1,475
Views
80
CrossRef citations to date
0
Altmetric
Reviews

Xylitol Biological Production: A Review of Recent Studies

, &

References

  • Parajo, J.C.; Dominguez, H.; Dominguez, J.M. Biotechnological production of xylitol. Part 1: Interest of xylitol and fundamentals of its biosynthesis. Bioresour. Technol. 1998, 66, 25 –40.
  • Zacharis, C. Xylitol. In Sweeteners and sugar alternatives in food technology; Donell, K., Kearsley, M., Eds.; Wiley-Blackwell Publishing: Oxford, UK, 2012; pp 347 –382
  • Mussatto, S.I. Application of xylitol in food formulations and benefits for health. In d-Xylitol; Silva, S.S., Chandel, A.K., Eds.; Springer: Berlin and Heidelberg, 2012; pp 309 –323.
  • Bozell, J. Feedstocks for the future-biorefinery production of chemicals from renewable carbon. Clean 2008, 36, 641 –647.
  • Nigam, P.; Singh, D. Processes for fermentative production of xylitol—A sugar substitute. Process Biochem. 1995, 30, 117 –124.
  • Ravella, S.R.; Gallagher, J.; Fish, S.;.Prakasham, R.S. Overview on commercial production of xylitol, economic analysis and market trends. In d-Xylitol; Silva S.S., Chandel, A.K., Eds.; Springer, Berlin and Heidelberg, 2012; pp 291 –306.
  • Prakasham, R.S.; Rao, R.S.; Hobbs, P.J. Current trends in biotechnological production of xylitol and future prospects. Curr. Trends Biotechnol. Pharm. 2009, 3, 8 –36.
  • Kazi, F.; Fortman, J.; Anex, R.; Hsu, D.; Aden, A.; Dutta, A.; Kothandaraman, G. Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 2010, 89, S20 –S28.
  • Lange, J. Lignocellulose conversion: An introduction to chemistry, process and economics. Biofuels Bioprod. Biorefin. 2007, 1, 39 –48.
  • Scopus. http://www.scopus.com/term/analyzer.url (accessed May 27, 2014).
  • Zhang, H.R. Key drivers influencing the large scale production of xylitol. In d-Xylitol; Silva, S.S., Chandel, A.K., Eds.; Springer, Berlin and Heidelberg, 2012; pp 267 –289.
  • Cheng, K.K.; Zhang, J.A.; Ling, H.Z.; Ping, W.X.; Huang, W.; Ge, J.P.; Xu, J.M. Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis. Biochem. Eng. J. 2009, 43, 203 –207.
  • Martínez, E.A.; da Silva, S.S.; Silva, J.B.A.E.; Solenzal, A.I.N.; Felipe, M.G.A. The influence of pH and dilution rate on continuous production of xylitol from sugarcane bagasse hemicellulosic hydrolysate by C. guilliermondii. Process Biochem. 2003, 38, 1677 –1683.
  • Mussatto, S.I.; Roberto, I.C. Xylitol production from high xylose concentration: Evaluation of the fermentation in bioreactor under different stirring rates. J. Appl. Microbiol. 2003, 95, 331 –337.
  • Rao, R.S.; Jyothi, C.P.; Prakasham, R.S.; Sarma, P.N.; Rao, L.V. Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresour. Technol. 2006, 97, 1974 –1978.
  • Rahman, S.H.A.; Choudhury, J.P.; Ahmad, A.L. Production of xylose from oil palm empty fruit bunch fiber using sulfuric acid. Biochem. Eng J. 2006, 30, 97 –103.
  • Mohamad, N.L.; Mustapa Kamal, S.M.; Abdullah, A.G.L. Optimization of xylose production from sago trunk cortex by acid hydrolysis. Afr. J. Food Sci. Technol. 2011, 2, 102 –108.
  • Diz, J.; Cruz, J.M.; Dominguez, H.; Parajo, J.C. Xylitol production from Eucalyptus wood hydrolysates in low-cost fermentation media. Food Technol. Biotechnol. 2002, 40, 191 –197.
  • Gírio, F.M.; Carvalheiro, F.; Duarte, L.C. Deconstruction of the hemicellulose fraction from lignocellulosic materials into smple sugars. In d-Xylitol; Silva S.S.; Chandel, A.K. Eds.; Springer, Berlin and Heidelberg, 2012; pp 3 –37.
  • Cruz, J.M.; Dominguez, J.M.; Dominguez, H.; Parajo, J.C. Preparation of fermentation media from agricultural wastes and their bioconversion into xylitol. Food Biotechnol. 2000, 14, 79 –97.
  • Taherzadeh, M. J.; Karimi, K. Acid-based hydrolysis processes for ethanol from lignocellulosic materials: A review. Bioresources 2007, 2, 472 –499.
  • Walch, E.; Zemann, A.; Schinner, F.; Bonn, G.; Bobleter, O. Enzymatic Saccharification of hemicellulose obtained from hydrothermally pretreated sugar cane bagasse and beech bark. Bioresour. Technol. 1992, 39, 173 –177.
  • Garrote, G.; Dominguez, H.; Parajo, J.C. Generation of xylose solutions from Eucalyptus globulus wood by autohydrolysis-posthydrolysis processes: Posthydrolysis kinetics. Bioresour. Technol. 2001, 79, 155 –164.
  • Vegas, R.; Kabel, M.; Schols, H.; Alonso, J.; Parajo, J.C. Hydrothermal processing of rice husks: Effects of severity on product distribution. J. Chem. Technol. Biotechnol. 2008, 83, 965 –972.
  • Carvalheiro, F.; Esteves, M.; Parajo, J.C.; Pereira, H.; Girio, F.M. Production of oligosaccharides by autohydrolysis of brewery’s spent grain. Bioresour. Technol. 2004, 91, 93 –100.
  • Wang, L.; Yang, M.; Fan, X.; Zhu, X.; Xu, T.; Yuan, Q. An environmentally friendly and efficient method for xylitol bioconversion with high-temperature-steaming corncob hydrolysate by adapted Candida tropicalis. Process Biochem. 2011, 46, 1619 –1626.
  • Franceschin, G.; Sudiro, M.; Ingram, T.; Smirnova, I.; Brunner, G.; Bertucco, A. Conversion of rye straw into fuel and xylitol: A technical and economical assessment based on experimental data. Chem. Eng. Res. Des. 2011, 89, 631 –640.
  • Peng, F.; Peng, P.; Xu, F.; Sun, R.C. Fractional purification and bioconversion of hemicelluloses. Biotechnol. Adv. 2012, 25, 879 –903.
  • Yoon, K.Y.; Woodams, E.E.; Hang, Y.D. Enzymatic production of pentoses from the hemicellulose fraction of corn residues. Food Sci. Technol. 2006, 39, 387 –391.
  • Lin, L.; Yan, R.; Liu, Y.; Jiang, W. In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: Cellulose, hemicellulose and lignin. Bioresour. Technol. 2010, 101, 8217 –8223.
  • Chen, M.; Zhao, J.; Xia, L. Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydr. Polym. 2008, 71, 411 –415.
  • Tran, L.; Yogo, M.; Ojima, H.; Idota, O.; Kawai, K.; Suzuki, T.; Takamizawa, K. The production of xylitol by enzymatic hydrolysis of agricultural wastes. Biotechnol. Bioprocess Eng. 2004, 9, 223 –228.
  • Liaviga, A.; Bian, Y.; Seib, P. Release of d-xylose from wheat straw by acid and xylanase hydrolysis and purification of xylitol. J. Agric. Food Chem. 2007, 55, 7758 –7766.
  • Rao, R.S.; Jyothi, C.P.; Prakasham, R.S.; Rao, C.S.; Sarma, P.N.; Rao, L.V. Strain improvement of Candida tropicalis for the production of xylitol: Biochemical and physiological characterization of wild type and mutant strain CT-OMV5. J. Microbiol. 2006, 44, 113 –120.
  • Mussatto, S.I.; Roberto, I.C. Alternatives for detoxification of diluted acid lignocellulosic hydrolysates for use in fermentative processes: A review. Bioresour. Technol. 2004, 93, 1 –10.
  • Villarreal, M.L.M.; Prata, A.M.R.; Felipe, M.G.A.; Silva, J.B.A.E. Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzyme Microb. Technol. 2006, 40,17–24.
  • Pereira, R.S.; Mussatto, S.I.; Roberto, I.C. Inhibitory action of toxic compounds present in lignocellulosic hydrolysates on xylose to xylitol bioconversion by Candida guilliermondii. J. Ind. Microb. Biotechnol. 2011, 38, 71 –78.
  • Zhang, H.R.; Qin, X.X.; Silva, S.S. Novel isolates for biological detoxification of lignocellulose hydrolysates. Appl. Biochem. Biotechnol. 2009, 152, 199 –212.
  • Winkelhausen, E.; Kusmanova, S. Microbial conversion of d-xylose to xylitol. J. Ferment. Bioeng. 1998, 86, 1 –14.
  • Goli, J.K.; Panda, S.H. Molecular mechanism of D-xylitol production in yeasts: Focus on molecular transportation, catbolic sensing and stress response. In D-Xylitol; Silva S.S.; Chandel, A.K. Eds.; Springer, Berlin and Heidelberg, 2012; pp 85 –107.
  • Furlan, S.; Bouilloud, P.; Castro, H.F. Influence of oxygen on ethanol and xylitol production by xylose fermenting yeasts. Process Biochem. 1994, 29, 657 –662.
  • Ikeuchi, T.; Azuma, M.; Kato, J.; Ooshima, H. Screening of microorganisms for xylitol production and fermentation behavior in high concentrations of xylose. Biomass Bioeng. 1999, 16, 333 –339.
  • Jeon, Y.J.; Shin, H.S.; Rogers, P.L. Xylitol production from amutant strain of Candida tropicalis. Lett. Appl. Microbiol. 2011, 53, 106 –113.
  • Tada, K.; Kanno, T.; Horiuchi, J. Enhanced production of bioxylitol from corn cobs by Candida magnoliae. Ind. Eng. Chem. Res. 2012, 51, 10008 –10014.
  • Saha, B.C.; Bothast, R.J. Production of xylitol by Candida peltata. J. Ind. Microbiol. Biotechnol. 1999, 22, 633 –636.
  • Faria, L.F.F.; Gimenes, M.A.P.; Nobrega, R.; Pereira, N. Influence of oxygen availability on cell growth and xylitol production by Candida guilliermondii. Appl. Biochem. Biotechnol. 2002, 98-100, 449 –458.
  • Gimenes, M.A.P.; Carlos, L.C.S.; Faria, L.F.F.; Pereira, J.N. Oxygen uptake rate in production of xylitol by Candida guilliermondii with different aeration rates and initial xylose concentrations. Appl. Biochem. Biotechnol. A Enzyme Eng. Biotechnol. 2002, 98–100, 1049 –1059.
  • Sampaio, F.C.; Chaves-Alves, V.; Converti, A.; Passos, F.M.L.; Coelho, J.L. Influence of cultivation conditions on xylose-to-xylitol bioconversion by a new isolate of Debaryomyces hansenii. Bioresour. Technol. 2008, 99, 502 –508
  • Na, J.; Gi, F.; Roseiro, C.; Nahlik, J.; Palatova, M.; Girio, F. Model identification and physiological control of xylitol production using Debaryomyces hansenii. Process Biochem. 2003, 38, 1695 –1705.
  • Tamburini, E.; Bianchini, E.; Bruni, A.; Forlani, G. Cosubstrate effect on xylose reductase and xylitol dehydrogenase activity levels, and its consequence on xylitol production by Candida tropicalis. Enzyme Microb. Technol. 2010, 46, 352 –359.
  • Oh, D.K.; Kim, S. Increase xylitol yield by feeding xylose and glucose in Candida tropicalis. Appl. Microbiol. Biotechnol. 1998, 50, 419 –425.
  • Walther, T.; Hensirisak, P.; Agblevor, F.A. The influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis. Bioresour. Technol. 2001, 76, 213 –220.
  • Izumori, K.; Tuzaki, K. Production of xylitol from d-xylulose by Mycobacterium smegmatis. J. Ferment. Technol. 1988, 66, 33 –36.
  • Suzuki, S.; Sugiyama, M.; Mihara, Y.; Hashiguchi, Y.; Yokozeki, K. Novel enzymatic method for the production of xylitol from d-arabitol by Gluconobacter oxydans. Biosci. Biotechnol. Biochem. 2002, 66, 2614 –2620.
  • Rangaswamy, S.; Agblevor, F.A. Screening of facultative anaerobic bacteria utilizing d-xylose for xylitol production. Appl. Microbiol. Biotechnol. 2002, 60, 88 –93.
  • Sampaio, F.C.; Da Silveira, W.B.; Chaves-Alves, V.M.; Lopes Passos, F.M.; Cavalcante Coelho, T.L. Screening of filamentaous fungi for production of xylitol from d-xylose. Braz. J. Microbiol. 2003, 34, 325 –328.
  • Nolleau, V.; Preziosi-Belloy, L.; Delgenes, J.P.; Navarro, J.M. Xylitol production from xylose by two yeast strains: Sugar tolerence. Curr. Microbiol. 1993, 27, 191 –197.
  • Silva, S.S.; Afschar, A.S. Microbial production of xylitol from d-xylose using Candida tropicalis. Bioprocess Eng. 1994, 11, 129 –134.
  • Slininger, P.J.; Bolen, P.L.; Kurtzman, C.P. Pachysolen tannophilus: Properties and process consideration for ethanol production from d-xylose. Enzyme Microb. Technol. 1987, 9, 5 –15.
  • Sampaio, F.C, de Moraes, C.A.; De Faveri, D.; Perego, P.; Converti, A.; Passos, F.M.L.; Faveri, D.De. Influence of temperature and pH on xylitol production from xylose by Debaryomyces hansenii UFV-170. Process Biochem. 2006, 41, 675 –681.
  • Ghindea, R.; Csutak, O.; Stoica, I.; Tanase, A.M.; Vassu, T. Production of xylitol by yeasts. Romanian Biotechnol. Lett. 2010, 15, 5217 –5222.
  • Zou, Y.; Qi, K.; Chen, X.; Miao, X.; Zhong, J.J. Favorable effect of very low initial KLa value on xylitol production from xylose by a self-isolated strain of Pichia guilliermondii. J. Biosci. Bioeng. 2010, 109, 149 –152.
  • Branco, R.F.; Santos, J.C.; Murakami, L.Y.; Mussatto, S.I.; Dragone, G.; Silva, S.S. Xylitol production in a bubble column bioreactor: Influence of the aeration rate and immobilized system concentration. Process Biochem. 2007, 42, 258 –262.
  • Santos, J.C.; Converti, A.; De Carvalho, W.; Mussatto, S.I.; Da Silva, S.S. Influence of aeration rate and carrier concentration on xylitol production from sugarcane bagasse hydrolyzate in immobilized-cell fluidized bed reactor. Process Biochem. 2005, 40, 113 –118.
  • Oh, E.J.; Ha, S.J.; Rin Kim, S.; Lee, W.H.; Galazka, J.M.; Cate, J.H.D.; Jin, Y.S. Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae. Metab. Eng. 2013, 15, 226 –234.
  • Nyysola, A.; Pihlajaniemi, A.; Palva, A.; von Weyman, N.; Leisola, M. Production of xylitol from d-xylose by recombinant Lactococcus lactis. J. Biotechnol. 2005, 118, 55 –66.
  • Kim, S.S.G.; Yun, J.Y.; Seo, J.; Park, J.B. Production of xylitol from d-xylose and glucose with recombinant Corynebacterium glutamicum. Enzyme Microb. Technol. 2010, 46, 366 –371.
  • Pourmir, A.; Noor-Mohammadi, S.; Johannes, T.W. Production of xylitol by recombinant microalgae. J. Biotechnol. 2013, 165, 178 –183.
  • Cheng, H.; Wang, B.; Lv, J.; Jiang, M.; Lin, S.; Deng, Z. Xylitol production from xylose mother liquor: A novel strategy that combines the use of recombinant Bacillus subtilis and Candida maltosa. Microb. Cell Factories 2011, 10, 1 –12.
  • Hahn-Hagerdal, B.; Karnumoa, K.; Jeppsson, H.; Gorwa-Grauslund, M.F. Metabolic engineering for pentose utilization of Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 2007, 108, 147 –177.
  • Krahulec, S.; Klimacek, M.; Nidetzky, B. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Biotechnol. J. 2009, 4, 684 –694.
  • Watanabe,.S.; Saleh, A.; Pack, S.; Annaluru, N.; Kodaki, T.; Makino, K. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+ dependent xylitol dehydrogenase. J. Biotechnol. 2007, 130, 316 –319.
  • Krahulec, S.; Klimacek, M.; Nidetzky, B. Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. J. Biotechnol. 2012, 158, 192 –202.
  • Kim, S.R.; Ha, S.J.; Kong, I.I.; Jin, Y.S. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metab. Eng. 2012, 14, 336 –343.
  • Jeon, W.Y.; Yoon, B.H.; Ko, B.S.; Shim, W.Y.; Kim, J.H. Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Bioprocess Biosyst. Eng. 2012, 35, 191 –198.
  • Zhang, J.; Zhang, B.; Wang, D.; Gao, X.; Hong, J. Xylitol production at high temperature by engineered Kluyveromyces marxianus. Bioresour. Technol. 2014, 152, 192 –201.
  • Huang, C.F.; Jiang, Y.F.; Guo, G.L.; Hwang, W.S. Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process. Bioresour. Technol. 2011, 102, 3322 –3329.
  • Misra, S.; Raghuwanshi, S.; Saxena, R.K. Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Carbohydr. Polym. 2012, 92, 1596 –1601.
  • Guo, X.; Zhang, R.; Li, Z.; Dai, D.; Li, C.; Zhou, X. A novel pathway construction in Candida tropicalis for direct xylitol conversion from corncob xylan. Bioresour. Technol. 2013, 128, 547 –552.
  • Hickert, L.R.; de Souza-Cruz, P.B.; Rosa, C.A.; Ayub, M.A.Z. Simultaneous saccharification and co-fermentation of un-detoxified rice hull hydrolysate by Saccharomyces cerevisiae ICV D254 and Spathaspora arborariae NRRL Y-48658 for the production of ethanol and xylitol. Bioresour. Technol. 2013, 143, 112 –116.
  • Li, Z.; Qu, H.; Li, C.; Zhou, X. Direct and efficient xylitol production from xylan by Saccharomyces cerevisiae through transcriptional level and fermentation processing optimizations. Bioresour. Technol. 2013, 149, 413 –419.
  • Nair, N.U.; Zhao, H. Selective reduction of xylose to xylitol from a mixture of hemicellulosic sugars. Metab. Eng. 2010, 12, 462 –468.
  • Martínez, E.A.; de Almeida, e Silva, J.B.; Giulietti, M.; Solenzal, A.I.N. Downstream process for xylitol produced from fermented hydrolysate. Enzyme Microb. Technol. 2007, 40, 1193 –1198.
  • Gurgel, P.; Manchilha, I.M.; Pecanha, R.; Siqueira, J. F. Xylitol recovery from fermented sugarcane bagasse hydrolysate. Bioresour. Technol. 1995, 52, 219 –223.
  • Faveri, D.De.; Torre, P.; Perego, P.; Converti, A. Optimization of xylitol recovery by crystallization from synthetic solutions using response surface methodology. J. Food Eng. 2004, 61, 407 –412.
  • Tochampa, W.; Sirisansaneeyakul, S.; Vanichsriratana, W.; Srinophakun, P.; Baker, H.H.C.; Chisti, Y. A model of xylitol production by the yeast Candida mogii. Bioprocess Biosyst. Eng. 2005, 28, 175 –183.
  • Canilha, L.; Carvalho, W.; Silva, J.B.A.E. Xylitol bioproduction from wheat straw: Hemicellulose hydrolysis and hydrolysate fermentation. J. Sci. Food Agric. 2006, 86, 1371 –1376.
  • Carvalheiro, F.; Duarte, L.C.; Lopes, S.; Parajo, J.C.; Pereira, H.; Girio, F.M. Evaluation of the detoxification of brewery’s spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCM1941. Process Biochem. 2005, 91, 93 –100.
  • Vazquez, M.; Oliva, M.; Tellez-Luiz, S.J.; Ramirez, J.A. Hydrolysis of sorghum straw using phosphoric acid: Evaluation of furfural production. Bioresour. Technol. 2007, 98, 3053 –3060.
  • Mohagheghi, A.; Ruth, M.; Schell, D.J. Conditioning hemicellulose hydrolysate for fermentation: Effects of overliming pH on sugar and ethanol yields. Process Biochem. 2006, 41, 1811 –1896.
  • Roberto, I.C.; Mossato S.I.; Rodrigues, R.C.L. Dilute acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind. Crops Prod. 2003, 17, 171 –176.
  • Sues, A.; Millati, R.; Edebo, L.; Taherzadeh, M.J. Ethanol production from hexoses, pentoses and dilute acid hydrolysate by Mucor indicus. FEMS Yeast Res. 2005, 5, 669 –676.
  • Harerat, A.; Tellez-Luiz, S.J.; Ramirez, J.A.; Vazquez, M. Production of xylose from sorghum straw using hydrochloric acid. J. Cereal Sci. 2003, 37, 267 –274.
  • Dominguez, J.M.; Cao, N.; Gong, C.S.; Tsao, G.T. Dilute acid hemicellulosic hydrolysates from corn cobs for xylitol production by yeast. Bioresource Technol. 1997, 6, 85 –90.
  • Parajo, J.C.; Dominguez, H.; Dominguez, J.M. Charcoal adsorption of wood hydrolysates for improving their fermentability: Influence of the operational conditions. Bioresource Technol. 1996, 57, 179 –185.
  • Vazquez, M.; Oliva, M.; Tellez-Luis, S.J.; Ramirez, J.A. Hydrolysis of sorghum straw using phosphoric acid: Evaluation of furfural production. Bioresource Technol. 2007, 98, 3053 –3060.
  • Converti, A.; Borghi, M.D. Inhibition of the fermentation of oak hemicellulose acid-hydrolysate by minor sugars. J. Biotechnol. 1998, 64, 211 –218.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.