369
Views
12
CrossRef citations to date
0
Altmetric
Reviews

The Gluten-Free Diet and Glycaemic Index in the Management of Coeliac Disease Associated with Type 1 Diabetes

ORCID Icon &

References

  • Husby, S.; Koletzko, S.; Korponay-Szabó, I. R.; Mearin, M. L.; Phillips, A.; Shamir, R.; Troncone, R.; Giersiepen, K.; Branski, D.; Catassi, C.; et al. ESPGHAN Working Group on Coeliac Disease Diagnosis; ESPGHAN Gastroenterology Committee; European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition Guidelines for the Diagnosis of Coeliac Disease. J. Pediatr. Gastroenterol. Nutr. 2012, 54(1), 136–160.
  • Mahmud, F. H.; Murray, J. A.; Kudva, Y. C.; Zinsmeister, A. R.; Dierkhising, R. A.; Lahr, B. D.; Dyck, P. J.; Kyle, R. A.; El-Youssef, M.; Burgart, L. J.; et al. Celiac Disease in Type 1 Diabetes Mellitus in a North American Community: Prevalence, Serologic Screening, and Clinical Features. Mayo Clin. Proc. 2005, 80(11), 1429–1434.
  • Saturni, L.; Ferretti, G.; Bacchetti, T. The Gluten-Free Diet: Safety and Nutritional Quality. Nutrients. 2010, 2(1), 16–34. DOI: 10.3390/nu2010016.
  • Wild, D.; Robins, G. G.; Burley, V. J.; Howdle, P. D. Evidence of High Sugar Intake, and Low Fibre and Mineral Intake, in the Gluten-Free Diet. Aliment. Pharmacol. Ther. 2010, 32(4), 573–581. DOI: 10.1111/j.1365-2036.2010.04386.x.
  • Thompson, T.; Folate, Iron, and Dietary Fiber Contents of the Gluten-Free Diet. J. Am. Diet. Assoc. 2000, 100(11), 1389–1396. DOI: 10.1016/S0002-8223(00)00386-2.
  • Mehta, S. N.; Volkening, L. K.; Quinn, N.; Laffel, L. M. Intensively Managed Young Children with Type 1 Diabetes Consume High-Fat, Low-Fiber Diets Similar to Age-Matched Controls. Nutr. Res. 2014, 34(5), 428–435. DOI: 10.1016/j.nutres.2014.04.008.
  • Ahola, A. J.; Mikkilä, V.; Mäkimattila, S.; Forsblom, C.; Freese, R.; Groop, P. H. Finn Diane Study Group. Energy and Nutrient Intakes and Adherence to Dietary Guidelines among Finnish Adults with Type 1 Diabetes. Ann. Med. 2012, 44(1), 73–81. DOI: 10.3109/07853890.2010.530682.
  • Ludvigsson, J.F.; Bai, J.C.; Biagi, F.; Card, T.R.; Ciacci, C.; Ciclitira, P.J.; Green, P.H.; Hadjivassiliou, M.; Holdoway, A.; van Heel, D.A.; et al. Diagnosis and Management of Adult Coeliac Disease: Guidelines from the British Society of Gastroenterology. Gut. 2014, 63, 1210–1228. DOI: 10.1136/gutjnl-2013-306578.
  • Assor, E.; Marcon, M. A.; Hamilton, N.; Fry, M.; Cooper, T.; Mahmud, F. H. Design of a Dietary Intervention to Assess the Impact of a Gluten-Free Diet in a Population with Type 1 Diabetes and Celiac Disease. BMC Gastroenterol. 2015, 15(1), 181. DOI: 10.1186/s12876-015-0413-0.
  • Mårild, K.; Ludvigsson, J.; Sanz, Y.; Ludvigsson, J. F. Antibiotic Exposure in Pregnancy and Risk of Coeliac Disease in Offspring: A Cohort Study. BMC Gastroenterol. 2014, 14(1), 75. DOI: 10.1186/1471-230X-14-75.
  • Kemppainen, K. M.; Lynch, K. F.; Liu, E.; Lönnrot, M.; Simell, V.; Briese, T.; Koletzko, S.; Hagopian, W.; Rewers, M.; She, J. X.; et al. Factors that Increase Risk of Celiac Disease Autoimmunity following a Gastrointestinal Infection in Early Life. Clin. Gastroenterol. Hepatol. 2017, 5, 694–702. DOI: 10.1016/j.cgh.2016.10.033.
  • Pozo-Rubio, T.; Olivares, M.; Nova, E.; De Palma, G.; Mujico, J. R.; Ferrer, M. D.; Marcos, A.; Sanz, Y. Immune Development and Intestinal Microbiota in Celiac Disease. Clin. Dev. Immunol. 2012, 2012. Article ID 654143. DOI:10.1155/2012/654143.
  • Schuppan, D. Current Concepts of Celiac Disease Pathogenesis. Gastroenterology. 2000, 119(1), 234–242. DOI: 10.1053/gast.2000.8521.
  • Abadie, V.; Sollid, L. M.; Barreiro, L. B.; Jabri, B. Integration of Genetic and Immunological Insights into a Model of Celiac Disease Pathogenesis. Annu. Rev. Immunol. 2011, 29(1), 493–525. DOI: 10.1146/annurev-immunol-040210-092915.
  • Tortora, R.; Zingone, F.; Rispo, A.; Bucci, C.; Capone, P.; Imperatore, N.; Caporaso, N.; D’Agosto, D.; Ciacci, C. Coeliac Disease in the Elderly in a Tertiary Centre. Scand J. Gastroenterol. 2016, 51, 1179–1183. DOI: 10.1080/00365521.2016.1186222.
  • Volta, U.; Caio, G.; Stanghellini, V.; De Giorgio, R. The Changing Clinical Profile of Celiac Disease: A 15-Year Experience (1998-2012) in an Italian Referral Center. BMC Gastroenterol. 2014, 14(14), 194. DOI: 10.1186/s12876-014-0194-x.
  • Imperatore, N.; Rispo, A.; Capone, P.; Donetto, S.; De Palma, G. D.; Gerbino, N.; Rea, M.; Caporaso, N.; Tortora, R. Gluten-Free Diet Does Not Influence the Occurrence and the Th1/Th17-Th2 Nature of Immune-Mediated Diseases in Patients with Coeliac Disease. Dig. Liver Dis. 2016, 48, 740–744. DOI: 10.1016/j.dld.2016.03.026.
  • Fasano, A.; Berti, I.; Gerarduzzi, T.; Not, T.; Colletti, R. B.; Drago, S.; Elitsur, Y.; Green, P. H.; Guandalini, S.; Hill, I. D.; et al. Prevalence of Celiac Disease in At-Risk and Not-At-Risk Groups in the United States: A Large Multicenter Study. Arch. Int. Med. 2003, 163(3), 286–292.
  • Mustalahti, K.; Catassi, C.; Reunanen, A.; Fabiani, E.; Heier, M.; McMillan, S.; Murray, L.; Metzger, M. H.; Gasparin, M.; Bravi, E.; et al. The Prevalence of Celiac Disease in Europe: Results of a Centralized, International Mass Screening Project. Ann. Med. 2010, 42(8), 587–595. DOI: 10.3109/07853890.2010.505931.
  • Lionetti, E.; Gatti, S.; Pulvirenti, A.; Catassi, C. Celiac Disease from a Global Perspective. Best Pract. Res. Clin. Gastroenterol. 2015, 29(3), 365–379. DOI: 10.1016/j.bpg.2015.05.004.
  • Barton, S. H.; Murray, J. A. Celiac Disease and Autoimmunity in the Gut and Elsewhere. Gastroenterol. Clin. North Am. 2008, 37(2), 411–428. DOI: 10.1016/j.gtc.2008.02.001.
  • Leonard, M. M.; Cureton, P. A.; Fasano, A. Managing Coeliac Disease in Patients with Diabetes. Diabetes Obes. Metab. 2015, 17(1), 3–8. DOI: 10.1111/dom.2015.17.issue-1.
  • van Belle, T. L.; Coppieters, K. T.; von Herrath, M. G. Type 1 Diabetes: Etiology, Immunology, and Therapeutic Strategies. Physiol. Rev. 2011, 91(1), 79–118. DOI: 10.1152/physrev.00003.2010.
  • Holmes, G. K. Coeliac Disease and Type 1 Diabetes Mellitus - the Case for Screening. Diabetes Med. 2001, 18(3), 169–177.
  • Polychronakos, C.; Li, Q. Understanding Type 1 Diabetes through Genetics: Advances and Prospects. Nat. Rev. Genet. 2011, 12(11), 781–792. DOI: 10.1038/nrg3069.
  • Smyth, D. J.; Plagnol, V.; Walker, N. M.; Cooper, J. D.; Downes, K.; Yang, J. H.; Howson, J. M.; Stevens, H.; McManus, R.; Wijmenga, C.; et al. Shared and Distinct Genetic Variants in Type 1 Diabetes and Celiac Disease. N. Engl. J. Med. 2008, 359(26), 2767–2777.
  • Walker-Smith, J. A.; Vines, R.; Grigor, W. Coeliac Disease and Diabetes. Lancet. 1969, 2(7621), 650. DOI: 10.1016/S0140-6736(69)90363-8.
  • Cerutti, F.; Bruno, G.; Chiarelli, F.; Lorini, R.; Meschi, F.; Sacchetti, C. Diabetes Study Group of the Italian Society of Pediatric Endocrinology and Diabetology. Younger Age at Onset and Sex Predict Celiac Disease in Children and Adolescents with Type 1 Diabetes: An Italian Multicenter Study. Diabetes Care. 2004, 27(6), 1294–1298.
  • Elfström, P.; Sundström, J.; Ludvigsson, J. F. Systematic Review with Meta-Analysis: Associations between Coeliac Disease and Type 1 Diabetes. Aliment. Pharmacol. Ther. 2014, 40(10), 1123–1132. DOI: 10.1111/apt.12803.
  • Bakker, S. F.; Tushuizen, M. E.; Stokvis-Brantsma, W. H.; Aanstoot, H. J.; Winterdijk, P.; van Setten, P. A.; von Blomberg, B. M.; Mulder, C. J.; Simsek, S. Frequent Delay of Coeliac Disease Diagnosis in Symptomatic Patients with Type 1 Diabetes Mellitus: Clinical and Genetic Characteristics. Eur. J. Int. Med. 2013, 24(5), 456–460. DOI: 10.1016/j.ejim.2013.01.016.
  • Ludvigsson, J. F.; Ludvigsson, J.; Ekbom, A.; Montgomery, S. M. Celiac Disease and Risk of Subsequent Type 1 Diabetes: A General Population Cohort Study of Children and Adolescents. Diabetes Care. 2006, 29(11), 2483–2488. DOI: 10.2337/dc06-0794.
  • Hill, I. D.; Fasano, A.; Guandalini, S.; Hoffenberg, E.; Levy, J.; Reilly, N.; Verma, R. NASPGHAN Clinical Report on the Diagnosis and Treatment of Gluten-Related Disorders. J. Pediatr. Gastroenterol. Nutr. 2016, 63(1), 156–165. DOI: 10.1097/MPG.0000000000001216.
  • Botero-López, J. E.; Araya, M.; Parada, A.; Méndez, M. A.; Pizarro, F.; Espinosa, N.; Canales, P.; Alarcón, T. Micronutrient Deficiencies in Patients with Typical and Atypical Celiac Disease. J. Pediatr. Gastroenterol. Nutr. 2011, 53(3), 265–270. DOI: 10.1097/MPG.0b013e3181f988fc.
  • Zarkadas, M.; Cranney, A.; Case, S.; Molloy, M.; Switzer, C.; Graham, I. D.; Butzner, J. D.; Rashid, M.; Warren, R. E.; Burrows, V. The Impact of a Gluten-Free Diet on Adults with Coeliac Disease: Results of a National Survey. J. Hum. Nutr. Diet. 2006, 19(1), 41–49. DOI: 10.1111/jhn.2006.19.issue-1.
  • Bardella, M. T.; Fredella, C.; Prampolini, L.; Molteni, N.; Giunta, A. M.; Bianchi, P. A. Body Composition and Dietary Intakes in Adult Celiac Disease Patients Consuming a Strict Gluten-Free Diet. Am. J. Clin. Nutr. 2000, 72(4), 937–939. DOI: 10.1093/ajcn/72.4.937.
  • Alvarez-Jubete, L.; Arendt, E. K.; Gallagher, E. Nutritive Value of Pseudocereals and Their Increasing Use as Functional Gluten-Free Ingredients. Trends Food Sci. Technol. 2010, 21(2), 106–113. DOI: 10.1016/j.tifs.2009.10.014.
  • Krupa-Kozak, U.; Wronkowska, M.; Soral-Śmietana, M. Effect of Buckwheat Flour on Microelements and Proteins Contents in Gluten-Free Bread. Czech J. Food Sci. 2011, 29(2), 103–108. DOI: 10.17221/CJFS.
  • Lange, E. Oat Products in Gluten Free Diet. Rocz Panstw Zakl Hig. 2007, 58(1), 103–109.
  • Thompson, T. Case Problem: Questions regarding the Acceptability of Buckwheat, Amaranth, Quinoa, and Oats from a Patient with Celiac Disease. J. Am. Diet. Assoc. 2001, 101(5), 586–587.
  • Jnawali, P.; Kumar, V.; Tanwar, B. Celiac Disease: Overview and Considerations for Development of Gluten-Freefoods. Food Sci. Hum. Wellness. 2016, 5(4), 169–176. DOI: 10.1016/j.fshw.2016.09.003.
  • Nunes, M.; Ryan, L.; Arendt, E. K. Effect of Low Lactose Dairy Powder Addition on the Properties of Gluten-Free Batters and Bread Quality. Eur. Food Res. Technol. 2009, 229(1), 31–41. DOI: 10.1007/s00217-009-1023-2.
  • Krupa-Kozak, U.; Bączek, N.; Rosell, C. M. Application of Dairy Proteins as Technological and Nutritional Improvers of Calcium-Supplemented Gluten-Free Bread. Nutrients. 2013, 5(11), 4503–4520. DOI: 10.3390/nu5114503.
  • Houben, A.; Höchstötter, A.; Becker, T. Possibilities to Increase the Quality in Gluten-Free Breadproduction: An Overview. Eur. Food Res. Technol. 2012, 235(2), 195–208. DOI: 10.1007/s00217-012-1720-0.
  • Miranda, J.; Lasa, A.; Bustamante, M. A.; Churruca, I.; Simon, E. Nutritional Differences between a Gluten-Free Diet and a Diet Containing Equivalent Products with Gluten. Plant Foods Hum. Nutr. 2014, 69(2), 182–187. DOI: 10.1007/s11130-014-0449-2.
  • Kulai, T.; Rashid, M. Assessment of Nutritional Adequacy of Packaged Gluten-Free Food Products. Can. J. Diet. Pract. Res. 2014, 75(4), 186–190. DOI: 10.3148/cjdpr-2014-022.
  • Dickey, W.; Kearney, N. Overweight in Celiac Disease: Prevalence, Clinical Characteristics, and Effect of a Gluten Free Diet. Am. J. Gastroenterol. 2006, 101, 2356–2359.
  • Ukkola, A.; Mäki, M.; Kurppa, K.; Collin, P.; Huhtala, H.; Kekkonen, L.; Kaukinen, K. Changes in Body Mass Index on a Gluten-Free Diet in Coeliac Disease: A Nationwide Study. Eur. J. Int. Med. 2012, 23, 384–388. DOI: 10.1016/j.ejim.2011.12.012.
  • Tortora, R.; Capone, P.; De Stefano, G.; Imperatore, N.; Gerbino, N.; Donetto, S.; Monaco, V.; Caporaso, N.; Rispo, A. Metabolic Syndrome in Patients with Coeliac Disease on a Gluten-Free Diet. Aliment. Pharmacol. Ther. 2015, 41, 352–359. DOI: 10.1111/apt.2015.41.issue-4.
  • Tovoli, F.; Negrini, G.; Farì, R.; Guidetti, E.; Faggiano, C.; Napoli, L.; Bolondi, L.; Granito, A. Increased Risk of Nonalcoholic Fatty Liver Disease in Patients with Coeliac Disease on a Gluten‐Free Diet: Beyond Traditional Metabolic Factors. Aliment. Pharmacol. Ther. 2018, 48, 538–546. DOI: 10.1111/apt.14910.
  • Kahali, B.; Halligan, B.; Speliotes, E. K. Insights from Genome-Wide Association Analyses of Nonalcoholic Fatty Liver Disease. Semin. Liver. Dis. 2015, 35, 375–391. DOI: 10.1055/s-00000069.
  • Tortora, R.; Rispo, A.; Alisi, A.; Imperatore, N.; Crudele, A.; Ferretti, F.; Nobili, V.; Miele, L.; Gerbino, N.; Caporaso, N.; et al. PNPLA3 Rs738409 Polymorphism Predicts Development and Severity of Hepatic Steatosis but Not Metabolic Syndrome in Celiac Disease. Nutrients. 2018, 10, 1239. DOI: 10.3390/nu10091239.
  • Imperatore, N.; Tortora, R.; Testa, A.; Gerbino, N.; Caporaso, N.; Rispo, A. Proton Pump Inhibitors as Risk Factor for Metabolic Syndrome and Hepatic Steatosis in Coeliac Disease Patients on Gluten-Free Diet. J. Gastroenterol. 2018, 53, 507–516. DOI: 10.1007/s00535-017-1399-x.
  • Jakobsen, M. U.; Dethlefsen, C.; Joensen, A. M.; Stegger, J.; Tjønneland, A.; Schmidt, E. B.; Overvad, K. Intake of Carbohydrates Compared with Intake of Saturated Fatty Acids and Risk of Myocardial Infarction: Importance of the Glycemic Index. Am. J. Clin. Nutr. 2010, 91(6), 1764–1768. DOI: 10.3945/ajcn.2009.29099.
  • EFSA. European Food Safety Authority. Panel on Dietetic Products, Nutrition, and Allergies (NDA): Scientific Opinion on Dietary Reference Values for Carbohydrates and Dietary Fibre. Parma, Italy. Efsa J. 2010, 8, 1462, 1–77.
  • Mann, J. Dietary Carbohydrate: Relationship to Cardiovascular Disease and Disorders of Carbohydrate Metabolism. Eur. J. Clin. Nutr. 2007, 61(S1, Suppl. 1), S100–S111. DOI: 10.1038/sj.ejcn.1602940.
  • Cummings, J. H.; Stephen, A. M. Carbohydrate Terminology and Classification. Eur. J. Clin. Nutr. 2007, 61(S1, Suppl. 1), S5–S18. DOI: 10.1038/sj.ejcn.1602936.
  • Jenkins, D. J.; Wolever, T. M.; Taylor, R. H.; Barker, H.; Fielden, H.; Baldwin, J. M.; Bowling, A. C.; Newman, H. C.; Jenkins, A. L.; Goff, D. V. Glycemic Index of Foods: A Physiological Basis for Carbohydrate Exchange. Am. J. Clin. Nutr. 1981, 34(3), 362–366. DOI: 10.1093/ajcn/34.4.527.
  • FAO/WHO Food and Agriculture Organization. Carbohydrates in human nutrition. Report of a Joint FAO/WHO Expert Consultation. FAO Food Nutr. Pap. 1998, 66, 1–140.
  • Wolever, T. M.; Vorster, H. H.; Björck, I.; Brand-Miller, J.; Brighenti, F.; Mann, J. I.; Ramdath, D. D.; Granfeldt, Y.; Holt, S.; Perry, T. L.; et al. Determination of the Glycaemic Index of Foods: Interlaboratory Study. Eur. J. Clin. Nutr. 2003, 57(3), 475–482.
  • International Standards Organization. ISO 26642: Food Products-Determination of the Glycaemic Index (GI) and Recommendation for Food Classification;International Organization for Standardization: Geneva, Switzerland, 2010.
  • Venn, B. J.; Green, T. J. Glycemic Index and Glycemic Load: Measurement Issues and Their Effect on Diet-Disease Relationships. Eur. J. Clin. Nutr. 2007, 61(S1,), S122–S131. DOI: 10.1038/sj.ejcn.1602942.
  • Foster-Powell, K.; Holt, S. H.; Brand-Miller, J. C. International Table of Glycemic Index and Glycemic Load Values: 2002. Am. J. Clin. Nutr. 2002, 76(1), 5–56. DOI: 10.1093/ajcn/76.1.5.
  • Salmerón, J.; Ascherio, A.; Rimm, E. B.; Colditz, G. A.; Spiegelman, D.; Jenkins, D. J.; Stampfer, M. J.; Wing, A. L.; Willett, W. C. Dietary Fiber, Glycemic Load, and Risk of NIDDM in Men. Diabetes Care. 1997, 20(4), 545–550. DOI: 10.2337/diacare.20.4.545.
  • Venn, B. J.; Wallace, A. J.; Monro, J. A.; Perry, T.; Brown, R.; Frampton, C.; Green, T. J. The Glycemic Load Estimated from the Glycemic Index Does Not Differ Greatly from that Measured Using a Standard Curve in Healthy Volunteers. J. Nutr. 2006, 136(5), 1377–1381. DOI: 10.1093/jn/136.2.343.
  • Brand-Miller, J.; Hayne, S.; Petocz, P.; Colagiuri, S. Low-Glycemic Index Diets in the Management of Diabetes: A Meta-Analysis of Randomized Controlled Trials. Diabetes Care. 2003, 26(8), 2261–2267. DOI: 10.2337/diacare.26.8.2261.
  • Brand-Miller, J. C.; Stockmann, K.; Atkinson, F.; Petocz, P.; Denyer, G. Glycemic Index, Postprandial Glycemia, and the Shape of the Curve in Healthy Subjects: Analysis of a Database of More than 1,000 Foods. Am. J. Clin. Nutr. 2009, 89(1), 97–105. DOI: 10.3945/ajcn.2008.26354.
  • Matthan, N. R.; Ausman, L. M.; Meng, H.; Tighiouart, H.; Lichtenstein, A. H. Estimating the Reliability of Glycemic Index Values and Potential Sources of Methodological and Biological Variability. Am. J. Clin. Nutr. 2016, 104(4), 1004–1013. DOI: 10.3945/ajcn.116.137208.
  • Englyst, K. N.; Englyst, H. N.; Hudson, G. J.; Cole, T. J.; Cummings, J. H. Rapidly Available Glucose in Foods: An in Vitro Measurement that Reflects the Glycemic Response. Am. J. Clin. Nutr. 1999, 69(3), 448–454. DOI: 10.1093/ajcn/69.3.448.
  • Dona, A. C.; Pages, G.; Gilbert, R. G.; Kuchel, P. W. Digestion of Starch: In Vivo and in Vitro Kinetics Models Used to Characterize Oligosaccharide or Glucose Release. Carbohydr. Polym. 2010, 80(3), 599–617. DOI: 10.1016/j.carbpol.2010.01.002.
  • Granfeldt, Y.; Björck, I.; Drews, A.; Tovar, J. An in Vitro Procedure Based on Chewing to Predict Metabolic Response to Starch in Cereal and Legume Products. Eur. J. Clin. Nutr. 1992, 46(9), 649–660.
  • Capriles, V. D.; Arêas, J. A. G. Effects of Prebiotic Inulin-Type Fructans on Structure, Quality, Sensory Acceptance and Glycemic Response of Gluten-Free Breads. Food Funct. 2013, 4(1), 104–110. DOI: 10.1039/c2fo30204g.
  • Giuberti, G.; Gallo, A.; Fiorentini, L.; Fortunati, P.; Masoero, F. In Vitro Starch Digestibility and Quality Attributes of Gluten Free ‘Tagliatelle’ Prepared with Teff Flour and Increasing Levels of a New Developed Bean Cultivar. Starke. 2016, 68(3–4), 374–378. DOI: 10.1002/star.201500007.
  • Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A Starch Hydrolysis Procedure to Estimate Glycemic Index. Nutr. Res. 1997, 17(3), 427–437. DOI: 10.1016/S0271-5317(97)00010-9.
  • Capriles, V. D.; Coelho, K. D.; Guerra-Matias, A. C.; Arêas, J. A. G. Effects of Processing Methods on Amaranth Starch Digestibility and Predicted Glycemic Index. J. Food Sci. 2008, 73(7), H160–H164. DOI: 10.1111/j.1750-3841.2008.00869.x.
  • Muniyappa, R.; Lee, S.; Chen, H.; Quon, M. J. Current Approaches for Assessing Insulin Sensitivity and Resistance in Vivo: Advantages, Limitations, and Appropriate Usage. Am. J. Physiol. Endocrinol. Metab. 2008, 294(1), E15–E26. DOI: 10.1152/ajpendo.00645.2007.
  • Rizkalla, S. W.; Laromiguiere, M.; Champ, M.; Bruzzo, F.; Boillot, J.; Slama, G. Effect of Baking Process on Postprandial Metabolic Consequences: Randomized Trials in Normal and Type 2 Diabetic Subjects. Eur. J. Clin. Nutr. 2007, 61(2), 175–183. DOI: 10.1038/sj.ejcn.1602514.
  • Frost, G.; Dornhorst, A. The Relevance of the Glycaemic Index to Our Understanding of Dietary Carbohydrates. Diabet. Med. 2000, 17(5), 336–345. DOI: 10.1046/j.1464-5491.2000.00266.x.
  • Livesey, G. Fructose Ingestion: Dose-Dependent Responses in Health Research. J. Nutr. 2009, 139(6), 1246S–1252S. DOI: 10.3945/jn.108.097949.
  • Aeberli, I.; Hochuli, M.; Gerber, P. A.; Sze, L.; Murer, S. B.; Tappy, L.; Spinas, G. A.; Berneis, K. Moderate Amounts of Fructose Consumption Impair Insulin Sensitivity in Healthy Young Men: A Randomized Controlled Trial. Diabetes Care. 2013, 36(1), 150–156. DOI: 10.2337/dc12-0540.
  • Coss-Bu, J. A.; Sunehag, A. L.; Haymond, M. W. Contribution of Galactose and Fructose to Glucose Homeostasis. Metabolism. 2009, 58(8), 1050–1058. DOI: 10.1016/j.metabol.2009.02.018.
  • Juntunen, K. S.; Laaksonen, D. E.; Autio, K.; Niskanen, L. K.; Holst, J. J.; Savolainen, K. E.; Liukkonen, K. H.; Poutanen, K. S.; Mykkänen, H. M. Structural Differences between Rye and Wheat Breads but Not Total Fiber Content May Explain the Lower Postprandial Insulin Response to Rye Bread. Am. J. Clin. Nutr. 2003, 78(5), 957–964. DOI: 10.1093/ajcn/78.5.957.
  • Ferrer-Mairal, A.; Peñalva-Lapuente, C.; Iglesia, I.; Urtasun, L.; De Miguel-Etayo, P.; Remón, S.; Cortés, E.; Moreno, L. A. In Vitro and in Vivo Assessment of the Glycemic Index of Bakery Products: Influence of the Reformulation of Ingredients. Eur. J. Nutr. 2012, 51(8), 947–954. DOI: 10.1007/s00394-011-0272-6.
  • Henry, C. J. K.; Lightowler, H. J.; Strik, C. M.; Renton, H.; Hails, S. Glycaemic Index and Glycaemic Load Values of Commercially Available Products in the UK. Br. J. Nutr. 2005, 94(6), 922–930.
  • Jung, E. Y.; Suh, H. J.; Hong, W. S.; Kim, D. G.; Hong, Y. H.; Hong, I. S.; Chang, U. J. Uncooked Rice of Relatively Low Gelatinization Degree Resulted in Lower Metabolic Glucose and Insulin Responses Compared with Cooked Rice in Female College Students. Nutr. Res. 2009, 29(7), 457–461. DOI: 10.1016/j.nutres.2009.07.002.
  • Leeman, M.; Östman, E.; Björck, I. Vinegar Dressing and Cold Storage of Potatoes Lowers Postprandial Glycaemic and Insulinaemic Responses in Healthy Subjects. Eur. J. Clin. Nutr. 2005, 59(11), 1266–1271. DOI: 10.1038/sj.ejcn.1602238.
  • Elia, M.; Cummings, J. H. Physiological Aspects of Energy Metabolism and Gastrointestinal Effects of Carbohydrates. Eur. J. Clin. Nutr. 2007, 61(S1, Suppl. 1), S40–S74. DOI: 10.1038/sj.ejcn.1602938.
  • Tremblay, F.; Lavigne, C.; Jacques, H.; Marette, A. Role of Dietary Proteins and Amino Acids in the Pathogenesis of Insulin Resistance. Annu. Rev. Nutr. 2007, 27(1), 293–310. DOI: 10.1146/annurev.nutr.25.050304.092545.
  • Leeds, R. Glycemic Index and Heart Disease. Am. J. Clin. Nutr. 2002, 76, 286S–289S. DOI: 10.1093/ajcn/76/1.286S.
  • Venn, B. J.; Mann, J. I. Cereal Grains, Legumes and Diabetes. Eur. J. Clin. Nutr. 2004, 58(11), 1443–1461. DOI: 10.1038/sj.ejcn.1601995.
  • Chung, H. J.; Liu, Q.; Hoover, R.; Warkentin, T. D.; Vandenberg, B. In Vitro Starch Digestibility, Expected Glycemic Index, and Thermal and Pasting Properties of Flours from Pea, Lentil and Chickpea Cultivars. Food Chem. 2008, 111(2), 316–321. DOI: 10.1016/j.foodchem.2008.03.062.
  • Östman, E.; Granfeldt, Y.; Persson, L.; Björck, I. Vinegar Supplementation Lowers Glucose and Insulin Responses and Increases Satiety after a Bread Meal in Healthy Subjects. Eur. J. Clin. Nutr. 2005, 59(9), 983–988. DOI: 10.1038/sj.ejcn.1602197.
  • Hoyt, G.; Hickey, M. S.; Cordain, L. Dissociation of the Glycaemic and Insulinaemic Responses to Whole and Skimmed Milk. Br. J. Nutr. 2005, 93(2), 175–177. DOI: 10.1079/BJN20041304.
  • DiMeglio, D. P.; Mattes, R. D. Liquid versus Solid Carbohydrate: Effects on Food Intake and Body Weight. Int. J. Obes. Relat. Metab. Disord. 2000, 24(6), 794–800. DOI: 10.1038/sj.ijo.0801229.
  • Nilsson, A.; Östman, E.; Preston, T.; Björck, I. Effects of GI vs Content of Cereal Fibre of the Evening Meal on Glucose Tolerance at a Subsequent Standardized Breakfast. Eur. J. Clin. Nutr. 2008, 62(6), 712–720. DOI: 10.1038/sj.ejcn.1602784.
  • Jenkins, D. J.; Kendall, C. W.; Augustin, L. S.; Franceschi, S.; Hamidi, M.; Marchie, A.; Jenkins, A. L.; Axelsen, M. Glycemic Index: Overview of Implications in Health and Disease. Am. J. Clin. Nutr. 2002, 76(1), 266S–273S. DOI: 10.1093/ajcn/76.1.266S.
  • Sparti, A.; Milon, H.; Di Vetta, V.; Schneiter, P.; Tappy, L.; Jéquier, E.; Schutz, Y. Effect of Diets High or Low in Unavailable and Slowly Digestible Carbohydrates on the Pattern of 24-H Substrate Oxidation and Feelings of Hunger in Humans. Am. J. Clin. Nutr. 2000, 72(6), 1461–1468. DOI: 10.1093/ajcn/72.6.1461.
  • Holloway, G. P.; Bonen, A.; Spriet, L. L. Regulation of Skeletal Muscle Mitochondrial Fatty Acid Metabolism in Lean and Obese Individuals. Am. J. Clin. Nutr. 2009, 89(1, Suppl.), 455S–462S. DOI: 10.3945/ajcn.2008.26717B.
  • Howlett, J.; Ashwell, M. Glycemic Response and Health: Summary of a Workshop. Am. J. Clin. Nutr. 2008, 87, 212S–216S. DOI: 10.1093/ajcn/87.1.212S.
  • Tentolouris, N.; Alexiadou, K.; Kokkinos, A.; Koukou, E.; Perrea, D.; Kyriaki, D.; Katsilambros, N. Meal-Induced Thermogenesis and Macronutrient Oxidation in Lean and Obese Women after Consumption of Carbohydrate-Rich and Fat-Rich Meals. Nutrition. 2011, 27(3), 310–315. DOI: 10.1016/j.nut.2010.02.007.
  • Tentolouris, N.; Pavlatos, S.; Kokkinos, A.; Perrea, D.; Pagoni, S.; Katsilambros, N. Diet-Induced Thermogenesis and Substrate Oxidation Are Not Different between Lean and Obese Women after Two Different Isocaloric Meals, One Rich in Protein and One Rich in Fat. Metabolism. 2008, 57(3), 313–320. DOI: 10.1016/j.metabol.2007.10.004.
  • Silva, F. M.; de Almeida, J. C.; Feoli, A. M. Effect of Diet on Adiponectin Levels in Blood. Nutr. Rev. 2011, 69(10), 599–612. DOI: 10.1111/j.1753-4887.2011.00414.x.
  • Ye, E. Q.; Chacko, S. A.; Chou, E. L.; Kugizaki, M.; Liu, S. Greater Whole-Grain Intake Is Associated with Lower Risk of Type 2 Diabetes, Cardiovascular Disease, and Weight Gain. J. Nutr. 2012, 142(7), 1304–1313. DOI: 10.3945/jn.111.148635.
  • Sluijs, I.; Beulens, J. W. J.; van der Schouw, Y. T.; van der, A., . D. L.; Buckland, G.; Kuijsten, A.; Schulze, M. B.; Amiano, P.; Ardanaz, E.; Balkau, B.; et al. InterAct Consortium. Dietary Glycemic Index, Glycemic Load, and Digestible Carbohydrate Intake are Not Associated with Risk of Type 2 Diabetes in Eight European Countries. J. Nutr.2013, 143(1), 93–99.
  • Barclay, A. W.; Petocz, P.; McMillan-Price, J.; Flood, V. M.; Prvan, T.; Mitchell, P.; Brand-Miller, J. C. Glycemic Index, Glycemic Load, and Chronic Disease Risk–A Meta-Analysis of Observational Studies. Am. J. Clin. Nutr. 2008, 87(3), 627–637. DOI: 10.1093/ajcn/87.3.627.
  • Clapp, J. F.; Lopez, B. Low-Versus High-Glycemic Index Diets in Women: Effects on Caloric Requirement, Substrate Utilization and Insulin Sensitivity. Metab. Syndr. Relat. Disord. 2007, 5(3), 231–242. DOI: 10.1089/met.2006.0040.
  • Thomas, D.; Elliott, E. J. Low Glycaemic Index, or Low Glycaemic Load, Diets for Diabetes Mellitus. Cochrane Database Syst. Rev. 2009, 21(1), CD006296.
  • Mente, A.; de Koning, L.; Shannon, H. S.; Anand, S. S. A Systematic Review of the Evidence Supporting a Causal Link between Dietary Factors and Coronary Heart Disease. Arch. Int. Med. 2009, 169(7), 659–669. DOI: 10.1001/archinternmed.2009.38.
  • Halton, T. L.; Willett, W. C.; Liu, S.; Manson, J. E.; Albert, C. M.; Rexrode, K.; Hu, F. B. Low-Carbohydrate-Diet Score and the Risk of Coronary Heart Disease in Women. N. Engl. J. Med. 2006, 355(19), 1991–2002. DOI: 10.1056/NEJMoa055317.
  • Levitan, E. B.; Mittleman, M. A.; Wolk, A. Dietary Glycemic Index, Dietary Glycemic Load, and Incidence of Heart Failure Events: A Prospective Study of Middle-Aged and Elderly Women. J. Am. Coll. Nutr. 2010, 29(1), 65–71. DOI: 10.1080/07315724.2010.10719818.
  • Oxlund, A. L.; Heitmann, B. L. Glycaemic Index and Glycaemic Load in Relation to Blood Lipids - 6 Years of Follow-Up in Adult Danish Men and Women. Public. Health. Nutr. 2006, 9(6), 737–745.
  • Thomas, D. E.; Elliott, E. J.; Baur, L. Low Glycaemic Index or Low Glycaemic Load Diets for Overweight and Obesity. Cochrane Database Syst. Rev. 2007, 18(3), CD005105.
  • Evans, J. L.; Goldfine, I. D.; Maddux, B. A.; Grodsky, G. M. Oxidative Stress and Stress-Activated Signaling Pathways: A Unifying Hypothesis of Type 2 Diabetes. Endocr. Rev. 2002, 23(5), 599–622. DOI: 10.1210/er.2001-0039.
  • Hu, Y.; Block, G.; Norkus, E. P.; Morrow, J. D.; Dietrich, M.; Hudes, M. Relations of Glycemic Index and Glycemic Load with Plasma Oxidative Stress Markers. Am. J. Clin. Nutr. 2006, 84(1), 70–76, quiz 266–267. DOI: 10.1093/ajcn/84.1.70.
  • Liu, S.; Manson, J. E.; Buring, J. E.; Stampfer, M. J.; Willett, W. C.; Ridker, P. M. Relation between a Diet with a High Glycemic Load and Plasma Concentrations of High-Sensitivity C-Reactive Protein in Middle-Aged Women. Am. J. Clin. Nutr. 2002, 75(3), 492–498. DOI: 10.1093/ajcn/75.3.492.
  • Patel, V. C.; Aldridge, R. D.; Leeds, A.; Dornhorst, A.; Frost, G. S. Retrospective Analysis of the Impact of a Low Glycaemic Index Diet on Hospital Stay following Coronary Artery Bypass Grafting: A Hypothesis. J. Hum. Nutr. Diet. 2004, 17(3), 241–247.
  • Romaguera, D.; Ǻngquist, L.; Du, H.; Jakobsen, M. U.; Forouhi, N. G.; Halkjaer, J.; Feskens, E. J.; van der, A. D. L.; Masala, G.; Steffen, A.; et al. Dietary Determinants of Changes in Waist Circumference Adjusted for Body Mass Index - A Proxy Measure of Visceral Adiposity. PLoS One. 2010, 5(7), e11588.
  • Qi, L.; Meigs, J. B.; Liu, S.; Manson, J. E.; Mantzoros, C.; Hu, F. B. Dietary Fibers and Glycemic Load, Obesity, and Plasma Adiponectin Levels in Women with Type 2 Diabetes. Diabetes Care. 2006, 29(7), 1501–1505. DOI: 10.2337/dc06-0221.
  • Pawlak, D. B.; Kushner, J. A.; Ludwig, D. S. Effects of Dietary Glycaemic Index on Adiposity, Glucose Homoeostasis, and Plasma Lipids in Animals. Lancet. 2004, 364(9436), 778–785. DOI: 10.1016/S0140-6736(04)16937-7.
  • La Combe, A.; Ganji, V. Influence of Two Breakfast Meals Differing in Glycemic Load on Satiety, Hunger, and Energy Intake in Preschool Children. Nutr. J. 2010, 9(1), 53. DOI: 10.1186/1475-2891-9-53.
  • Scazzina, F.; Del Rio, D.; Benini, L.; Melegari, C.; Pellegrini, N.; Marcazzan, E.; Brighenti, F. The Effect of Breakfasts Varying in Glycemic Index and Glycemic Load on Dietary Induced Thermogenesis and Respiratory Quotient. Nutr. Metab. Cardiovasc. Dis. 2011, 21(2), 121–125. DOI: 10.1016/j.numecd.2009.08.008.
  • Magkos, F.; Wang, X.; Mittendorfer, B. Metabolic Actions of Insulin in Men and Women. Nutrition. 2010, 26(7–8), 686–693. DOI: 10.1016/j.nut.2009.10.013.
  • Juanola-Falgarona, M.; Salas-Salvadó, J.; Ibarrola-Jurado, N.; Rabassa-Soler, A.; Díaz-López, A.; Guasch-Ferré, M.; Hernández-Alonso, P.; Balanza, R.; Bulló, M. Effect of the Glycemic Index of the Diet on Weight Loss, Modulation of Satiety, Inflammation, and Other Metabolic Risk Factors: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2014, 100(1), 27–35. DOI: 10.3945/ajcn.113.081216.
  • Valtueña, S.; Pellegrini, N.; Ardigò, D.; Del Rio, D.; Numeroso, F.; Scazzina, F.; Monti, L.; Zavaroni, I.; Brighenti, F. Dietary Glycemic Index and Liver Steatosis. Am. J. Clin. Nutr. 2006, 84(1), 136–142. quiz 268–269. DOI: 10.1093/ajcn/84.1.136.
  • Brand-Miller, J. C.; Holt, S. H.; Pawlak, D. B.; McMillan, J. Glycemic Index and Obesity. Am. J. Clin. Nutr. 2002, 76(1), 281S–285S. DOI: 10.1093/ajcn/76.1.281S.
  • Gnagnarella, P.; Gandini, S.; La Vecchia, C.; Maisonneuve, P. Glycemic Index, Glycemic Load, and Cancer Risk: A Meta-Analysis. Am. J. Clin. Nutr. 2008, 87(6), 1793–1801. DOI: 10.1093/ajcn/87.6.1793.
  • Bantle, J. P.; Wylie-Rosett, J.; Albright, A. L.; Apovian, C. M.; Clark, N. G.; Franz, M. J.; Hoogwerf, B. J.; Lichtenstein, A. H.; Mayer-Davis, E.; Mooradian, A. D.; et al. Nutrition Recommendations and Interventions for Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care. 2008, 31(Suppl. 1), S61–S78. DOI: 10.2337/dc08-S061.
  • Hansen, D.; Brock-Jacobsen, B.; Lund, E.; Bjørn, C.; Hansen, L. P.; Nielsen, C.; Fenger, C.; Lillevang, S. T.; Husby, S. Clinical Benefit of a Gluten-Free Diet in Type 1 Diabetic Children with Screening-Detected Celiac Disease: A Population-Based Screening Study with 2 Years’ Follow-Up. Diabetes Care. 2006, 29(11), 2452–2456. DOI: 10.2337/dc06-0990.
  • Bakker, S. F.; Tushuizen, M. E.; von Blomberg, M. E.; Mulder, C. J.; Simsek, S. Type 1 Diabetes and Celiac Disease in Adults: Glycemic Control and Diabetic Complications. Acta Diabetol. 2013, 50(3), 319–324. DOI: 10.1007/s00592-012-0395-0.
  • Kurien, M.; Mollazadegan, K.; Sanders, D. S.; Ludvigsson, J. F. A Nationwide Population-Based Study on the Risk of Coma, Ketoacidosis and Hypoglycemia in Patients with Celiac Disease and Type 1 Diabetes. Acta Diabetol. 2015, 52(6), 1167–1174. DOI: 10.1007/s00592-015-0808-y.
  • Green, P. H. R. The Many Faces of Celiac Disease: Clinical Presentation of Celiac Disease in the Adult Population. Gastroenterol. 2005, 128(4), 74–78. DOI: 10.1053/j.gastro.2005.02.016.
  • Krupa-Kozak, U. Pathologic Bone Alterations in Celiac Disease: Etiology, Epidemiology, and Treatment. Nutrition. 2014, 30(1), 16–24. DOI: 10.1016/j.nut.2013.05.027.
  • Zanchetta, M. B.; Longobardi, V.; Costa, F.; Longarini, G.; Mazure, R. M.; Moreno, M. L.; Vázquez, H.; Silveira, F.; Niveloni, S.; Smecuol, E.; et al. Impaired Bone Microarchitecture Improves after One Year on Gluten-Free Diet: A Prospective Longitudinal HRpQCT Study in Women with Celiac Disease. J. Bone Miner. Res. 2017, 32(1), 135–142.
  • Smecuol, E.; Gonzalez, D.; Mautalen, C.; Siccardi, A.; Cataldi, M.; Niveloni, S.; Mazure, R.; Vazquez, H.; Pedreira, S.; Soifer, G.; et al. Longitudinal Study on the Effect of Treatment on Body Composition and Anthropometry of Celiac Disease Patients. Am. J. Gastroenterol. 1997, 92(4), 639–643.
  • Leeds, J. S.; Hopper, A. D.; Hadjivassiliou, M.; Esfaye, S.; Sanders, D. S. High Prevalence of Microvascular Complications in Adults with Type 1 Diabetes and Newly Diagnosed Celiac Disease. Diabetes Care. 2011, 34, 2158–2163. DOI: 10.2337/dc11-0149.
  • Taler, I.; Phillip, M.; Lebenthal, Y.; de Vries, L.; Shamir, R.; Shalitin, S. Growth and Metabolic Control in Patients with Type 1 Diabetes and Celiac Disease: A Longitudinal Observational Case-Control Study. Pediatr. Diabetes. 2012, 13(8), 597–606.
  • Atkinson, F. S.; Foster-Powell, K.; Brand-Miller, J. C. International Tables of Glycemic Index and Glycemic Load Values: 2008. Diabetes Care. 2008, 31(12), 2281–2283. DOI: 10.2337/dc07-1868.
  • Berti, C.; Riso, P.; Monti, L. D.; Porrini, M. In Vitro Starch Digestibility and in Vivo Glucose Response of Gluten-Free Foods and Their Gluten Counterparts. Eur. J. Nutr. 2004, 43(4), 198–204. DOI: 10.1007/s00394-004-0459-1.
  • Jenkins, D. J.; Thorne, M. J.; Wolever, T. M.; Jenkins, A. L.; Rao, A. V.; Thompson, L. U. The Effect of Starch-Protein Interaction in Wheat on the Glycemic Response and Rate of in Vitro Digestion. Am. J. Clin. Nutr. 1987, 45(5), 946–951. DOI: 10.1093/ajcn/45.5.946.
  • Packer, S. C.; Dornhorst, A.; Frost, G. S. The Glycaemic Index of a Range of Gluten-Free Foods. Diabet. Med. 2000, 17(9), 657–660. DOI: 10.1046/j.1464-5491.2000.00356.x.
  • Dikeman, C. L.; Fahey, G. C., Jr. Viscosity as Related to Dietary Fiber: A Review. Crit. Rev. Food Sci. Nutr. 2006, 46(8), 649–663. DOI: 10.1080/10408390500511862.
  • Jenkins, D. J.; Marchie, A.; Augustin, L. S.; Ros, E.; Kendall, C. W. Viscous Dietary Fibre and Metabolic Effects. Clin. Nutr. 2004, 1(Suppl.), 39–49.
  • Delzenne, N. M.; Cani, P. D.; Neyrinck, A. M. Modulation of Glucagon-Like Peptide 1 and Energy Metabolism by Inulin and Oligofructose: Experimental Data. J. Nutr. 2007, 137(11, Suppl), 2547S–2551S. DOI: 10.1093/jn/137.3.798S.
  • Dewulf, E. M.; Cani, P. D.; Claus, S. P.; Fuentes, S.; Puylaert, P. G.; Neyrinck, A. M.; Bindels, L. B.; de Vos, W. M.; Gibson, G. R.; Thissen, J. P.; et al. Insight into the Prebiotic Concept: Lessons from an Exploratory, Double Blind Intervention Study with Inulin-Type Fructans in Obese Women. Gut. 2013, 62(8), 1112–1121. DOI: 10.1136/gutjnl-2012-303304.
  • Pedersen, C.; Gallagher, E.; Horton, F.; Ellis, R. J.; Ijaz, U. Z.; Wu, H.; Jaiyeola, E.; Diribe, O.; Duparc, T.; Cani, P. D.; et al. Host-Microbiome Interactions in Human Type 2 Diabetes following Prebiotic Fibre (Galacto-Oligosaccharide) Intake. Br. J. Nutr. 2016, 116(11), 1869–1877.
  • Capriles, V. D.; Arêas, J. A. G. Approaches to Reduce the Glycemic Response of Gluten-Free Products: In Vivo and in Vitro Studies. Food Funct. 2016, 7(3), 1266–1272. DOI: 10.1039/C5FO01264C.
  • Wolter, A.; Hager, A. S.; Zannini, E.; Arendt, E. K. Influence of Sourdough on in Vitro Starch Digestibility and Predicted Glycemic Indices of Gluten-Free Breads. Food Funct. 2014, 5(3), 564–572. DOI: 10.1039/c3fo60505a.
  • Cornejo, F.; Caceres, P. J.; Martínez-Villaluenga, C.; Rosell, C. M.; Frias, J. Effects of Germination on the Nutritive Value and Bioactive Compounds of Brown Rice Breads. Food Chem. 2015, 173, 298–304. DOI: 10.1016/j.foodchem.2014.10.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.