical constants by reflection electron energy loss spectroscopy. Phys Rev B. 2017;95(19):195417. doi: 10.1103/PhysRevB.95.195417
  • Xu H, Yang LH, Da B, et al. Study of optical and electronic properties of nickel from reflection electron energy loss spectra. Nucl Inst Meth Phys Res B. 2017;406:475–481. doi: 10.1016/j.nimb.2017.04.060
  • Xu H, Yang LH, Tóth J, et al. Absolute determination of optical constants of three transition metals using reflection electron energy loss spectroscopy. J Appl Phys. 2018;123(4):043306. doi: 10.1063/1.5012013
  • Yang LH, Tőkési K, Tóth J, et al. Optical properties of silicon and germanium determined by high-precision analysis of reflection electron energy loss spectroscopy spectra. Phys Rev B. 2019;100(24):245209. doi: 10.1103/PhysRevB.100.245209
  • Yang LH, Gong JM, Sulyok A, et al. Optical properties of amorphous carbon determined by reflection electron energy loss spectroscopy spectra. Phys Chem Chem Phys. 2021;23(44):25335–25346. doi: 10.1039/D1CP02447G
  • Da B, Shinotsuka H, Yoshikawa H, et al. Extended mermin method for calculating the electron inelastic mean free path. Phys Rev Lett. 2014;113(6):063201. doi: 10.1103/PhysRevLett.113.063201
  • Shinotsuka H, Tanuma S, Powell CJ, et al. Calculations of electron inelastic mean free paths. X. Data for 41 elemental solids over the 50 eV to 200 keV range with the relativistic full Penn algorithm. Surf Interface Anal. 2015;47:871–888. ibid, Surf Interface Anal. 2015;47:1132. doi: 10.1002/sia.5789
  • Shinotsuka H, Da B, Tanuma S, et al. Calculations of electron inelastic mean free paths. XI. Data for liquid water for energies from 50 eV to 30 keV. Surf Interface Anal. 2017;49(4):238–252. doi: 10.1002/sia.6123
  • Yang LH, Tőkési K, Da B, et al. Determination of electron inelastic mean free path of three transition metals from reflection electron energy loss spectroscopy spectrum measurement data. Eur Phys J D. 2019;73(2):1–19. doi: 10.1140/epjd/e2018-90551-6
  • Shinotsuka H, Tanuma S, Powell CJ, et al. Calculations of electron inelastic mean free paths. XII. Data for 42 inorganic compounds over the 50 eV to 200 keV range with the full Penn algorithm. Surf Interface Anal. 2019;51(4):427–457. doi: 10.1002/sia.6598
  • Nguyen-Truong HT, Da B, Yang L. Low-energy electron inelastic mean free path for monolayer graphene. Appl Phys Lett. 2020;117(3):033103. doi: 10.1063/5.0016284
  • Peruzzo M, Trioni A, Hassani F, et al. Surpassing the resistance quantum with a geometric superinductor. Phys Rev Appl. 2020;14(4):044055. doi: 10.1103/PhysRevApplied.14.044055
  • Da B, Liu X, Yang LH, et al. Evaluation of dielectric function models for calculation of electron inelastic mean free path. J Appl Phys. 2022;131(17):175301. doi: 10.1063/5.0085984
  • Yang LH, Da B, Yoshikawa H, et al. Low-energy electron inelastic mean free path and elastic mean free path of graphene. Appl Phys Lett. 2021;118(5):053104. doi: 10.1063/5.0029133
  • Lutjes NR, Zhou S, Antoja-Lleonart J, et al. Spherulitic and rotational crystal growth of quartz thin films. Sci Rep. 2021;11(1):1–12. doi: 10.1038/s41598-021-94147-y
  • Kooi BJ, De Hosson JTM. On the crystallization of thin films composed of Sb 3.6 Te with Ge for rewritable data storage. J Appl Phys. 2004;95(9):4714–4721. doi: 10.1063/1.1690112
  • Savytskii D, Jain H, Tamura N, et al. Rotating lattice single crystal architecture on the surface of glass. Sci Rep. 2016;6(1):1–10. doi: 10.1038/srep36449
  • Shtukenberg AG, Punin YO, Gujral A, et al. Growth actuated bending and twisting of single crystals. Angew Chem Int Ed. 2014;53(3):672–699. doi: 10.1002/anie.201301223
  • Kolosov VY, Thölen AR. Transmission electron microscopy studies of the specific structure of crystals formed by phase transition in iron oxide amorphous films. Acta Mater. 2000;48(8):1829–1840. doi: 10.1016/S1359-6454(99)00471-1
  • Shtukenberg AG, Punin YO, Gunn E, et al. Spherulites. Chem Rev. 2012;112(3):1805–1838. doi: 10.1021/cr200297f
  • Shtukenberg A, Freundenthal J, Gunn E, et al. Glass-crystal growth mode for testosterone propionate. Cryst Growth Des. 2011;11(10):4458–4462. doi: 10.1021/cg200640g
  • Cui X, Rohl AL, Shtukenberg A, et al. Twisted aspirin crystals. J Am Chem Soc. 2013;135(9):3395–3398. doi: 10.1021/ja400833r
  • Shtukenberg AG, Punin YO, Gunn E, et al. The third ambient aspirin polymorph. Cryst Growth Des. 2017;17:3562–3566. doi: 10.1021/acs.cgd.7b00673
  • Sun CY, Gránásy L, Stifler CA, et al. Crystal nucleation and growth of spherulites demonstrated by coral skeletons and phase-field simulations. Acta Biomater. 2021;120:277–292. doi: 10.1016/j.actbio.2020.06.027
  • Bolotov IE, Kolosov VY, Kozhyn AV. Electron microscope investigation of crystals based on bend‐contour arrangement II. Bending phenomena of the crystal growth in an amorphous film. Phys Status Solidi A. 1982;72(2):645–654. doi: 10.1002/pssa.2210720226
  • Kolosov VY, Shvamm KL, Gainutdinov RV, et al. Combined TEM-AFM study of “transrotational” spherulites growing in thin amorphous films. Bull Russ Acad Sci Phys. 2007;71(10):1442–1446. doi: 10.3103/S1062873807100280
  • Kolosov VY, Schwamm CL, Gainutdinov RV, et al. Combined AFM-TEM studies of amorphous-crystalline transformation and interface in thin films of Se and Fe2O3. J Phys Conf Ser. 2008;100(8):082037. doi: 10.1088/1742-6596/100/8/082037
  • Bagmut AG, Grigorov SN, Zhuchkov VA, et al. Morphology and conjugation of nanocrystals growing in Cr-O and VO amorphous films during annealing. Russ Phys J. 2007;50:1071–1078. doi: 10.1007/s11182-007-0157-6
  • Kolosov VY, Schwamm CL, Steeds JW. TEM of lattice bending in crystallized areas of anodized Ta-O films. J Phys Conf Ser. 2008;100(8):082038. doi: 10.1088/1742-6596/100/8/082038
  • Kolosov VY, Veretennikov LM, Startseva YB, et al. Electron microscopy study of a chalcogenide-based polycrystalline condensate microstructure: the effect of composition and thickness on internal lattice bending. Semiconductors. 2005;39:955–959. doi: 10.1134/1.2010692
  • Kolosov VY, Kozhin AV, Veretennikov LM, et al. Transrotational crystals growing in amorphous Cu-Te film. EMC. Vol. 2. Berlin: Springer; 2008. p. 343–344.
  • Kolosov VY, Kozhin AV, Veretennikov LM, et al. EMC. Vol. 2. Berlin: Springer; 2008. p. 657–658. doi: 10.2147/opth.s2686