1,085
Views
14
CrossRef citations to date
0
Altmetric
Articles

Recent advances in pressure modification-based preservation technologies applied to fresh fruits and vegetables

, , &

References

  • Perera, N.; Gamage, T.; Wakeling, L.; Gamlath, G.; Versteeg, C. Colour and texture of apples high pressure processed in pineapple juice. Innovative Food Sci. Emerging Technol. 2010, 11(1), 39–46.
  • Guerrero-Beltrán, J.A.; Barbosa-Cánovas, G.V.; Swanson, B.G. High hydrostatic pressure processing of fruit and vegetable products. Food Rev. Int. 2005, 21(4), 411–425.
  • Yaldagard, M.; Mortazavi, S.A.; Tabatabaie, F. The principles of ultra high pressure technology and its application in food processing/preservation: A review of microbiological and quality aspects. Afr. J. Biotechnol. 2008, 7(16), 2739–2767.
  • Rastogi, N.; Raghavarao, K.; Balasubramaniam, V.; Niranjan, K.; Knorr, D. Opportunities and challenges in high pressure processing of foods. Crit. Rev. Food Sci. Nutr. 2007, 47(1), 69–112.
  • Diez, A.M.; Urso, R.; Rantsiou, K.; Jaime, I.; Rovira, J.; Cocolin, L. Spoilage of blood sausages morcilla de Burgos treated with high hydrostatic pressure. Int. J. Food Microbiol. 2008, 123(3), 246–253.
  • Knorr, D.; Heinz, V.; Buckow, R. High pressure application for food biopolymers. Biochimica et Biophysica Acta (BBA)-Proteins Proteomics 2006, 1764(3), 619–631.
  • Heremans, K. The effects of high pressure on biomaterials. In Ultra high pressure treatments of foods; Hendrickx, M.E.G.; Knorr, D., Eds.; Springer: New York, 2001; pp 23–51.
  • Yuste, J.; Capellas, M.; Pla, R.; Fung, D. Y.; Mor‐Mur M. High pressure processing for food safety and preservation: A review. J. Rapid Methods Autom. Microbiol. 2001, 9(1), 1–10.
  • Arroyo, G.; Sanz, P.; Préstamo, G. Effect of high pressure on the reduction of microbial populations in vegetables. J. Appl. Microbiol. 1997, 82(6), 735–742.
  • Krebbers, B.; Matser, A.; Koets, M.; Van den Berg, R. Quality and storage-stability of high-pressure preserved green beans. J. Food Eng. 2002, 54(1), 27–33.
  • Patterson, M.F.; McKay, A.M.; Connolly, M.; Linton, M. The effect of high hydrostatic pressure on the microbiological quality and safety of carrot juice during refrigerated storage. Food Microbiol. 2012, 30(1), 205–212.
  • Jacobo‐Velázquez, D.; Hernández‐Brenes, C. Biochemical changes during the storage of high hydrostatic pressure processed avocado paste. J. Food Sci. 2010, 75(6), S264–S270.
  • Garcia-Palazon, A.; Suthanthangjai, W.; Kajda, P.; Zabetakis, I. The effects of high hydrostatic pressure on β-glucosidase, peroxidase and polyphenoloxidase in red raspberry (Rubus idaeus) and strawberry (Fragaria× ananassa). Food Chem. 2004, 88(1), 7–10.
  • Terefe, N.S.; Matthies, K.; Simons, L.; Versteeg, C. Combined high pressure-mild temperature processing for optimal retention of physical and nutritional quality of strawberries (Fragaria× ananassa). Innovative Food Sci. Emerging Technol. 2009, 10(3), 297–307.
  • Sun, N.; Lee, S.; Song, K.B. Effect of high-pressure treatment on the molecular properties of mushroom polyphenoloxidase. LWT-Food Sci. Technol. 2002, 35(4), 315–318.
  • Rapeanu, G.; Loey, V.; Smout, C.; Hendrickx, M. Effect of pH on thermal and/or pressure inactivation of victoria grape (Vitis vinifera sativa) Polyphenol Oxidase: A Kinetic Study. J. Food Sci. 2005, 70(5), 301–307.
  • Hendrickx, M.; Ludikhuyze, L.; Van den Broeck, I.; Weemaes, C. Effects of high pressure on enzymes related to food quality. Trends Food Sci. Technol. 1998, 9(5), 197–203.
  • Shook, C.; Shellhammer, T.; Schwartz, S. Polygalacturonase, pectinesterase, and lipoxygenase activities in high-pressure-processed diced tomatoes. J. Agric. Food Chem. 2001, 49(2), 664–668.
  • Weemaes, C.A.; Ludikhuyze, L.; Van den Broeck, I.; Hendrickx, M. Kinetic study of antibrowning agents and pressure inactivation of avocado polyphenoloxidase. J. Food Sci. 1999, 64(5), 823–827.
  • Weemaes, C.A.; Ludikhuyze, L.R.; Van den Broeck, I.; Hendrickx, M.E. Effect of pH on pressure and thermal inactivation of avocado polyphenol oxidase: A kinetic study. J. Agric. Food Chem. 1998, 46(7), 2785–2792.
  • Wolbang, C.M.; Fitos, J.L.; Treeby, M.T. The effect of high pressure processing on nutritional value and quality attributes of Cucumis melo L. Innovative Food Sci. Emerging Technol. 2008, 9(2), 196–200.
  • McInerney, J.K.; Seccafien, C.A.; Stewart, C.M.; Bird, A.R. Effects of high pressure processing on antioxidant activity, and total carotenoid content and availability, in vegetables. Innovative Food Sci. Emerging Technol. 2007, 8(4), 543–548.
  • Roldán-Marín, E.; Sánchez-Moreno, C.; Lloría, R.; de Ancos, B.; Cano, M.P. Onion high-pressure processing: Flavonol content and antioxidant activity. LWT-Food Sci. Technol. 2009, 42(4), 835–841.
  • Buckow, R.; Heinz, V. High pressure processing: A database of kinetic information. Chem. Ing. Tech. 2008, 80(8), 1081–1095.
  • Hogan, E.; Kelly, A.L.; Sun, D.-W. High pressure processing of foods: An overview. In Emerging technologies for food processing; Elsevier Academic Press: London, UK, 2005, 3–32.
  • Ahmed, J.; Ramaswamy, H.S. High pressure processing of fruits and vegetables. Stewart Postharvest Review 2006, 2(1), 1–10.
  • Xu, S. Studies on the texture and tissue of carrot processed by high pressure. Nat. Sci. 2004, 2(3), 62–65.
  • De Roeck, A.; Sila, D.N.; Duvetter, T.; Van Loey, A.; Hendrickx, M. Effect of high pressure/high temperature processing on cell wall pectic substances in relation to firmness of carrot tissue. Food Chem. 2008, 107(3), 1225–1235.
  • Borda, D.; Smout, C.; Van Loey, A.; Hendrickx, M. High pressure thermal inactivation kinetics of a plasmin system. J. Dairy Sci. 2004, 87(8), 2351–2358.
  • Goodner, J.; Braddock, R.; Parish, M. Inactivation of pectinesterase in orange and grapefruit juices by high pressure. J. Agric. Food Chem. 1998, 46(5), 1997–2000.
  • Erkmen, O.; Dogan, C. Effects of ultra high hydrostatic pressure on Listeria monocytogenes and natural flora in broth, milk and fruit juices. Int. J. Food Sci. Tech. 2004, 39(1), 91–97.
  • Dogan, C.; Erkmen, O. High pressure inactivation kinetics of Listeria monocytogenes inactivation in broth, milk, and peach and orange juices. J. Food Eng. 2004, 62(1), 47–52.
  • Hayman, M.M.; Baxter, I.; Oriordan, P.J.; Stewart, C.M. Effects of high-pressure processing on the safety, quality, and shelf life of ready-to-eat meats. J. Food Protection. 2004, 67(8), 1709–1718.
  • Li, L.; Feng, L.; Yi, J.; Hua, C.; Chen, F.; Liao, X.; Wang, Z.; Hu, X. High hydrostatic pressure inactivation of total aerobic bacteria, lactic acid bacteria, yeasts in sour Chinese cabbage. Int. J. Food Microbiol. 2010, 142(1), 180–184.
  • Goyette, B.; Charles, M.T.; Vigneault, C.; Vijaya Raghavan, G. Pressure treatment for increasing fruit and vegetable qualities. Stewart Postharvest Rev. 2007, 3(3), 1–6.
  • Fernandes, P.A.; Moreira, S.A.; Fidalgo, L.G.; Santos, M.D.; Queirós, R.P.; Delgadillo, I.; Saraiva, J.A. Food preservation under pressure (hyperbaric storage) as a possible improvement/alternative to refrigeration. Food Eng. Rev. 2015, 7(1), 1–10.
  • Meng, X.; Zhang, M.; Zhan, Z.; Adhikari, B. Changes in quality characteristics of fresh-cut cucumbers as affected by pressurized argon treatment. Food Bioprocess Technol. 2014, 7(3), 693–701.
  • Wu, Z.-S.; Zhang, M.; Adhikari, B. Application of high pressure argon treatment to maintain quality of fresh-cut pineapples during cold storage. J. Food Eng. 2012, 110(3), 395–404.
  • Zhang, M.; Zhan, Z.; Wang, S.; Tang, J. Extending the shelf-life of asparagus spears with a compressed mix of argon and xenon gases. LWT-Food Sci. Technol. 2008, 41(4), 686–691.
  • Gbaruko, B.; Igwe, J.; Gbaruko, P.; Nwokeoma, R. Gas hydrates and clathrates: Flow assurance, environmental and economic perspectives and the Nigerian liquified natural gas project. J. Pet. Sci. Eng. 2007, 56(1), 192–198.
  • Makogon, Y.F. Natural gas hydrates: A promising source of energy. J. Natural Gas Sci. Eng. 2010, 2(1), 49–59.
  • Liu, H.; Xu, M. Changes in quality characteristics of fresh-cut jujubes as affected by pressurized nitrogen treatment. Innovative Food Sci. Emerging Technol. 2015, 30, 43–50.
  • Wu, Z.-S.; Zhang, M.; Adhikari, B. Effects of high pressure argon and xenon mixed treatment on wound healing and resistance against the growth of Escherichia coli or Saccharomyces cerevisiae in fresh-cut apples and pineapples. Food Control 2013, 30(1), 265–271.
  • Romanazzi, G.; Nigro, F.; Ippolito, A. Effectiveness of a short hyperbaric treatment to control postharvest decay of sweet cherries and table grapes. Postharvest Biol. Technol. 2008, 49(3), 440–442.
  • Liplap, P.; Toussaint, V.; Toivonen, P.; Vigneault, C.; Boutin, J.; Raghavan, G.V. Effect of hyperbaric pressure treatment on the growth and physiology of bacteria that cause decay in fruit and vegetables. Food Bioprocess Technol. 2014, 7(8), 2267–2280.
  • Liplap, P.; Charlebois, D.; Charles, M.T.; Toivonen, P.; Vigneault, C.; Raghavan, G.V. Tomato shelf-life extension at room temperature by hyperbaric pressure treatment. Postharvest Biol. Technol. 2013, 86, 45–52.
  • Liplap, P.; Vigneault, C.; Toivonen, P.; Charles, M.T.; Raghavan, G.V. Effect of hyperbaric pressure and temperature on respiration rates and quality attributes of tomato. Postharvest Biol. Technol. 2013, 86, 240–248.
  • Goyette, B.; Vigneault, C.; Charles, M.T.; Raghavan, V.G. Effect of hyperbaric treatments on the quality attributes of tomato. Can J. Plant. Sci. 2012, 92(3), 541–551.
  • Baba, T.; Ikeda, F. Use of high pressure treatment to prolong the postharvest life of mume fruit (Prunus mume). Acta Hortic. 2003, 628, 373–377.
  • Baba, T.; Ito, S.; Ikeda, F.; Manago, M. Effectiveness of high pressure treatment at low temperature to improve postharvest life of horticultural commodities. Acta Horticulturae 2008, 768, 417–422.
  • Eggleston, V.; Tanner, D.J. Are carrots under pressure still alive?: The effect of high pressure processing on the respiration rate of carrots. Acta Horticulturae 2005, 687, 371–374.
  • Yang, D.S.; Balandrán-Quintana, R.R.; Ruiz, C.F.; Toledo, R.T.; Kays, S.J. Effect of hyperbaric, controlled atmosphere, and UV treatments on peach volatiles. Postharvest Biol. Technol. 2009, 51(3), 334–341.
  • Liplap, P.; Boutin, J.; LeBlanc, D.I.; Vigneault, C.; Vijaya Raghavan, G. Effect of hyperbaric pressure and temperature on respiration rates and quality attributes of Boston lettuce. Int. J. Food Sci. Tech. 2014, 49(1), 137–145.
  • Nakamura, K.; Oshita, S.; Seo, Y.; Kawagoe, Y.; Koreeda, K. Extension of vase life of cut carnations by structured water. Int. Symposium Plant Prod. Closed Ecosyst. 1996, 440, 657–662.
  • Petersen-Felix, S.; Luginbühl, M.; Schnider, T.W.; Curatolo, M.; Arendt-Nielsen, L.; Zbinden, A.M. Comparison of the analgesic potency of xenon and nitrous oxide in humans evaluated by experimental pain. Br. J. Anaesth. 1998, 81(5), 742–747.
  • Oshita, S.; Seo, Y.; Kawagoe, Y.; Rahman, M. Storage of broccoli by making the water structured. J. Jpn. Soc. Agric. Mach. 1997, 59, 29–35.
  • Rahman, M.; Khair, A.; Bala, B.; Islam, A.; Rabbi, F. Influence of intracellular structured water formed by Xe gas on the shelf life of eggplant fruit (Solanum melongena L.). Pak. J. Biol. Sci, 2001, 4(12), 1543–1546.
  • Rahman, M.A.; Islam, A.K.M.S.; Khair, A.; Bala, B.K. Effect of nonpolar gases on the storage of Persimmon Fruits (Diospyros khaki L.) at different temperatures. Pak. J. Biol. Sci. 2002, 5(1), 84–87.
  • Purwanto, Y.A.; Oshita, S.; Seo, Y.; Kawagoe, Y. Concentration of liquid foods by the use of gas hydrate. J. Food Eng. 2001, 47(2), 133–138.
  • Zhan, Z.-G.; Zhang, M. Effects of inert gases on enzyme activity and inspiration of cucumber. J. Wuxi University Light Ind. 2005, 3, 004.
  • Fujii, K.; Ohtani, A.; Watanabe, J.; Ohgoshi, H.; Fujii, T.; Honma, K. High-pressure inactivation of Bacillus cereus spores in the presence of argon. Int. J. Food Microbiol. 2002, 72(3), 239–242.
  • Xu, M.; Liu, H.; Huang, M.; Zhou, D.; Cao, Q.; Ma, K. Effects of high pressure nitrogen treatments on the quality of fresh-cut pears at cold storage. Innovative Food Sci. Emerging Technol. 2015, 32, 56–63.
  • Camel Lagnika, M.Z.; Shao Jin Wang. Effect of high argon pressure and modified atmosphere packaging on the white mushroom (Agaricus bisporus) physico-chemical and microbiological properties. J. Food Nutr. Res. 2011, 50(3), 167–176.
  • Lagnika, C.; Zhang, M.; Mothibe, K.J. Effects of ultrasound and high pressure argon on physico-chemical properties of white mushrooms (Agaricus bisporus) during postharvest storage. Postharvest Biol. Technol. 2013, 82, 87–94.
  • Wu, Z.-S.; Zhang, M.; Wang, S. Effects of high‐pressure argon and nitrogen treatments on respiration, browning and antioxidant potential of minimally processed pineapples during shelf life. J. Sci. Food Agric. 2012, 92(11), 2250–2259.
  • Sun, D.-W.; Zheng, L. Vacuum cooling technology for the agri-food industry: Past, present and future. J. Food Eng. 2006, 77(2), 203–214.
  • McDonald, K.; Sun, D.-W. Effect of evacuation rate on the vacuum cooling process of a cooked beef product. J. Food Eng. 2001, 48(3), 195–202.
  • Sun, D.-W.; Wang, L. Heat transfer characteristics of cooked meats using different cooling methods. Int. J. Refrig. 2000, 23(7), 508–516.
  • McDonald, K.; Sun, D.-W. Vacuum cooling technology for the food processing industry: A review. J. Food Eng. 2000, 45(2), 55–65.
  • McDonald, K.; Sun, D.-W. The formation of pores and their effects in a cooked beef product on the efficiency of vacuum cooling. J. Food Eng. 2001, 47(3), 175–183.
  • McDonald, K.; Sun, D.W. Pore size distribution and structure of a cooked beef product as affected by vacuum cooling. J. Food Process Eng. 2001, 24(6), 381–403.
  • Everington, D. Vacuum technology for food processing. Food Technol. Int. Europe 1993, 993, 71–74.
  • Tao, F.; Zhang, M.; HangQing, Y.; JinCai, S. Effects of different storage conditions on chemical and physical properties of white mushrooms after vacuum cooling. J. Food Eng. 2006, 77(3), 545–549.
  • Artes, F.; Martinez, J. Effects of vacuum cooling and packaging films on the shelf life of salinas lettuce. Science et Technique du Froid (France), 1994.
  • Artés, F.; Martinez, J.A. Influence of packaging treatments on the keeping quality of ‘Salinas’ lettuce. LWT-Food Sci. Technol. 1996, 29(7), 664–668.
  • Martınez, J.; Artes, F. Effect of packaging treatments and vacuum-cooling on quality of winter harvested iceberg lettuce. Food Res. Int. 1999, 32(9), 621–627.
  • Tao, F.; Zhang, M.; Yu, H.-Q. Effect of vacuum cooling on physiological changes in the antioxidant system of mushroom under different storage conditions. J. Food Eng. 2007, 79(4), 1302–1309.
  • Rennie, T.; Vigneault, C.; Raghavan, G.; DeEll, J. Effects of pressure reduction rate on vacuum cooled lettuce quality during storage. Can. Biosyst. Eng. 2001, 43, 3.39–33.44.
  • He, S.; Feng, G.; Yang, H.; Wu, Y.; Li, Y. Effects of pressure reduction rate on quality and ultrastructure of iceberg lettuce after vacuum cooling and storage. Postharvest Biol. Technol. 2004, 33(3), 263–273.
  • Mittal, T.C.; Kapoor, S.R.S.S.; Jindal, N. Effect of pre-cooling and packaging materials under ambient condition storage on postharvest quality of white button mushroom. Ind. J. Sci. Res. and Tech. 2014, 2(6), 60–72.
  • Poonlarp, P.B.; Boonyakiat, D. Application of vacuum cooling technology and active packaging to improve the quality of Chinese Kale. CMU J. Nat. Sci. 2015, 14(2), 8.
  • Cheng, H.-P. Vacuum cooling combined with hydrocooling and vacuum drying on bamboo shoots. Appl. Therm. Eng. 2006, 26(17), 2168–2175.
  • Cheng, H.-P.; Hsueh, C.-F. Multi-stage vacuum cooling process of cabbage. J. Food Eng. 2007, 79(1), 37–46.
  • Wang, L.; Sun, D.-W. Rapid cooling of porous and moisture foods by using vacuum cooling technology. Trends Food Sci. Technol. 2001, 12(5), 174–184.
  • Sun, D.W. Comparison of rapid vacuum cooling of leafy and non-leafy vegetables. ASAE Paper No. 996117, ASAE: St. Joseph, MI, 1999.
  • Sun, D.W. Effect of pre-wetting on weight loss and cooling times of vegetables during vacuum cooling. ASAE Paper No. 996119, ASAE: St. Joseph, MI, 1999.
  • Chen, Y. Vacuum, hydro, and forced-air cooling of farm produce and their energy consumptions. FFTC Book Series (Taiwan) 1988, 37, 104–111.
  • Chambroy, Y.; Flanzy, C. Vacuum precooling, ethylene and storage of cantaloup melons. Comptes Rendus des Seances de l’Academie d’Agriculture de France 1980, 66(9), 813–822.
  • Sun, D. Experimental research on vacuum rapid cooling of vegetables. In Advances in the refrigeration systems, food technologies and cold chain; International Institute of Refrigeration ( Institut International du Froid): Paris, France, 2000; pp 342–347.
  • Giri, A.; Osako, K.; Ohshima, T. Effects of hypobaric and temperature-dependent storage on headspace aroma-active volatiles in common squid miso. Food Res. Int. 2011, 44(3), 739–747.
  • Burg, S. Hypobaric storage in food industry: Advances in application and theory; Elsevier: Amsterdam, Netherlands, 2014.
  • Burg, S.P.; Burg, E.A. Fruit storage at subatmospheric pressures. Sci. 1966, 153(3733), 314–315.
  • Burg, S.P. Postharvest physiology and hypobaric storage of fresh produce; CABI: Wallingford, UK, 2004.
  • Welby, E.M.; McGregor, B.M. Agricultural export transportation handbook; US Department of Agriculture, Agricultural Marketing Service: Washington, DC, 2004.
  • Bender, R.J.; Brecht, J.K.; Sargent, S.A.; Huber, D.J. Mango tolerance to reduced oxygen levels in controlled atmosphere storage. J. Am. Soc. Hort. Sci. 2000, 125(6), 707–713.
  • Ullah, H.; Ahmad, S.; Thompson, A.; Ahmad, W.; Nawaz, M.A. Storage of ripe mango (Mangifera Indica L.) cv. alphonso in controlled atmosphere with elevated CO2. Pak J Bot. 2010, 42(3), 2077–2084.
  • Davenport, T.L.; White, T.L.; Burg, S.P. Optimal low-pressure conditions for long-term storage of fresh commodities kill Caribbean fruit fly eggs and larvae. Hort Technol. 2006, 16(1), 98–104.
  • Li, W.; Zhang, M. Effect of three-stage hypobaric storage on cell wall components, texture and cell structure of green asparagus. J. Food Eng. 2006, 77(1), 112–118.
  • Li, W.; Zhang, M.; Wang, S. Effect of three-stage hypobaric storage on membrane lipid peroxidation and activities of defense enzyme in green asparagus. LWT-Food Sci. Technol. 2008, 41(10), 2175–2181.
  • Li, W.; Zhang, M.; Yu, H. Study on hypobaric storage of green asparagus. J. Food Eng. 2006, 73(3), 225–230.
  • Wang, J.; You, Y.; Chen, W.; Xu, Q.; Wang, J.; Liu, Y.; Song, L.; Wu, J. Optimal hypobaric treatment delays ripening of honey peach fruit via increasing endogenous energy status and enhancing antioxidant defence systems during storage. Postharvest Biol. Technol. 2015, 101, 1–9.
  • Romanazzi, G.; Nigro, F.; Ippolito, A.; Salerno, M. Effect of short hypobaric treatments on postharvest rots of sweet cherries, strawberries and table grapes. Postharvest Biol. Technol. 2001, 22(1), 1–6.
  • Gao, H.; Chen, H.; Chen, W.; Yang, J.; Song, L.; Zheng, Y.; Jiang, Y. Effect of hypobaric storage on physiological and quality attributes of loquat fruit at low temperature. Acta Hortic. 2006, 712, 269–274.
  • Chen, H.; Yang, H.; Gao, H.; Long, J.; Tao, F.; Fang, X., Jiang, Y. Effect of hypobaric storage on quality, antioxidant enzyme and antioxidant capability of the Chinese bayberry fruits. Chem. Cent. J. 2013, 7(1), 4.
  • Jiao, S.; Johnson, J.; Tang, J.; Mattinson, D.; Fellman, J.; Davenport, T.; Wang, S. Tolerance of codling moth, and apple quality associated with low pressure/low temperature treatments. Postharvest Biol. Technol. 2013, 85, 136–140.
  • Wang, Z.; Dilley, D.R. Hypobaric storage removes scald-related volatiles during the low temperature induction of superficial scald of apples. Postharvest Biol. Technol. 2000, 18(3), 191–199.
  • Dilley, D.R. Hypobaric storage of perishable commodities: fruits, vegetables, flowers and seedlings. Symposium on Vegetable Storage 1977, 62, 61–70.
  • An, D.S.; Park, E.; Lee, D.S. Effect of hypobaric packaging on respiration and quality of strawberry and curled lettuce. Postharvest Biol. Technol. 2009, 52(1), 78–83.
  • Hashmi, M.S.; East, A.R.; Palmer, J.S.; Heyes, J.A. Hypobaric treatment stimulates defence-related enzymes in strawberry. Postharvest Biol. Technol. 2013, 85, 77–82.
  • Yi, C.; Qu, H.; Jiang, Y.; Shi, J.; Duan, X.; Joyce, D.; Li, Y. ATP‐induced changes in energy status and membrane integrity of harvested litchi fruit and its relation to pathogen resistance. J. Phytopathol. 2008, 156(6), 365–371.
  • Chen, H.; Ling, J.; Wu, F.; Zhang, L.; Sun, Z.; Yang, H. Effect of hypobaric storage on flesh lignification, active oxygen metabolism and related enzyme activities in bamboo shoots. LWT-Food Sci. Technol. 2013, 51(1), 190–195.
  • Hashmi, M.S.; East, A.R.; Palmer, J.S.; Heyes, J.A. Pre-storage hypobaric treatments delay fungal decay of strawberries. Postharvest Biol. Technol. 2013, 77, 75–79.
  • Kumar, P.; Ganguly, S. Role of vacuum packaging in increasing shelf-life in fish processing technology. Asian J. Bio Sci. 2014, 9(1), 109–112.
  • Chetti, M.B.; Deepa, G.; Antony, R.T.; Khetagoudar, M.C.; Uppar, D.S.; Navalgatti, C.M. Influence of vacuum packaging and long term storage on quality of whole chilli (Capsicum annuum L.). J. Food Sci. Technol. 2014, 51(10), 2827–2832.
  • Nunez, M.; Gaya, P.; Medina, M.; Rodriguez‐Marin, M.; Garcia‐Aser, C. Changes in microbiological, chemical, rheological and sensory characteristics during ripening of vacuum packaged Manchego cheese. J. Food Sci. 1986, 51(6), 1451–1455.
  • Deepa, G.; Chetti, M.B.; Khetagoudar, M.C.; Adavirao, G.M. Influence of vacuum packaging on seed quality and mineral contents in chilli (Capsicum annuum L.). J. Food Sci. Technol. 2013, 50(1), 153–158.
  • Pérez-Gregorio, M.; García-Falcón, M.; Simal-Gándara, J. Flavonoids changes in fresh-cut onions during storage in different packaging systems. Food Chem. 2011, 124(2), 652–658.
  • Beltrán, D.; Selma, M.V.; Tudela, J.A.; Gil, M.I. Effect of different sanitizers on microbial and sensory quality of fresh-cut potato strips stored under modified atmosphere or vacuum packaging. Postharvest Biol. Technol. 2005, 37(1), 37–46.
  • Padmanaban, G.; Singaravelu, K.; Annavi, S.T. Increasing the shelf-life of papaya through vacuum packing. J. Food Sci. Technol. 2014, 51(1), 163–167.
  • Xing, Y.-G.; Li, X.-H.; Xu, Q.-L.; Yun, J.; Lu, Y.-Q. Extending the shelf life of fresh-cut lotus root with antibrowning agents, cinnamon oil fumigation and moderate vacuum packaging. J. Food Process Eng. 2012, 35(4), 505–521.
  • Denoya, G.I.; Vaudagna, S.R.; Polenta, G. Effect of high pressure processing and vacuum packaging on the preservation of fresh-cut peaches. LWT-Food Sci. Technol. 2015, 62(1), 801–806.
  • Chang, M.-S.; Kim, G.-H. Combined effect of hot water dipping and vacuum packaging for maintaining the postharvest quality of peeled taro. Hortic., Environ., Biotechnol. 2015, 56(5), 662–668.
  • Liu, Q.; Zhang, M.; Fang, Z.X., Rong, X.H. Effects of ZnO nanoparticles and microwave heating on the sterilization and product quality of vacuum‐packaged Caixin. J. Sci. Food Agric. 2014, 94(12), 2547–2554.
  • Liu, Q.; Zhang, M.; Xu, B.; Fang, Z.; Zheng, D. Effect of radio frequency heating on the sterilization and product quality of vacuum packaged Caixin. Food Bioprod. Process. 2015, 95, 47–54.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.