2,074
Views
62
CrossRef citations to date
0
Altmetric
Original Articles

Microbial Biosensors for Environmental Monitoring and Food Analysis

&
Pages 300-329 | Published online: 23 May 2011

References

  • Thevenot , D.R. , Toth , K. , Durst , R.A. and Wilson , G.S. 2001 . Electrochemical biosensors: recommended definition and classification . Biosensors and Bioelectronics , 16 ( 1–2 ) : 121 – 131 .
  • Davis , J. , Vaughan , D.H. and Cardosi , M.F. 1995 . Elements of biosensor construction . Enzyme and Microbial Technology , 17 ( 12 ) : 1030 – 1035 .
  • D'Souza , S.F. 2001 . Microbial biosensors . Biosensors and Bioelectronics , 16 ( 6 ) : 337 – 353 .
  • Zhai , J.H. , Cui , H. and Yang , R. 1997 . DNA based biosensors . Biotechnology Advances , 15 ( 1 ) : 43 – 58 .
  • Karube , I. and Nomura , Y. 2000 . Enzyme sensors for environmental analysis . Journal of Molecular Catalysis B: Enzymatic , 10 ( 1–3 ) : 177 – 181 .
  • Mallat , E. , Barcelo , D. , Barzen , C. , Gauglitz , G. and Abuknesha , R. 2001 . Immunosensors for pesticide determination in natural waters . TrAC: Trends in Analytical Chemistry , 20 ( 3 ) : 124 – 132 .
  • Suri , C.R. , Raje , M. and Varshney , G.C. 2002 . Immunosensors for pesticide analysis: antibody production and sensor development . Critical Reviews in Biotechnology , 22 ( 1 ) : 15 – 32 .
  • Murphy , L. 2006 . Biosensors and bioelectrochemistry . Current Opinion in Chemical Biology , 10 ( 2 ) : 177 – 184 .
  • Ramanathan , S. , Ensor , M. and Daunert , S. 1997 . Bacterial biosensors for monitoring toxic metals . Trends in Biotechnology , 15 ( 12 ) : 500 – 506 .
  • Reshetilov , A.N. 2005 . Microbial, enzymatic, and immune biosensors for ecological monitoring and control of biotechnological processes . Applied Biochemistry and Microbiology , 41 ( 5 ) : 442 – 449 .
  • Lei , Y. , Chen , W. and Mulchandani , A. 2006 . Microbial biosensors . Analytica Chimica Acta , 568 ( 1–2 ) : 200 – 210 .
  • Polyak , B. , Bassis , E. , Novodvorets , A. , Belkin , S. and Marks , R.S. 2001 . Bioluminescent whole cell optical fiber sensor to genotoxicants: system optimization . Sensors and Actuators B , 74 ( 1–3 ) : 18 – 26 .
  • Aller , A.J. and Castro , M.A. 2006 . Live bacterial cells as analytical tools for speciation analysis: hypothetical or practical? . TrAC: Trends in Analytical Chemistry , 25 ( 9 ) : 887 – 898 .
  • Tecon , R. and van der Meer , J.R. 2006 . Information from single-cell bacterial biosensors: what is it good for? . Current Opinion in Biotechnology , 17 ( 1 ) : 4 – 10 .
  • Belkin , S. 2003 . Microbial whole-cell sensing systems of environmental pollutants . Current Opinion in Microbiology , 6 ( 3 ) : 206 – 212 .
  • Arikawa , Y. , Ikebukuro , K. and Karube , I. 1998 . “ Microbial biosensors based on respiratory inhibition ” . In Enzyme and Microbial Biosensors: Techniques and Protocols , Edited by: Mulchandani , A. and Rogers , K.R. 228 Totowa, NJ : Humana Press .
  • Riedel , K. , Lehmann , M. , Tag , K. , Renneberg , R. and Kunze , G. 1998 . Arxula adeninivorans based sensor for the estimation of BOD . Analytical Letters , 31 ( 1 ) : 1 – 12 .
  • Bundy , J.G. , Paton , G.I. and Campbell , C.D. 2004 . Combined microbial community level and single species biosensor responses to monitor recovery of oil polluted soil . Soil Biology and Biochemistry , 36 ( 7 ) : 1149 – 1159 .
  • Il'yasov , P.V. , Shmal'ko , T.A. , Lusta , K.A. , Korolev , P.N. and Reshetilov , A.N. 1998 . Comparison of Gluconobacter strains in biosensors for detection of organic substrates . Prikl Biokhim Mikrobiol. , 34 ( 5 ) : 529 – 533 .
  • Reshetilov , A.N. , Donova , M.V. , Dovbnya , D.V. , Boronin , A.M. , Leathers , T.D. and Greene , R.V. 1996 . FET-microbial sensor for xylose detection based on Gluconobacter oxydans cells . Biosensors and Bioelectronics , 11 ( 4 ) : 401 – 408 .
  • Reshetilov , A.N. , Iliasov , P.V. , Donova , M.V. , Dovbnya , D.V. , Boronin , A.M. , Leather , T.D. and Greene , R.V. 1997 . Evaluation of a Gluconobacter oxydans whole cell biosensor for amperometric detection of xylose . Biosensors and Biolectronics , 12 ( 3 ) : 241 – 247 .
  • Reshetilov , A.N. , Efremov , D.A. , Iliasov , P.V. , Boronin , A.M. , Kukushskin , N.I. , Greene , R.V. and Leathers , T.D. 1998 . Effects of high oxygen concentrations on microbial biosensor signals. Hyperoxygenation by means of perfluorodecalin . Biosensors and Bioelectronics , 13 ( 7–8 ) : 795 – 799 .
  • Yagi , K. 2007 . Applications of whole-cell bacterial sensors in biotechnology and environmental science . Applied and Environmental Microbiology , 73 ( 6 ) : 1251 – 1258 .
  • Girotti , S. , Ferri , E.N. , Fumo , M.G. and Maiolini , E. 2008 . Monitoring of environmental pollutants by bioluminescent bacteria . Analytica Chimica Acta , 608 ( 1 ) : 2 – 29 .
  • Chinalia , F.A. , Paton , G.I. and Killham , K.S. 2008 . Physiological and toxicological characterization of an engineered whole-cell biosensor . Bioresource Technology , 99 ( 4 ) : 714 – 721 .
  • Tani , C. , Inoue , K. , Tani , Y. , Harun-ur-Rashid , M. , Azuma , N. , Ueda , S. , Yoshida , K. and Maeda , I. 2009 . Sensitive fluorescent microplate bioassay using recombinant Escherichia coli with multiple promoter-reporter units in tandem for detection of arsenic . Journal of Bioscience and Bioengineering , 108 ( 5 ) : 414 – 420 .
  • Biran , I. , Babai , R. , Levcov , K. , Rishpon , J. and Ron , E.Z. 2000 . Online and in situ monitoring of environmental pollutants: electrochemical biosensing of cadmium . Environmental Microbiology , 2 ( 3 ) : 285 – 290 .
  • Moreno-Garrido , I. 2008 . Microalgae immobilization: current techniques and uses . Bioresource Technology , 99 ( 10 ) : 3949 – 3964 .
  • Wang , J. 1999 . Sol-gel materials for electrochemical biosensors . Analytica Chimica Acta , 399 ( 1–2 ) : 21 – 27 .
  • Premkumar , J.R. , Lev , O. , Marks , R.S , Polyak , B. , Rosen , R. and Belkin , S. 2001 . Antibody-based immobilization of bioluminescent bacterial sensor cells . Talanta , 55 ( 5 ) : 1029 – 1038 .
  • Chu , Y.F. , Hsu , C.H. , Soma , P.K. and Lo , Y.M. 2009 . Immobilization of bioluminescent Escherichia coli cells using natural and artificial fibers treated with polyethyleneimine . Bioresource Technology , 100 ( 13 ) : 3167 – 3174 .
  • Chen , D.D. , Cao , Y.B. , Liu , B.H. and Kong , J.L. 2002 . A BOD biosensor based on a microorganism immobilized on an Al2O3 sol-gel matrix . Analytical and Bioanalytical Chemistry , 372 ( 5–6 ) : 737 – 739 .
  • Jia , J.B. , Tang , M.Y. , Chen , X. , Li , Q. and Dong , S.J. 2003 . Co-immobilized microbial biosensor for BOD estimation based on sol-gel derived composite material . Biosensors and Bioelectronics , 18 ( 8 ) : 1023 – 1029 .
  • Alvarez , G.S. , Desimone , M.F. and Diaz , L.E. 2007 . Immobilization of bacteria in silica matrices using citric acid in the sol-gel process . Applied Microbiology and Biotechnology , 73 ( 5 ) : 1059 – 1064 .
  • Corbisier , P. , Thiry , E. and Diels , L. 1996 . Bacterial biosensors for the toxicity assessment of solid wastes . Environmental Toxicology and Water Quality , 11 ( 3 ) : 171 – 177 .
  • Heitzer , A. , Malachowsky , K. , Thonnard , J.E. , Bienkowski , P.R. , White , D.C. and Sayler , G.S. 1994 . Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium . Applied and Environmental Microbiology , 60 ( 5 ) : 1487 – 1494 .
  • Bettaieb , F. , Ponsonnet , L. , Lejeune , P. , Ouada , H.B. , Martelet , C. , Bakhrouf , A. , Jaffrezic-Renault , N. and Othmane , A. 2007 . Immobilization of E. coli bacteria in three-dimensional matrices for ISFET biosensor design . Bioelectrochemistry , 71 ( 2 ) : 118 – 125 .
  • Alvarez , G.S. , Foglia , M.L. , Copello , G.J. , Desimone , M.F. and Diaz , L.E. 2009 . Effect of various parameters on viability and growth of bacteria immobilized in sol-gel-derived silica matrices . Applied Microbiology and Biotechnology , 82 ( 4 ) : 639 – 646 .
  • Kara , S. , Keskinler , B. and Erhan , E. 2009 . A novel microbial BOD biosensor developed by the immobilization of P. Syringae in micro-cellular polymers . Journal of Chemical Technology and Biotechnology , 84 ( 4 ) : 511 – 518 .
  • Liu , J. and Mattiasson , B. 2002 . Microbial BOD sensors for wastewater analysis . Water Research , 36 ( 15 ) : 3786 – 3802 .
  • Bhatia , R. , Dilleen , J.W. , Atkinson , A.L. and Rawson , D.M. 2003 . Combined physico-chemical and biological sensing in environmental monitoring . Biosensors and Bioelectronics , 18 ( 5–6 ) : 667 – 674 .
  • Guan , J.G. , Miao , Y.Q. and Zhang , Q.J. 2004 . Impedimetric biosensors . Journal of Bioscience and Bioengineering , 97 ( 4 ) : 219 – 226 .
  • Davis , F. and Higson , S.P.J. 2007 . Biofuel cells—recent advances and applications . Biosensors and Bioelectronics , 22 ( 7 ) : 1224 – 1235 .
  • Du , Z.W. , Li , H.R. and Gu , T.Y. 2007 . A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy . Biotechnology Advances , 25 ( 5 ) : 464 – 482 .
  • Ieropoulos , I.A. , Greenman , J. , Melhuish , C. and Hart , J. 2005 . Comparative study of three types of microbial fuel cell . Enzyme and Microbial Technology , 37 ( 2 ) : 238 – 245 .
  • Chang , I.S. , Jang , J.K. , Gil , G.C. , Kim , M. , Kim , H.J. , Cho , B.W. and Kim , B.H. 2004 . Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor . Biosensors and Bioelectronics , 19 ( 6 ) : 607 – 613 .
  • Chang , I.S. , Moon , H. , Jang , J.K. and Kim , B.H. 2005 . Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors . Biosensors and Bioelectronics , 20 ( 9 ) : 1856 – 1859 .
  • Kim , B.H. , Chang , I.S. , Gil , G.C. , Park , H.S. and Kim , H.J. 2003 . Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell . Biotechnology Letters , 25 ( 7 ) : 541 – 545 .
  • Kang , K.H. , Jang , J.K. , Pham , T.H. , Moon , H. , Chang , I.S. and Kim , B.H. 2003 . A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor . Biotechnology Letters , 25 ( 16 ) : 1357 – 1361 .
  • Moon , H. , Chang , I.S. , Kang , K.H. , Jang , J.K. and Kim , B.H. 2004 . Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand (BOD) sensor . Biotechnology Letters , 26 ( 22 ) : 1717 – 1721 .
  • Chen , G.W. , Choi , S.J. , Lee , T.H. , Lee , G.Y. , Cha , J.H. and Kim , C.W. 2008 . Application of biocathode in microbial fuel cells: cell performance and microbial community . Applied Microbiology and Biotechnology , 79 ( 3 ) : 379 – 388 .
  • Di Lorenzo , M. , Curtis , T.P. , Head , I.M. and Scott , K. 2009 . A single-chamber microbial fuel cell as a biosensor for wastewaters . Water Research , 43 ( 13 ) : 3145 – 3154 .
  • Sund , C.J. , Wong , M.S. and Sumner , J.J. 2009 . Mitigation of the effect of catholyte contamination in microbial fuel cells using a wicking air cathode . Biosensors and Bioelectronics , 24 ( 10 ) : 3144 – 3147 .
  • Lechuga , L.M. 2005 . “ Optical biosensors ” . In Biosensors and Modern Biospecific Analytical Techniques , Edited by: Gorton , L. 209 – 246 . London, , UK : Elsevier .
  • Ivask , A. , Green , T. , Polyak , B. , Mor , A. , Kahru , A. , Virta , M. and Marks , R. 2007 . Fibre-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from Aznalcollar mining area in Spain . Biosensors and Bioelectronics , 22 ( 7 ) : 1396 – 1402 .
  • Ben-Yoav , H. , Elad , T. , Shlomovits , O. , Belkin , S. and Shacham-Diamand , Y. 2009 . Optical modeling of bioluminescence in whole cell biosensors . Biosensors and Bioelectronics , 24 ( 7 ) : 1969 – 1973 .
  • Chee , G.J. , Nomura , Y. , Ikebukuro , K. and Karube , I. 2000 . Optical fiber biosensor for the determination of low biochemical oxygen demand . Biosensors and Bioelectronics , 15 ( 7–8 ) : 371 – 376 .
  • Plant , T.K. , Chaplen , F.W. , Jovanovic , G. , Kolodziej , W. , Trempy , J.E. , Willard , C. , Liburdy , J.A. , Pence , D.V. and Paul , B.K. 24 Jan 2004 . “ Sensitive-cell-based fish chromatophore biosensor ” . In Biomedical Vibrational Spectroscopy and Biohazard Detection Technologies, Proc SPIE 24 Jan , 265 – 274 . Bellingham, WA
  • Bollmann , A. and Revsbech , N.P. 2005 . An NH4 + biosensor based on ammonia-oxidizing bacteria for use under anoxic conditions . Sensors and Actuators B , 105 ( 2 ) : 412 – 418 .
  • Yoshida , K. , Yoshioka , D. , Inoue , K. , Takaichi , S. and Maeda , I. 2007 . Evaluation of colors in green mutants isolated from purple bacteria as a host for colorimetric whole-cell biosensors . Applied Microbiology and Biotechnology , 76 ( 5 ) : 1043 – 1050 .
  • Aivasidis , A. , Melidis , P. and Georgiou , D. 2002 . Use of a microbial sensor: a new approach to the measurement of inhibitory effects on the microbial activity of activated sludge . Bioprocess and Biosystems Engineering , 25 ( 1 ) : 29 – 33 .
  • Vaiopoulou , E. , Melidis , P. , Kampragou , E. and Aivasidis , A. 2005 . On-line load monitoring of wastewaters with a respirographic microbial sensor . Biosensors and Bioelectronics , 21 ( 2 ) : 365 – 371 .
  • Tzoris , A. , Fernandez-Perez , V. and Hall , E.A.H. 2005 . Direct toxicity assessment with a mini portable respirometer . Sensors and Actuators B , 105 ( 1 ) : 39 – 49 .
  • Kumlanghan , A. , Kanatharana , P. , Asawatreratanakul , P. , Mattiasson , B. and Thavarungkul , P. 2008 . Microbial BOD sensor for monitoring treatment of wastewater from a rubber latex industry . Enzyme and Microbial Technology , 42 ( 6 ) : 483 – 491 .
  • Yang , Z. , Suzuki , H. , Sasaki , S. , McNiven , S. and Karube , I. 1997 . Comparison of the dynamic transient- and steady-state measuring methods in a batch type BOD sensing system . Sensors and Actuators B , 45 ( 3 ) : 217 – 222 .
  • Chee , G.J. , Nomura , Y. , Ikebukuro , K. and Karube , I. 2005 . Development of photocatalytic biosensor for the evaluation of biochemical oxygen demand . Biosensors and Bioelectronics , 21 ( 1 ) : 67 – 73 .
  • Okochi , M. , Mima , K. , Miyata , M. , Shinozaki , Y. , Haraguchi , S. , Fujisawa , M. , Kaneko , M. , Masukata , T. and Matsunaga , T . 2004 . Development of an automated water toxicity biosensor using Thiobacillus ferrooxidans for monitoring cyanides in natural water for a water filtering plant . Biotechnology and Bioengineering , 87 ( 7 ) : 905 – 911 .
  • Mulchandani , P. , Chen , W. and Mulchandani , A. 2006 . Microbial biosensor for direct determination of nitrophenyl-substituted organophosphate nerve agents using genetically engineered Moraxella sp . Analytica Chimica Acta , 568 ( 1–2 ) : 217 – 221 .
  • Nakamura , H. , Suzuki , K. , Ishikuro , H. , Kinoshita , S. , Koizumi , R. , Okuma , S. , Gotoh , M. and Karube , I. 2007 . A new BOD estimation method employing a double-mediator system by ferricyanide and menadione using the eukaryote Saccharomyces cerevisiae . Talanta , 72 ( 1 ) : 210 – 216 .
  • Tan , T.C. and Lim , E.W.C. 2005 . Thermally killed cells of complex microbial culture for biosensor measurement of BOD of wastewater . Sensors and Actuators B , 107 ( 2 ) : 546 – 551 .
  • Seo , K.S. , Choo , K.H. , Chang , H.N. and Park , J.K. 2009 . A flow injection analysis system with encapsulated high-density Saccharomyces cerevisiae cells for rapid determination of biochemical oxygen demand . Applied Microbiology and Biotechnology , 83 ( 2 ) : 217 – 223 .
  • Mulchandani , A. , Mulchandani , P. , Chauhan , S. , Kaneva , I. and Chen , W. 1998 . A potentiometric microbial biosensor for direct determination of organophosphate nerve agents . Electroanalysis , 10 ( 11 ) : 733 – 737 .
  • Mulchandani , A. , Chen , W. , Mulchandani , P. , Wang , J. and Rogers , K.R. 2001 . Biosensors for direct determination of organophosphate pesticides . Biosensors and Bioelectronics , 16 ( 4–5 ) : 225 – 230 .
  • Mulchandani , A. , Kaneva , I. and Chen , W. 1998 . Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 2. Fiber optic microbial biosensor . Analytical Chemistry , 70 ( 23 ) : 5042 – 5046 .
  • Gaberlein , S. , Spener , F. and Zaborosch , C. 2000 . Microbial and cytoplasmic membrane-based potentiometric biosensors for direct determination of organophosphorus insecticides . Applied Microbiology and Biotechnology , 54 ( 5 ) : 652 – 658 .
  • Mulchandani , P. , Chen , W. , Mulchandani , A. , Wang , J. and Chen , L. 2001 . Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorus hydrolase . Biosensors and Bioelectronics , 16 ( 7–8 ) : 433 – 437 .
  • Skladal , P. , Morozova , N.O. and Reshetilov , A.N. 2002 . Amperometric biosensors for detection of phenol using chemically modified electrodes containing immobilized bacteria . Biosensors and Bioelectronics , 17 ( 10 ) : 867 – 873 .
  • Nanakumar , R. and Mattiasson , B. 1999 . A microbial biosensor using Pseudomonas putida cells immobilised in an expanded bed reactor for the online monitoring of phenolic compounds . Analytical Letters , 32 ( 12 ) : 2379 – 2393 .
  • Mulchandani , P. , Lei , Y. , Chen , W. and Wang , J. 2002 . Microbial biosensor for p-nitrophenol using Moraxella sp . Analytica Chimica Acta , 470 ( 1 ) : 79 – 86 .
  • Mulchandani , P. , Hangarter , C.M. , Lei , Y. and Chen , W. 2005 . Amperometric microbial biosensor for p-nitrophenol using Moraxella sp.-modified carbon paste electrode . Biosensors and Bioelectronics , 21 ( 3 ) : 523 – 527 .
  • Timur , S. , Seta , L.D. , Pazarlioglu , N. , Pilloton , R. and Telefoncu , A. 2004 . Screen printed graphite biosensors based on bacterial cells . Process Biochemistry , 39 ( 11 ) : 1325 – 1329 .
  • Ikebukuro , K. , Miyata , A. , Cho , S.J. , Nomura , Y. , Chang , S.M. , Yamauchi , Y. , Hasebe , Y. , Uchiyama , S. and Karube , I. 1996 . Microbial cyanide sensor for monitoring river water . Journal of Biotechnology , 48 ( 1–2 ) : 73 – 80 .
  • Lee , J.I. and Karube , I. 1996 . Reactor type sensor for cyanide using an immobilized microorganism . Electroanalysis , 8 ( 12 ) : 1117 – 1120 .
  • Mak , K.K.W. , Law , A.W.C. , Tokuda , S. , Yanase , H. and Renneberg , R. 2005 . Application of cyanide hydrolase from Klebsiella sp. in a biosensor system for the detection of low-level cyanide . Applied Microbiology and Biotechnology , 67 ( 5 ) : 631 – 636 .
  • Rensing , C. and Maier , R.M. 2003 . Issues underlying use of biosensors to measure metal bioavailability . Ecotoxicology and Environmental Safety , 56 ( 1 ) : 140 – 147 .
  • Ivask , A. , Rolova , T. and Kahru , A. 2009 . A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing . BMC Biotechnology , 9 : 41 – 55 .
  • Petanen , T. and Romantschuk , M. 2002 . Use of bioluminescent bacterial sensors as an alternative method for measuring heavy metals in soil extracts . Analytica Chimica Acta , 456 ( 1 ) : 55 – 61 .
  • Bontidean , I. , Lloyd , J.R. , Hobman , J.L. , Wilson , J.R. , Csoregi , E. , Mattiasson , B. and Brown , N.L. 2000 . Bacterial metal-resistance proteins and their use in biosensors for the detection of bioavailable heavy metals . Journal of Inorganic Biochemistry , 79 ( 1–4 ) : 225 – 229 .
  • Lehmann , M. , Riedel , K. , Adler , K. and Kunze , G. 2000 . Amperometric measurement of copper ions with a deputy substrate using a novel Saccharomyces cerevisiae sensor . Biosensors and Bioelectronics , 15 ( 3–4 ) : 211 – 219 .
  • Flynn , H.C. , Mahon , V.M. , Diaz , G.C. , Demergasso , C.S. , Corbisier , P. , Meharg , A.A. and Paton , G.I. 2002 . Assessment of bioavailable arsenic and copper in soils and sediments from the Antofagasta region of northern Chile . Science of the Total Environment , 286 ( 1–3 ) : 51 – 59 .
  • Rouillona , R. , Tocabens , M. and Carpentier , R. 1999 . A photoelectrochemical cell for detecting pollutant-induced effects on the activity of immobilized cyanobacterium Synechococcus sp. PCC 7942 . Enzyme and Microbial Technology , 25 ( 3–5 ) : 230 – 235 .
  • Liao , V.H.C. , Chien , M.T. , Tseng , Y.Y. and Ou , K.L. 2006 . Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors . Environmental Pollution , 142 ( 1 ) : 17 – 23 .
  • Li , Y.F. , Li , F.Y. , Ho , C.L. and Liao , V.H.C. 2008 . Construction and comparison of fluorescence and bioluminescence bacterial biosensors for the detection of bioavailable toluene and related compounds . Environmental Pollution , 152 ( 1 ) : 123 – 129 .
  • Morales , A. , Cespedes , F. , Martinez-Fabregas , E. and Alegret , S. 1998 . Ethanol amperometric biosensor based on an alcohol oxidase-graphite-polymer biocomposite . Electrochimica Acta , 43 ( 23 ) : 3575 – 3579 .
  • Ibanz , E. and Cifuentes , A. 2001 . New analytical techniques in food science . Critical Reviews in Food Science and Nutrition , 41 ( 6 ) : 413 – 450 .
  • Patel , P.D. 2002 . (Bio)sensors for measurement of analytes implicated in food safety: a review . TrAC: Trends in Analytical Chemistry , 21 ( 2 ) : 96 – 115 .
  • Velasco-Garcia , M.N. and Mottram , T. 2003 . Biosensor technology addressing agricultural problems . Biosystems Engineering , 84 ( 1 ) : 1 – 12 .
  • Shankaran , D.R. , Gobi , K.V. and Miura , N. 2007 . Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest . Sensors and Actuators B , 121 ( 1 ) : 158 – 177 .
  • Mulchandani , A. and Rogers , K.R. 1998 . Enzyme and Microbial Biosensors: Techniques and Protocols , 199 Totowa, NJ : Humana Press .
  • Patel , N.G. , Meier , S. , Cammann , K. and Chemnitius , G.C. 2001 . Screen-printed biosensors using different alcohol oxidases . Sensors and Actuators B , 75 ( 1–2 ) : 101 – 110 .
  • Mello , L.D. and Kubota , L.T. 2002 . Review of the use of biosensors as analytical tools in the food and drink industries . Food Chemistry , 77 ( 2 ) : 237 – 256 .
  • Park , J.K. , Yee , H.J. , Lee , K.S. , Lee , W.Y. , Shin , M.C. , Kim , T.H. and Kim , S.R. 1999 . Determination of breath alcohol using a differential-type amperometric biosensor based on alcohol dehydrogenase . Analytica Chimica Acta , 390 ( 1–3 ) : 83 – 91 .
  • Akyilmaz , E. and Dinckaya , E. 2000 . A mushroom (Agaricus bisporus) tissue homogenate based alcohol oxidase electrode for alcohol determination in serum . Talanta , 53 ( 3 ) : 505 – 509 .
  • Akyilmaz , E. and Dinckaya , E. 2005 . An amperometric microbial biosensor development based on candida tropicalis yeast cells for sensitive determination of ethanol . Biosensors and Bioelectronics , 20 ( 7 ) : 1263 – 1269 .
  • Reshetilov , A.N. , Trotsenko , J.A. , Morozova , N.O. , Iliasov , P.V. and Ashin , V.V. 2001 . Characteristics of Gluconobacter oxydans B-1280 and Pichia methanolica MN4 cell based biosensors for detection of ethanol . Process Biochemistry , 36 ( 10 ) : 1015 – 1020 .
  • Rotariu , L. and Bala , C. 2003 . New type of ethanol microbial biosensor based on a highly sensitive amperometric oxygen electrode and yeast cells . Analytical Letters , 36 ( 11 ) : 2459 – 2471 .
  • Rotariu , L. , Bala , C. and Magearu , V. 2004 . New potentiometric microbial biosensor for ethanol determination in alcoholic beverages . Analytica Chimica Acta , 513 ( 1 ) : 119 – 123 .
  • Mulchandani , A. , Mulchandani , P. , Kaneva , I. and Chen , W. 1998 . Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 1. Potentiometric microbial electrode . Analytical Chemistry , 70 ( 19 ) : 4140 – 4145 .
  • Rotariu , L. , Bala , C. and Magearu , V. 2000 . Use of yeast cells for selective determination of sucrose . Revue Roumaine de Chimie , 45 ( 1 ) : 21 – 26 .
  • Schmidt , A. , Standfu-Gabisch , C. and Bilitewski , U. 1996 . Microbial biosensor for free fatty acids using an oxygen electrode based on thick film technology . Biosensors and Bioelectronics , 11 ( 11 ) : 1139 – 1145 .
  • Verma , N. and Singh , M. 2003 . A disposable microbial based biosensor for quality control in milk . Biosensors and Bioelectronics , 18 ( 10 ) : 1219 – 1224 .
  • Simonian , A.L. , Rainina , E.I. and Wild , J.R. 1998 . “ Microbial biosensors based on potentiometric detection ” . In Enzyme and Microbial Biosensors: Techniques and Protocols , Edited by: Mulchandani , A. and Rogers , K.R. 237 – 248 . Totowa, NJ : Humana Press .
  • Akyilmaz , E. , Erdogan , A. , Ozturk , R. and Yasa , I. 2007 . Sensitive determination of l-lysine with a new amperometric microbial biosensor based on Saccharomyces cerevisiae yeast cells . Biosensors and Bioelectronics , 22 ( 6 ) : 1055 – 1060 .
  • Chalova , V.I. , Zabala-Díaz , I.B. , Woodward , C.L. and Ricke , S.C. 2008 . Development of a whole cell green fluorescent sensor for lysine quantification . World Journal of Microbiology and Biotechnology , 24 ( 3 ) : 353 – 359 .
  • Akyilmaz , E. , Yasa , I. and Dinckaya , E. 2006 . Whole cell immobilized amperometric biosensor based on Saccharomyces cerevisiae for selective determination of vitamin B1 (thiamine) . Analytical Biochemistry , 354 ( 1 ) : 78 – 84 .
  • Ferrini , A.M. , Mannoni , V. , Carpico , G. and Pellegrini , G.E. 2008 . Detection and identification of beta-lactam residues in milk using a hybrid biosensor . Journal of Agricultural and Food Chemistry , 56 ( 3 ) : 784 – 788 .
  • Pellegrini , G.E. , Carpico , G. and Coni , E. 2004 . Electrochemical sensor for the detection and presumptive identification of quinolone and tetracycline residues in milk . Analytica Chimica Acta , 520 ( 1–2 ) : 13 – 18 .
  • Vlasova , I.I. , Asrieli , T.V. , Gavrilova , E.M. and Danilov , V.S. 2004 . New approach for specific determination of antibiotics by use of luminescent Escherichia coli and immune serum . Applied and Environmental Microbiology , 70 ( 2 ) : 1245 – 1248 .
  • Arikawa , Y. , Ikebukuro , K. and Karube , I. 1998 . “ Microbial biosensors based on respiratory inhibition ” . In Enzyme and Microbial Biosensors: Techniques and Protocols , Edited by: Mulchandani , A. and Rogers , K.R. 225 Totowa, NJ : Humana Press .
  • van der Meer , J.R. , Tropel , D. and Jaspers , M. 2004 . Illuminating the detection chain of bacterial bioreporters . Environmental Microbiology , 6 ( 10 ) : 1005 – 1020 .
  • Stoytcheva , M. , Zlatev , R. , Magnin , J.P. , Ovalle , M. and Valdez , B. 2009 . Leptospirillum ferrooxidans based Fe2+ sensor . Biosensors and Bioelectronics , 25 ( 2 ) : 482 – 487 .
  • Popovtzer , R. , Natan , A. and Shacham-Diamand , Y. 2007 . Mathematical model of whole cell based bio-chip: an electrochemical biosensor for water toxicity detection . Journal of Electroanalytical Chemistry , 602 ( 1 ) : 17 – 23 .
  • Ben-Yoav , H. , Biran , A. , Pedahzur , R. , Belkin , S. , Buchinger , S. , Reifferscheid , G. and Shacham-Diamand , Y. 2009 . A whole cell electrochemical biosensor for water genotoxicity bio-detection . Electrochimica Acta , 54 ( 25 ) : 6113 – 6118 .
  • Brogan , K.L. and Walt , D.R. 2005 . Optical fiber-based sensors: application to chemical biology . Current Opinion in Chemical Biology , 9 ( 5 ) : 494 – 500 .
  • Lee , J.H. , Mitchell , R.J. , Kim , B.C. , Cullen , D.C. and Gu , M.B. 2005 . A cell array biosensor for environmental toxicity analysis . Biosensors and Bioelectronics , 21 ( 3 ) : 500 – 507 .
  • Fesenko , D.O. , Nasedkina , T.V. , Prokopenko , D.V. and Mirzabekov , A.D. 2005 . Biosensing and monitoring of cell populations using the hydrogel bacterial microchip . Biosensors and Bioelectronics , 20 ( 9 ) : 1860 – 1865 .
  • Lee , J.H. , Youn , C.H. , Kim , B.C. and Gu , M.B. 2007 . An oxidative stress-specific bacterial cell array chip for toxicity analysis . Biosensors and Bioelectronics , 22 ( 9–10 ) : 2223 – 2229 .
  • Horry , H. , Charrier , T. , Durand , M.J. , Vrignaud , B. , Picart , P. , Daniel , P. and Thouand , G. 2007 . Technological conception of an optical biosensor with a disposable card for use with bioluminescent bacteria . Sensors and Actuators B , 122 ( 2 ) : 527 – 534 .
  • Vo-Dinh , T. , Cullum , B.M. and Stokes , D.L. 2001 . Nanosensors and biochips: frontiers in biomolecular diagnostics . Sensors and Actuators B , 74 ( 1–3 ) : 2 – 11 .
  • Haruyama , T. 2003 . Micro- and nanobiotechnology for biosensing cellular responses . Advanced Drug Delivery Reviews , 55 ( 3 ) : 393 – 401 .
  • Chen , J.R. , Miao , Y.Q. , He , N.Y. , Wu , X.H. and Li , S.J. 2004 . Nanotechnology and biosensors . Biotechnology Advances , 22 ( 7 ) : 505 – 518 .
  • Merkoci , A. , Pumera , M. , Llopis , X. , Perez , B. , del Valle , M. and Alegret , S. 2005 . New materials for electrochemical sensing VI: carbon nanotubes . TrAC: Trends in Analytical Chemistry , 24 ( 9 ) : 826 – 838 .
  • Kirgoz , U.A. , Timur , S. , Odaci , D. , Perez , B. , Alegret , S. and Merkoci , A. 2007 . Carbon nanotube composite as novel platform for microbial biosensor . Electroanalysis , 19 ( 7–8 ) : 893 – 898 .
  • Timur , S. , Anik , U. , Odaci , D. and Gorton , L. 2007 . Development of a microbial biosensor based on carbon nanotube (CNT) modified electrodes . Electrochemistry Communications , 9 ( 7 ) : 1810 – 1815 .
  • Neufeld , T. , Schwartz-Mittelmann , A. , Biran , D. , Ron , E.Z. and Rishpon , J. 2003 . Combined phage typing and amperometric detection of released enzymatic activity for the specific identification and quantification of bacteria . Analytical Chemistry , 75 ( 3 ) : 580 – 585 .
  • Petrenko , V.A. 2008 . Landscape phage as a molecular recognition interface for detection devices . Microelectronics Journal , 39 ( 2 ) : 202 – 207 .
  • Velusamy , V. , Arshak , K. , Korostynska , O. , Oliwa , K. and Adley , C. 2010 . An overview of foodborne pathogen detection: in the perspective of biosensors . Biotechnology Advances , 28 ( 2 ) : 232 – 254 .
  • Yemini , M. , Levi , Y. , Yagil , E. and Rishpon , J. 2007 . Specific electrochemical phage sensing for Bacillus cereus and Mycobacterium smegmatis . Bioelectrochemistry , 70 ( 1 ) : 180 – 184 .
  • Nanduri , V. , Sorokulova , I.B. , Samoylov , A.M. , Simonian , A.L. , Petrenko , V.A. and Vodyanoy , V. 2007 . Phage as a molecular recognition element in biosensors immobilized by physical adsorption . Biosensors and Bioelectronics , 22 ( 6 ) : 986 – 992 .
  • Birmele , M. , Ripp , S. , Jegier , P. , Roberts , M.S. , Sayler , G. and Garland , J. 2008 . Characterization and validation of a bioluminescent bioreporter for the direct detection of Escherichia coli . Journal of Microbiological Methods , 75 ( 2 ) : 354 – 356 .
  • Brigati , J.R. , Ripp , S.A. , Johnson , C.M. , Iakova , P.A. , Jegier , P. and Sayler , G.S. 2007 . Bacteriophage-based bioluminescent bioreporter for the detection of Escherichia coli O157:H7 . Journal of Food Protection , 70 ( 6 ) : 1386 – 1392 .
  • Handa , H. , Gurczynski , S. , Jackson , M.P. , Auner , G. , Walker , J. and Mao , G. 2008 . Recognition of Salmonella typhimurium by immobilized phage P22 monolayers . Surface Science , 602 ( 7 ) : 1392 – 1400 .
  • Nanduri , V. , Bhunia , A.K. , Tu , S.I. , Paoli , G.C. and Brewster , J.D. 2007 . SPR biosensor for the detection of L. monocytogenes using phage-displayed antibody . Biosensors and Bioelectronics , 23 ( 2 ) : 248 – 252 .
  • Johnson , M.L. , Wan , J. , Huang , S. , Cheng , Z. , Petrenko , V.A. , Kim , D.J. , Chen , I.H. , Barbaree , J.M. , Hong , J.W. and Chin , B.A. 2008 . A wireless biosensor using microfabricated phage-interfaced magnetoelastic particles . Sensors and Actuators A , 144 ( 1 ) : 38 – 47 .
  • Lakshmanan , R.S. , Guntupalli , R. , Hu , J. , Petrenko , V.A. , Barbaree , J.M. and Chin , B.A. 2007 . Detection of Salmonella typhimurium in fat free milk using a phage immobilized magnetoelastic sensor . Sensors and Actuators B , 126 ( 2 ) : 544 – 550 .
  • Huang , S. , Yang , H. , Lakshmanan , R.S. , Johnson , M.L. , Wan , J. , Chen , I.H. , Wikle , H.C. III , Petrenko , V.A. , Barbaree , J.M. and Chin , B.A. 2009 . Sequential detection of Salmonella typhimurium and Bacillus anthracis spores using magnetoelastic biosensors . Biosensors and Bioelectronics , 24 ( 6 ) : 1730 – 1736 .
  • Shen , W. , Lakshmanan , R.S. , Mathison , L.C. , Petrenko , V.A. and Chin , B.A. 2009 . Phage coated magnetoelastic micro-biosensors for real-time detection of Bacillus anthracis spores . Sensors and Actuators B , 137 ( 2 ) : 501 – 506 .
  • Ripp , S. 2010 . Bacteriophage-based pathogen detection . Advances in Biochemical Engineering/Biotechnology , 118 : 65 – 84 .
  • Chan , C. , Lehmann , M. , Tag , K. , Lung , M. , Gotthard , K. , Riedel , K. , Gruendig , B. and Renneberg , R. 1999 . Measurement of biodegradable substances using the salt-tolerant yeast Arxula adeninivorans for a microbial sensor immobilized with poly(carbamoyl) sulfonate (PCS) part I: construction and characterization of the microbial sensor . Biosensors and Bioelectronics , 14 ( 2 ) : 131 – 138 .
  • Chee , G.J. , Nomura , Y. and Karube , I. 1999 . Biosensor for the estimation of low biochemical oxygen demand . Analytica Chimica Acta , 379 ( 1–2 ) : 185 – 191 .
  • Konig , A. , Reul , T. , Harmeling , C. , Spener , F. , Knoll , M. and Zaborosch , C. 2000 . Multimicrobial sensor using microstructured three-dimensional electrodes based on silicon technology . Analytical Chemistry , 72 ( 9 ) : 2022 – 2028 .
  • Yoshida , N. , Hoashi , J. , Morita , T. , McNiven , S.J. , Nakamura , H. and Karube , I. 2001 . Improvement of a mediator-type biochemical oxygen demand sensor for on-site measurement . Journal of Biotechnology , 88 ( 3 ) : 269 – 275 .
  • Trosok , S.P. , Driscoll , B.T. and Luong , J.H.T. 2001 . Mediated microbial biosensor using a novel yeast strain for wastewater BOD measurement . Applied Microbiology and Biotechnology , 56 ( 3–4 ) : 550 – 554 .
  • Schofield , D.A. , Westwater , C. , Barth , J.L. and DiNovo , A.A. 2007 . Development of a yeast biosensor-biocatalyst for the detection and biodegradation of the organophosphate paraoxon . Applied Microbiology and Biotechnology , 76 ( 6 ) : 1383 – 1394 .
  • Lei , Y. , Mulchandani , P. , Wang , J. , Chen , W. and Mulchandani , A. 2005 . Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitrophenyl-substituted organophosphate nerve agents . Environmental Science & Technology , 39 ( 22 ) : 8853 – 8857 .
  • Emelyanova , E.V. and Reshetilov , A.N. 2002 . Rhodococcus erythropolis as the receptor of cell-based sensor for 2,4-dinitrophenol detection: effect of “co-oxidation.” Process Biochemistry , 37 ( 7 ) : 683 – 692 .
  • Jantra , J. , Zilouei , H. , Liu , J. , Guieysse , B. , Thavarungkul , P. , Kanatharana , P. and Mattiasson , B. 2005 . Microbial biosensor for the analysis of 2,4-dichlorophenol . Analytical Letters , 38 ( 7 ) : 1071 – 1083 .
  • Tauriainen , S. , Karp , M. , Chang , W. and Virta , M. 1998 . Luminescent bacterial sensor for cadmium and lead . Biosensors and Bioelectronics , 13 ( 9 ) : 931 – 938 .
  • Rasmussen , L.D. , Turner , R.R. and Barkay , T. 1997 . Cell-density-dependent sensitivity of a mer-lux bioassay . Applied Environmental Microbiology , 63 ( 8 ) : 3291 – 3293 .
  • Fu , Y.J. , Chen , W.L. and Huang , Q.Y. 2008 . Construction of two lux-tagged Hg2+-specific biosensors and their luminescence performance . Applied Microbiology and Biotechnology , 79 ( 3 ) : 363 – 370 .
  • Joyner , D.C. and Lindow , S.E. 2000 . Heterogeneity of iron bioavailability on plants assessed with a whole-cell GFP-based bacterial biosensor . Microbiology , 146 ( 10 ) : 2435 – 2445 .
  • Tom-Petersen , A. , Hosbond , C. and Nybroe , O. 2001 . Identification of copper-induced genes in Pseudomonas fluorescens and use of a reporter strain to monitor bioavailable copper in soil . FEMS Microbiology Ecology , 38 ( 1 ) : 59 – 67 .
  • Taranova , L. , Semenchuk , I. , Manolov , T. , Iliasov , P. and Reshetilov , A. 2002 . Bacteria-degraders as the base of an amperometric biosensor for detection of anionic surfactants . Biosensors and Bioelectronics , 17 ( 8 ) : 635 – 640 .
  • Han , T.S. , Sasaki , S. , Yano , K. , Ikebukuro , K. , Kitayama , A. , Nagamune , T. and Karube , I. 2002 . Flow injection microbial trichloroethylene sensor . Talanta , 57 ( 2 ) : 271 – 276 .
  • del Busto-Ramos , M. , Budzik , M. , Corvalan , C. , Morgan , M. , Turco , R. , Nivens , D. and Applegate , B. 2008 . Development of an online biosensor for in situ monitoring of chlorine dioxide gas disinfection efficacy . Applied Microbiology and Biotechnology , 78 ( 4 ) : 573 – 580 .
  • Gvakharia , B.O. , Bottomley , P.J. , Arp , D.J. and Sayavedra-Soto , L.A. 2009 . Construction of recombinant Nitrosomonas europaea expressing green fluorescent protein in response to co-oxidation of chloroform . Applied Microbiology and Biotechnology , 82 ( 6 ) : 1179 – 1185 .
  • Olaniran , A.O. , Motebejane , R.M. and Pillay , B. 2008 . Bacterial biosensors for rapid and effective monitoring of biodegradation of organic pollutants in wastewater effluents . Journal of Environmental Monitoring , 10 ( 7 ) : 889 – 893 .
  • Paton , G.I. , Reid , B.J. and Semple , K.T. 2009 . Application of a luminescence-based biosensor for assessing naphthalene biodegradation in soils from a manufactured gas plant . Environmental Pollution , 157 ( 5 ) : 1643 – 1648 .
  • Ikeda , T. , Kato , K. , Maeda , M. , Tatsumi , H. , Kano , K. and Matsushita , K. 1997 . Electrocatalytic properties of Acetobacter aceti cells immobilized on electrodes for the quinone-mediated oxidation of ethanol . Journal of Electroanalytical Chemistry , 430 ( 1–2 ) : 197 – 204 .
  • Reshetilov , A.N. , Lobanov , A.V. , Morozova , N.O. , Gordon , S.H. , Greene , R.V. and Leathers , T.D. 1998 . Detection of ethanol in a two-component glucose/ethanol mixture using a nonselective microbial densor and a glucose enzyme electrode . Biosensors and Bioelectronics , 13 ( 7–8 ) : 787 – 793 .
  • Subrahmanyam , S. , Shanmugam , K. , Subramanian , T.V. , Murugesan , M. , Madhav , V.M. and Jeyakumar , D. 2001 . Development of electrochemical microbial biosensor for ethanol based on Aspergillus niger . Electroanalysis , 13 ( 11 ) : 944 – 948 .
  • Tkac , J. , Vostiar , I. , Gemeiner , P. and Sturdik , E. 2002 . Monitoring of ethanol during fermentation using a microbial biosensor with enhanced selectivity . Bioelectrochemistry , 56 ( 1–2 ) : 127 – 129 .
  • Tkac , J. , Vostiar , I. , Gorton , L. , Gemeiner , P. and Sturdik , E. 2003 . Improved selectivity of microbial biosensor using membrane coating . Application to the analysis of ethanol during fermentation. Biosensors and Bioelectronics , 18 ( 9 ) : 1125 – 1134 .
  • Katrlik , J. , Vostiar , I. , Sefcovicova , J. , Tkac , J. , Mastihuba , V. , Valach , M. , Stefuca , V. and Gemeiner , P. 2007 . A novel microbial biosensor based on cells of Gluconobacter oxydans for the selective determination of 1,3-propanediol in the presence of glycerol and its application to bioprocess monitoring . Analytical and Bioanalytical Chemistry , 388 ( 1 ) : 287 – 295 .
  • Svitel , J. , Curilla , O. and Tkac , J. 1998 . Microbial cell-based biosensor for sensing glucose, sucrose or lactose . Biotechnology and Applied Biochemistry , 27 ( 2 ) : 153 – 158 .
  • Rotariu , L. , Bala , C. and Magearu , V. 2002 . Yeast cells sucrose biosensor based on a potentiometric oxygen electrode . Analytica Chimica Acta , 458 ( 1 ) : 215 – 222 .
  • Tkac , J. , Gemeiner , P. , Svitel , J. , Benikovsky , T. , Sturdíc , E. , Vala , V. , Petrus , L. and Hrabarova , E. 2000 . Determination of total sugars in lignocellulose hydrolysate by a mediated Gluconobacter oxydans biosensor . Analytica Chimica Acta , 420 ( 1 ) : 1 – 7 .
  • Held , M. , Schuhmann , W. , Jahreis , K. and Schmidt , H.L. 2002 . Microbial biosensor array with transport mutants of Escherichia coli K12 for the simultaneous determination of mono- and disaccharides . Biosensors and Bioelectronics , 17 ( 11–12 ) : 1089 – 1094 .
  • Liu , B. , Cui , Y. and Deng , J. 1996 . Studies on microbial biosensor for dl-phenylalanine and its dynamic response process . Analytical Letters , 29 ( 9 ) : 1497 – 1515 .
  • Chalova , V.I. , Kim , W.K. , Woodward , C.L. and Ricke , S.C. 2007 . Quantification of total and bioavailable lysine in feed protein sources by a whole-cell green fluorescent protein growth-based Escherichia coli biosensor . Applied Microbiology and Biotechnology , 76 ( 1 ) : 91 – 99 .
  • Smolander , O.P. , Ribeiro , A.S. , Yli-Harja , O. and Karp , M. 2009 . Identification of β-lactam antibiotics using bioluminescent Escherichia coli and a support vector machine classifier algorithm . Sensors and Actuators B , 141 ( 2 ) : 604 – 609 .
  • Virolainen , N.E. , Pikkemaat , M.G. , Elferink , J.W.A. and Karp , M.T. 2008 . Rapid detection of tetracyclines and their 4-epimer derivatives from poultry meat with bioluminescent biosensor bacteria . Journal of Agricultural and Food Chemistry , 56 ( 23 ) : 11065 – 11070 .
  • Bahl , M.I. , Hansen , L.H. , Licht , T.R. and Sorensen , S.J. 2004 . In vivo detection and quantification of tetracycline by use of a whole-cell biosensor in the rat intestine . Antimicrobial Agents in Chemotherapy , 48 ( 4 ) : 1112 – 1117 .
  • Pellinen , T. , Bylund , G. , Virta , M. , Niemi , A and Karp , M. 2002 . Detection of traces of tetracyclines from fish with a bioluminescent sensor strain incorporating bacterial luciferase reporter genes . Journal of Agricultural and Food Chemistry , 50 ( 17 ) : 4812 – 4815 .
  • Hansen , L.H. , Aarestrup , F. and Sorensen , S.J. 2002 . Quantification of bioavailable chlortetracycline in pig feces using a bacterial whole-cell biosensor . Veterinary Microbiology , 87 ( 1 ) : 51 – 57 .
  • Mohrle , V. , Stadler , M. and Eberz , G. 2007 . Biosensor-guided screening for macrolides . Analytical and Bioanalytical Chemistry , 388 ( 5–6 ) : 1117 – 1125 .
  • Kumar , S. , Kundu , S. , Pakshirajan , K. and Dasu , V.V. 2008 . Cephalosporins determination with a novel microbial biosensor based on permeabilized Pseudomonas aeruginosa whole cells . Applied Biochemistry and Biotechnology , 151 ( 2–3 ) : 653 – 664 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.