1,335
Views
45
CrossRef citations to date
0
Altmetric
Review

Food-Grade Colloidal Systems for the Delivery of Essential Oils

, ORCID Icon, , , ORCID Icon & ORCID Icon

References

  • Gyawali, R.; Ibrahim, S. A. Natural Products as Antimicrobial Agents. Food Control. 2014, 46, 412–429. DOI: 10.1016/j.foodcont.2014.05.047.
  • Martins, Z. E.; Pinho, O.; Ferreira, I. M. P. L. V. O. Food Industry By-Products Used as Functional Ingredients of Bakery Products. Trends Food Sci. Technol. 2017, 67, 106–128. DOI: 10.1016/j.tifs.2017.07.003.
  • Nunes, M. A.; Pimentel, F. B.; Costa, A. S. G.; Alves, R. C.; Oliveira, M. B. P. P. Olive By-products for Functional and Food Applications: Challenging Opportunities to Face Environmental Constraints. Innovative Food Sci. Emerg. Technol. 2016, 35, 139–148. DOI: 10.1016/J.IFSET.2016.04.016.
  • Seow, Y. X.; Yeo, C. R.; Chung, H. L.; Yuk, H.-G. Plant Essential Oils as Active Antimicrobial Agents. Crit. Rev. Food Sci. Nutr. 2014, 54(5), 625–644. DOI: 10.1080/10408398.2011.599504.
  • Asbahani, A. E.; Miladi, K.; Badri, W.; Sala, M.; Addi, E. H. A.; Casabianca, H.; … Elaissari, A. Essential Oils: From Extraction to Encapsulation. Int. J. Pharmaceutics. 2015, 483(1–2), 220–243. DOI: 10.1016/j.ijpharm.2014.12.069.
  • Vinceković, M.; Viskić, M.; Jurić, S.; Giacometti, J.; Bursać Kovačević, D.; Putnik, P.; … Režek Jambrak, A. Innovative Technologies for Encapsulation of Mediterranean Plants Extracts. Trends Food Sci. Technol. 2017, 69. DOI: 10.1016/j.tifs.2017.08.001.
  • Donsì, F.; Ferrari, G. Essential Oil Nanoemulsions as Antimicrobial Agents in Food. J. Biotechnol. 2016, 233, 106–120. DOI: 10.1016/j.jbiotec.2016.07.005.
  • Majeed, H.; Bian, -Y.-Y.; Ali, B.; Jamil, A.; Majeed, U.; Khan, Q. F.; … Fang, Z. Essential Oil Encapsulations: Uses, Procedures, and Trends. RSC Adv. 2015, 5(72), 58449–58463. DOI: 10.1039/C5RA06556A.
  • Patel, A. R.; Velikov, K. P. Colloidal Delivery Systems in Foods: A General Comparison with Oral Drug Delivery. LWT - Food Sci. Technol. 2011, 44(9), 1958–1964. DOI: 10.1016/J.LWT.2011.04.005.
  • Donsì, F.; Sessa, M.; Ferrari, G. Nanometric-Size Delivery Systems for Bioactive Compounds for the Nutraceutical and Food Industries. In Bio-Nanotechnology: A Revolution in Food, Biomedical and Health Sciences; Bagchi, F., Bagchi, D., Moriyama, M., Shahidi, H., Eds.; John Wiley & Sons, Ltd, 2013. DOI: 10.1002/9781118451915.ch37.
  • Del Pilar Sánchez-Camargo, A.; Pleite, N.; Herrero, M.; Cifuentes, A.; Ibáñez, E.; Gilbert-López, B. New Approaches for the Selective Extraction of Bioactive Compounds Employing Bio-based Solvents and Pressurized Green Processes. J. Supercrit. Fluids. 2017, 128, 112–120. DOI: 10.1016/J.SUPFLU.2017.05.016.
  • Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A. S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green Extraction of Natural Products. Origins, Current Status, and Future Challenges. TrAC Trends Anal. Chem. 2019, 118, 248–263. DOI: 10.1016/J.TRAC.2019.05.037.
  • Russo, A.; Formisano, C.; Rigano, D.; Senatore, F.; Delfine, S.; Cardile, V.; … Bruno, M. Chemical Composition and Anticancer Activity of Essential Oils of Mediterranean Sage (Salvia Officinalis L.) Grown in Different Environmental Conditions. Food Chem. Toxicol. 2013, 55(May), 42–47. DOI: 10.1016/j.fct.2012.12.036.
  • Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils-Present Status and Future Perspectives. Medicines. 2017, 4(3). DOI: 10.3390/medicines4030058.
  • Beyki, M.; Zhaveh, S.; Khalili, S. T.; Rahmani-Cherati, T.; Abollahi, A.; Bayat, M.; … Mohsenifar, A. Encapsulation of Mentha Piperita Essential Oils in Chitosan–Cinnamic Acid Nanogel with Enhanced Antimicrobial Activity against Aspergillus Flavus. Ind. Crops Prod. 2014, 54, 310–319. DOI: 10.1016/J.INDCROP.2014.01.033.
  • Hamidpour, M.; Hamidpour, R.; Hamidpour, S.; Shahlari, M. Chemistry, Pharmacology, and Medicinal Property of Sage (Salvia) to Prevent and Cure Illnesses Such as Obesity, Diabetes, Depression, Dementia, Lupus, Autism, Heart Disease, and Cancer. J. Traditional Complementary Med. 2014, 4(2), 82–88. DOI: 10.4103/2225-4110.130373.
  • González-Rivera, J.; Duce, C.; Falconieri, D.; Ferrari, C.; Ghezzi, L.; Piras, A.; Tine, M. R. Coaxial Microwave Assisted Hydrodistillation of Essential Oils from Five Different Herbs (Lavender, Rosemary, Sage, Fennel Seeds and Clove buds): Chemical Composition and Thermal Analysis. Innovative Food Sci. Emerging Technol. 2016, 33(December), 308–318. DOI: 10.1016/j.ifset.2015.12.011.
  • Hamidpour, R.; Hamidpour, S.; Elias, G. Rosmarinus Officinalis (Rosemary): A Novel Therapeutic Agent for Antioxidant, Antimicrobial, Anticancer, Antidiabetic, Antidepressant, Neuroprotective, Anti-Inflammatory, and Anti-Obesity Treatment. Biomed. J. Sci. Tech. Res. 2017, 1(4), 1098–1103. DOI: 10.26717/BJSTR.2017.01.000371.
  • Leyva-López, N.; Gutiérrez-Grijalva, E. P.; Vazquez-Olivo, G.; Heredia, J. B. Essential Oils of Oregano: Biological Activity beyond Their Antimicrobial Properties. Molecules. 2017, 22(6), 989. DOI: 10.3390/molecules22060989.
  • Mnayer, D.; Fabiano-Tixier, A.-S.; Petitcolas, E.; Ruiz, K.; Hamieh, T.; Chemat, F. Extraction of Green Absolute from Thyme Using Ultrasound and Sunflower Oil. Resour.-Effic. Technol. 2017, 3(1), 12–21. DOI: 10.1016/j.reffit.2017.01.007.
  • Chenni, M.; El Abed, D.; Rakotomanomana, N.; Fernandez, X.; Chemat, F. Comparative Study of Essential Oils Extracted from Egyptian Basil Leaves (Ocimum Basilicum l.) Using hydro-Distillation and solvent-Free Microwave Extraction. Molecules. 2016, 21(1), 113. DOI: 10.3390/molecules21010113.
  • Giacometti, J.; Bursać Kovačević, D.; Putnik, P.; Gabrić, D.; Bilušić, T.; Krešić, G.; … Režek Jambrak, A. Extraction of Bioactive Compounds and Essential Oils from Mediterranean Herbs by Conventional and Green Innovative Techniques: A Review. Food Res. Int. 2018, 113, 245–262. DOI: 10.1016/J.FOODRES.2018.06.036.
  • Zhong, J.; Wang, Y.; Yang, R.; Liu, X.; Yang, Q.; Qin, X. The Application of Ultrasound and Microwave to Increase Oil Extraction from Moringa Oleifera Seeds. Ind. Crops Prod. 2018, 120, 1–10. DOI: 10.1016/J.INDCROP.2018.04.028.
  • Chemat, F.; Fabiano-Tixier, A. S.; Vian, M. A.; Allaf, T.; Vorobiev, E. Solvent-free Extraction of Food and Natural Products. TrAC Trends Anal. Chem. 2015, 71, 157–168. DOI: 10.1016/J.TRAC.2015.02.021.
  • Andrade-Avila, Y. Y.; Cruz-Olivares, J.; Pérez-Alonso, C.; Ortiz-Estrada, C. H.; Chaparro-Mercado, M. D. C. Supercritical Extraction Process of Allspice Essential Oil. J. Chem. 2017, 2017, 1–8. DOI: 10.1155/2017/6471684.
  • Filly, A.; Fabiano-Tixier, A. S.; Louis, C.; Fernandez, X.; Chemat, F. Water as a Green Solvent Combined with Different Techniques for Extraction of Essential Oil from Lavender Flowers. C. R. Chim. 2016, 19(6), 707–717. DOI: 10.1016/J.CRCI.2016.01.018.
  • Gavahian, M.; Chu, Y.-H.; Sastry, S. Extraction from Food and Natural Products by Moderate Electric Field: Mechanisms, Benefits, and Potential Industrial Applications. Compr. Rev. Food Sci. Food Saf. 2018, 17(4), 1040–1052. DOI: 10.1111/1541-4337.12362.
  • Fathi, M.; Donsì, F.; McClements, D. J. Protein‐Based Delivery Systems for the Nanoencapsulation of Food Ingredients. Compr. Rev. Food Sci. Food Saf. 2018, 17(4), 920–936. DOI: 10.1111/crf3.2018.17.issue-4.
  • Fathi, M.; Martín, Á.; McClements, D. J. Nanoencapsulation of Food Ingredients Using Carbohydrate Based Delivery Systems. Trends Food Sci. Technol. 2014, 39(1), 18–39. DOI: 10.1016/J.TIFS.2014.06.007.
  • Fathi, M.; Mozafari, M. R.; Mohebbi, M. Nanoencapsulation of Food Ingredients Using Lipid Based Delivery Systems. Trends Food Sci. Technol. 2012, 23(1), 13–27. DOI: 10.1016/J.TIFS.2011.08.003.
  • Singh, Y.; Meher, J. G.; Raval, K.; Khan, F. A.; Chaurasia, M.; Jain, N. K.; Chourasia, M. K. Nanoemulsion: Concepts, Development and Applications in Drug Delivery. J. Controlled Release. 2017, 252, 28–49. DOI: 10.1016/J.JCONREL.2017.03.008.
  • McClements, D. J.;. Critical Review of Techniques and Methodologies for Characterization of Emulsion Stability. Crit. Rev. Food Sci. Nutr. 2007, 47(7), 611–649. DOI: 10.1080/10408390701289292.
  • de Oca-ávalos, J. M. M.; Candal, R. J.; Herrera, M. L. Nanoemulsions: Stability and Physical Properties. Curr. Opin. Food Sci. 2017, 16, 1–6. DOI: 10.1016/J.COFS.2017.06.003.
  • Rafiee, Z.; Jafari, S. M. Application of Lipid Nanocarriers for the Food Industry. In Bioactive Molecules in Food; Mérillon, J.-M., Ramawat, K.G., Eds.; Springer International Publishing: Cham, 2019; pp 623–665. DOI: 10.1007/978-3-319-78030-6_93.
  • Wooster, T. J.; Golding, M.; Sanguansri, P. Impact of Oil Type on Nanoemulsion Formation and Ostwald Ripening Stability. Langmuir. 2008, 24(22), 12758–12765. DOI: 10.1021/la801685v.
  • Rao, J.; McClements, D. J. Impact of Lemon Oil Composition on Formation and Stability of Model Food and Beverage Emulsions. Food Chem. 2012, 134(2), 749–757. DOI: 10.1016/j.foodchem.2012.02.174.
  • Ribes, S.; Fuentes, A.; Talens, P.; Barat, J. M.; Ferrari, G.; Donsì, F. Influence of Emulsifier Type on the Antifungal Activity of Cinnamon Leaf, Lemon and Bergamot Oil Nanoemulsions against Aspergillus Niger. Food Control. 2017, 73, 784–795. DOI: 10.1016/J.FOODCONT.2016.09.044.
  • Pan, K.; Chen, H.; Davidson, P. M.; Zhong, Q. Thymol Nanoencapsulated by Sodium Caseinate: Physical and Antilisterial Properties. J. Agric. Food Chem. 2014, 62(7), 1649–1657. DOI: 10.1021/jf4055402.
  • Wu, J. E.; Lin, J.; Zhong, Q. Physical and Antimicrobial Characteristics of Thyme Oil Emulsified with Soluble Soybean Polysaccharide. Food Hydrocolloids. 2014, 39, 144–150. DOI: 10.1016/j.foodhyd.2013.12.029.
  • Rezaei, A.; Fathi, M.; Jafari, S. M. Nanoencapsulation of Hydrophobic and Low-soluble Food Bioactive Compounds within Different Nanocarriers. Food Hydrocolloids. 2019, 88, 146–162. DOI: 10.1016/J.FOODHYD.2018.10.003.
  • Donsì, F.; Annunziata, M.; Sessa, M.; Ferrari, G. Nanoencapsulation of Essential Oils to Enhance Their Antimicrobial Activity in Foods. LWT - Food Sci. Technol. 2011, 44(9), 1908–1914. DOI: 10.1016/j.lwt.2011.03.003.
  • Sessa, M.; Donsì, F. Nanoemulsion-Based Delivery Systems. In Microencapsulation and Microspheres for Food Applications; Sagis, L.M.C., Ed.; Elsevier: London, 2015; pp 79–94. DOI: 10.1016/B978-0-12-800350-3.00007-8.
  • Jaiswal, M.; Dudhe, R.; Sharma, P. K. Nanoemulsion: An Advanced Mode of Drug Delivery System. 3 Biotech. 2015, 5(2), 123–127. DOI: 10.1007/s13205-014-0214-0.
  • Ozturk, B.; McClements, D. J. Progress in Natural Emulsifiers for Utilization in Food Emulsions. Curr. Opin. Food Sci. 2016, 7, 1–6. DOI: 10.1016/J.COFS.2015.07.008.
  • Helgeson, M. E.;. Colloidal Behavior of Nanoemulsions: Interactions, Structure, and Rheology. Curr. Opin. Colloid Interface Sci. 2016, 25, 39–50. DOI: 10.1016/j.cocis.2016.06.006.
  • Taştan, Ö.; Ferrari, G.; Baysal, T.; Donsì, F. Understanding the Effect of Formulation on Functionality of Modified Chitosan Films Containing Carvacrol Nanoemulsions. Food Hydrocolloids. 2016, 61, 756–771. DOI: 10.1016/j.foodhyd.2016.06.036.
  • Donsì, F.; Senatore, B.; Huang, Q.; Ferrari, G. Development of Novel Pea Protein-based Nanoemulsions for Delivery of Nutraceuticals. J. Agric. Food Chem. 2010, 58(19), 10653–10660. DOI: 10.1021/jf101804g.
  • Mahfoudhi, N.; Sessa, M.; Chouaibi, M.; Ferrari, G.; Donsì, F.; Hamdi, S. Assessment of Emulsifying Ability of Almond Gum in Comparison with Gum Arabic Using Response Surface Methodology. Food Hydrocolloids. 2014, 37, 49–59. DOI: 10.1016/j.foodhyd.2013.10.009.
  • Schmidt, U. S.; Koch, L.; Rentschler, C.; Kurz, T.; Endreß, H. U.; Schuchmann, H. P. Effect of Molecular Weight Reduction, Acetylation and Esterification on the Emulsification Properties of Citrus Pectin. Food Biophys. 2015, 10(2), 217–227. DOI: 10.1007/s11483-014-9380-1.
  • Fujisawa, S.; Togawa, E.; Kuroda, K. Nanocellulose-stabilized Pickering Emulsions and Their Applications. Sci. Technol. Adv. Mater. 2017, 18(1), 959–971. DOI: 10.1080/14686996.2017.1401423.
  • Ruan, Q.; Zeng, L.; Ren, J.; Yang, X. One-step Formation of a Double Pickering Emulsion via Modulation of the Oil Phase Composition. Food Funct. 2018, 9(8), 4508–4517. DOI: 10.1039/C8FO00937F.
  • Frasch-Melnik, S.; Norton, I. T.; Spyropoulos, F. Fat-crystal Stabilised w/o Emulsions for Controlled Salt Release. J. Food Eng. 2010, 98(4), 437–442. DOI: 10.1016/J.JFOODENG.2010.01.025.
  • Duffus, L. J.; Norton, J. E.; Smith, P.; Norton, I. T.; Spyropoulos, F. A Comparative Study on the Capacity of A Range of Food-grade Particles to Form Stable O/W and W/O Pickering Emulsions. J. Colloid Interface Sci. 2016, 473, 9–21. DOI: 10.1016/J.JCIS.2016.03.060.
  • Sedaghat Doost, A.; Devlieghere, F.; Dirckx, A.; Van der Meeren, P. Fabrication of Origanum Compactum Essential Oil Nanoemulsions Stabilized Using Quillaja Saponin Biosurfactant. J. Food Process. Preserv. 2018, 42(7), e13668. DOI: 10.1111/jfpp.13668.
  • Liang, R.; Xu, S.; Shoemaker, C. F.; Li, Y.; Zhong, F.; Huang, Q. Physical and Antimicrobial Properties of Peppermint Oil Nanoemulsions. J. Agric. Food Chem. 2012, 60(30), 7548–7555. DOI: 10.1021/jf301129k.
  • Shah, B.; Davidson, P. M.; Zhong, Q. Nanodispersed Eugenol Has Improved Antimicrobial Activity against Escherichia Coli O157: H7and Listeria Monocytogenes in Bovine Milk. Int. J. Food Microbiol. 2013, 161(1), 53–59. DOI: 10.1016/j.ijfoodmicro.2012.11.020.
  • Akhavan, S.; Assadpour, E.; Katouzian, I.; Jafari, S. M. Lipid Nano Scale Cargos for the Protection and Delivery of Food Bioactive Ingredients and Nutraceuticals. Trends Food Sci. Technol. 2018, 74, 132–146. DOI: 10.1016/J.TIFS.2018.02.001.
  • Fathi, M.; Varshosaz, J.; Mohebbi, M.; Shahidi, F. Hesperetin-Loaded Solid Lipid Nanoparticles and Nanostructure Lipid Carriers for Food Fortification: Preparation, Characterization, and Modeling. Food Bioprocess. Technol. 2013, 6(6), 1464–1475. DOI: 10.1007/s11947-012-0845-2.
  • Pardeike, J.; Hommoss, A.; Müller, R. H. Lipid Nanoparticles (SLN, NLC) in Cosmetic and Pharmaceutical Dermal Products. Int. J. Pharmaceutics. 2009, 366(1–2), 170–184. DOI: 10.1016/J.IJPHARM.2008.10.003.
  • Müller, R. H.; Radtke, M.; Wissing, S. A. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) in Cosmetic and Dermatological Preparations. Adv. Drug Delivery Rev. 2002, 54, S131–S155. DOI: 10.1016/S0169-409X(02)00118-7.
  • Nasseri, M.; Golmohammadzadeh, S.; Arouiee, H.; Jaafari, M. R.; Neamati, H. Antifungal Activity of Zataria Multiflora Essential Oil-loaded Solid Lipid Nanoparticles In-vitro Condition. Iran. J. Basic Med. Sci. 2016, 19(11), 1231–1237. http://www.ncbi.nlm.nih.gov/pubmed/27917280
  • Miranda, M.; Cruz, M. T.; Vitorino, C.; Cabral, C. Nanostructuring Lipid Carriers Using Ridolfia Segetum (L.) Moris Essential Oil. Mater. Sci. Eng C. 2019, 103, 109804. DOI: 10.1016/J.MSEC.2019.109804.
  • Bharimalla, A. K.; Deshmukh, S. P.; Patil, P. G.; Vigneshwaran, N. Energy Efficient Manufacturing of Nanocellulose by Chemo- and Bio-Mechanical Processes: A Review. World J. Nano Sci. Eng. 2015, 5(4), 204–212. DOI: 10.4236/wjnse.2015.54021.
  • Siqueira, G.; Bras, J.; Dufresne, A. Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications. Polymers. 2010, 2(4), 728–765. DOI: 10.3390/polym2040728.
  • Kasiri, N.; Fathi, M. Entrapment of Peppermint Oil Using Cellulose Nanocrystals. Cellulose. 2018, 25(1), 319–329. DOI: 10.1007/s10570-017-1574-5.
  • Ali, A.; Ahmed, S. A Review on Chitosan and Its Nanocomposites in Drug Delivery. Int. J. Biol. Macromol. 2018, 109, 273–286. DOI: 10.1016/J.IJBIOMAC.2017.12.078.
  • Shetta, A.; Kegere, J.; Mamdouh, W. Comparative Study of Encapsulated Peppermint and Green Tea Essential Oils in Chitosan Nanoparticles: Encapsulation, Thermal Stability, In-vitro Release, Antioxidant and Antibacterial Activities. Int. J. Biol. Macromol. 2019, 126, 731–742. DOI: 10.1016/J.IJBIOMAC.2018.12.161.
  • Hosseini, S. F.; Zandi, M.; Rezaei, M.; Farahmandghavi, F. Two-step Method for Encapsulation of Oregano Essential Oil in Chitosan Nanoparticles: Preparation, Characterization and in Vitro Release Study. Carbohydr. Polym. 2013, 95(1), 50–56. DOI: 10.1016/j.carbpol.2013.02.031.
  • Hasheminejad, N.; Khodaiyan, F.; Safari, M. Improving the Antifungal Activity of Clove Essential Oil Encapsulated by Chitosan Nanoparticles. Food Chem. 2019, 275, 113–122. DOI: 10.1016/J.FOODCHEM.2018.09.085.
  • Hu, J.; Zhang, Y.; Xiao, Z.; Wang, X. Preparation and Properties of Cinnamon-thyme-ginger Composite Essential Oil Nanocapsules. Ind. Crops Prod. 2018, 122, 85–92. DOI: 10.1016/J.INDCROP.2018.05.058.
  • Sotelo-Boyás, M. E.; Correa-Pacheco, Z. N.; Bautista-Baños, S.; Corona-Rangel, M. L. Physicochemical Characterization of Chitosan Nanoparticles and Nanocapsules Incorporated with Lime Essential Oil and Their Antibacterial Activity against Food-borne Pathogens. LWT. 2017, 77, 15–20. DOI: 10.1016/J.LWT.2016.11.022.
  • Luque-Alcaraz, A. G.; Cortez-Rocha, M. O.; Velázquez-Contreras, C. A.; Acosta-Silva, A. L.; Santacruz-Ortega, H. D. C.; Burgos-Hernández, A.; … Plascencia-Jatomea, M. Enhanced Antifungal Effect of Chitosan/Pepper Tree (Schinus molle) Essential Oil Bionanocomposites on the Viability of Aspergillus Parasiticus Spores. J. Nanomater. 2016, 2016, 1–10. ID6060137. DOI: 10.1155/2016/6060137.
  • Zhaveh, S.; Mohsenifar, A.; Beiki, M.; Khalili, S. T.; Abdollahi, A.; Rahmani-Cherati, T.; Tabatabaei, M. Encapsulation of Cuminum Cyminum Essential Oils in Chitosan-caffeic Acid Nanogel with Enhanced Antimicrobial Activity against Aspergillus Flavus. Ind. Crops Prod. 2015, 69, 251–256. DOI: 10.1016/J.INDCROP.2015.02.028.
  • Zhu, F.;. Encapsulation and Delivery of Food Ingredients Using Starch Based Systems. Food Chem. 2017, 229, 542–552. DOI: 10.1016/J.FOODCHEM.2017.02.101.
  • Hasanvand, E.; Fathi, M.; Bassiri, A.; Javanmard, M.; Abbaszadeh, R. Novel Starch Based Nanocarrier for Vitamin D Fortification of Milk: Production and Characterization. Food Bioprod. Process. 2015, 96, 264–277. DOI: 10.1016/J.FBP.2015.09.007.
  • Hasanvand, E.; Fathi, M.; Bassiri, A. Production and Characterization of Vitamin D3 Loaded Starch Nanoparticles: Effect of Amylose to Amylopectin Ratio and Sonication Parameters. J. Food Sci. Technol. 2018, 55(4), 1314–1324. DOI: 10.1007/s13197-018-3042-0.
  • Chiu, N.; Tarrega, A.; Parmenter, C.; Hewson, L.; Wolf, B.; Fisk, I. D. Optimisation of Octinyl Succinic Anhydride Starch Stablised w1/o/w2 Emulsions for Oral Destablisation of Encapsulated Salt and Enhanced Saltiness. Food Hydrocolloids. 2017, 69, 450–458. DOI: 10.1016/J.FOODHYD.2017.03.002.
  • Han, L.; Li, L.; Liu, G.; Li, B. Starch Stearate as a Novel Encapsulation Wall Material and Its Effect on Oil–Water Interfacial Tension. J. Controlled Release. 2011, 152, e226–e227. DOI: 10.1016/J.JCONREL.2011.09.026.
  • García-Tejeda, Y. V.; Salinas-Moreno, Y.; Martínez-Bustos, F. Acetylation of Normal and Waxy Maize Starches as Encapsulating Agents for Maize Anthocyanins Microencapsulation. Food Bioprod. Process. 2015, 94, 717–726. DOI: 10.1016/J.FBP.2014.10.003.
  • Shahrokh, Z.; Kavoosi, G.; Shakeri, R. Physical, Thermal, Antioxidant and Antimicrobial Properties of Starches from Corn, Oat, and Wheat Enriched with Zataria Essential Oil. Bioact. Carbohydr. Diet. Fibre. 2019, 19, 100193. DOI: 10.1016/J.BCDF.2019.100193.
  • Xiao, Z.; Kang, Y.; Hou, W.; Niu, Y.; Kou, X. Microcapsules Based on Octenyl Succinic Anhydride (Osa)-modified Starch and Maltodextrins Changing the Composition and Release Property of Rose Essential Oil. Int. J. Biol. Macromol. 2019, 137, 132–138. DOI: 10.1016/J.IJBIOMAC.2019.06.178.
  • Dos Santos, C.; Buera, P.; Mazzobre, F. Novel Trends in Cyclodextrins Encapsulation. Applications in Food Science. Curr. Opin. Food Sci. 2017, 16, 106–113. DOI: 10.1016/J.COFS.2017.09.002.
  • Marques, C. S.; Carvalho, S. G.; Bertoli, L. D.; Villanova, J. C. O.; Pinheiro, P. F.; Dos Santos, D. C. M.; … Bernardes, P. C. β-Cyclodextrin Inclusion Complexes with Essential Oils: Obtention, Characterization, Antimicrobial Activity and Potential Application for Food Preservative Sachets. Food Res. Int. 2019, 119, 499–509. DOI: 10.1016/J.FOODRES.2019.01.016.
  • Kotronia, M.; Kavetsou, E.; Loupassaki, S.; Kikionis, S.; Vouyiouka, S.; Detsi, A. Encapsulation of Oregano (Origanum Onites L.) Essential Oil in β-Cyclodextrin (β-CD): Synthesis and Characterization of the Inclusion Complexes. Bioengineering. 2017, 4(3), 1–15. DOI: 10.3390/bioengineering4030074.
  • Martins, E.; Poncelet, D.; Rodrigues, R. C.; Renard, D. Oil Encapsulation Techniques Using Alginate as Encapsulating Agent: Applications and Drawbacks. J. Microencapsulation. 2017, 34(8), 754–771. DOI: 10.1080/02652048.2017.1403495.
  • Liu, J.; Xiao, J.; Li, F.; Shi, Y.; Li, D.; Huang, Q. Chitosan-sodium Alginate Nanoparticle as a Delivery System for ε-polylysine: Preparation, Characterization and Antimicrobial Activity. Food Control. 2018, 91, 302–310. DOI: 10.1016/J.FOODCONT.2018.04.020.
  • Sorasitthiyanukarn, F. N.; Muangnoi, C.; Ratnatilaka Na Bhuket, P.; Rojsitthisak, P.; Rojsitthisak, P. chitosan/alginate Nanoparticles as a Promising Approach for Oral Delivery of Curcumin Diglutaric Acid for Cancer Treatment. Mater. Sci. Eng C. 2018, 93, 178–190. DOI: 10.1016/J.MSEC.2018.07.069.
  • Natrajan, D.; Srinivasan, S.; Sundar, K.; Ravindran, A. Formulation of Essential Oil-loaded Chitosan–Alginate Nanocapsules. J. Food Drug Anal. 2015, 23(3), 560–568. DOI: 10.1016/J.JFDA.2015.01.001.
  • de Oliveira, E. F.; Paula, H. C. B.; de Paula, R. C. M. alginate/cashew Gum Nanoparticles for Essential Oil Encapsulation. Colloids Surf. B. 2014, 113, 146–151. DOI: 10.1016/J.COLSURFB.2013.08.038.
  • Thompson, G. A.; Larkins, B. A. Structural Elements Regulating Zein Gene Expression. BioEssays. 1989, 10(4), 108–113. DOI: 10.1002/bies.950100404.
  • Dai, L.; Sun, C.; Li, R.; Mao, L.; Liu, F.; Gao, Y. Structural Characterization, Formation Mechanism and Stability of Curcumin in Zein-lecithin Composite Nanoparticles Fabricated by Antisolvent Co-precipitation. Food Chem. 2017, 237, 1163–1171. DOI: 10.1016/J.FOODCHEM.2017.05.134.
  • Xu, H.; Zhang, Y.; Jiang, Q.; Reddy, N.; Yang, Y. Biodegradable Hollow Zein Nanoparticles for Removal of Reactive Dyes from Wastewater. J. Environ. Manage. 2013, 125, 33–40. DOI: 10.1016/J.JENVMAN.2013.03.050.
  • Yang, H.; Feng, K.; Wen, P.; Zong, M.-H.; Lou, W.-Y.; Wu, H. Enhancing Oxidative Stability of Encapsulated Fish Oil by Incorporation of Ferulic Acid into Electrospun Zein Mat. LWT. 2017, 84, 82–90. DOI: 10.1016/J.LWT.2017.05.045.
  • Kasaai, M. R.;. Zein and Zein -based Nano-materials for Food and Nutrition Applications: A Review. Trends Food Sci. Technol. 2018, 79, 184–197. DOI: 10.1016/J.TIFS.2018.07.015.
  • Patel, A. R.; Hu, Y.; Tiwari, J. K.; Velikov, K. P. Synthesis and Characterisation of Zein-curcumin Colloidal Particles. Soft Matter. 2010, 6(24), 6192–6199. DOI: 10.1039/C0SM00800A.
  • Donsì, F.; Voudouris, P.; Veen, S. J.; Velikov, K. P. Zein-based Colloidal Particles for Encapsulation and Delivery of Epigallocatechin Gallate. Food Hydrocolloids. 2017, 63, 508–517. DOI: 10.1016/j.foodhyd.2016.09.039.
  • Parris, N.; Cooke, P. H.; Hicks, K. B. Encapsulation of Essential Oils in Zein Nanospherical Particles. J. Agric. Food Chem. 2005, 53(12), 4788–4792. DOI: 10.1021/jf040492p.
  • Wu, Y.; Luo, Y.; Wang, Q. Antioxidant and Antimicrobial Properties of Essential Oils Encapsulated in Zein Nanoparticles Prepared by Liquid-liquid Dispersion Method. LWT - Food Sci. Technol. 2012, 48(2), 283–290. DOI: 10.1016/j.lwt.2012.03.027.
  • Chen, H.; Zhong, Q. A Novel Method of Preparing Stable Zein Nanoparticle Dispersions for Encapsulation of Peppermint Oil. Food Hydrocolloids. 2015, 43, 593–602. DOI: 10.1016/J.FOODHYD.2014.07.018.
  • Li, J.; Xu, X.; Chen, Z.; Wang, T.; Lu, Z.; Hu, W.; Wang, L. zein/gum Arabic Nanoparticle-stabilized Pickering Emulsion with Thymol as an Antibacterial Delivery System. Carbohydr. Polym. 2018, 200, 416–426. DOI: 10.1016/J.CARBPOL.2018.08.025.
  • Esmaili, M.; Ghaffari, S. M.; Moosavi-Movahedi, Z.; Atri, M. S.; Sharifizadeh, A.; Farhadi, M.; … Moosavi-Movahedi, A. A. Beta Casein-micelle as a Nano Vehicle for Solubility Enhancement of Curcumin; Food Industry Application. LWT - Food Sci. Technol. 2011, 44(10), 2166–2172. DOI: 10.1016/J.LWT.2011.05.023.
  • Penalva, R.; Esparza, I.; Agüeros, M.; Gonzalez-Navarro, C. J.; Gonzalez-Ferrero, C.; Irache, J. M. Casein Nanoparticles as Carriers for the Oral Delivery of Folic Acid. Food Hydrocolloids. 2015, 44, 399–406. DOI: 10.1016/J.FOODHYD.2014.10.004.
  • Bagheri, L.; Madadlou, A.; Yarmand, M.; Mousavi, M. E. Nanoencapsulation of Date Palm Pit Extract in Whey Protein Particles Generated via Desolvation Method. Food Res. Int. 2013, 51(2), 866–871. DOI: 10.1016/J.FOODRES.2013.01.058.
  • Sullivan, S. T.; Tang, C.; Kennedy, A.; Talwar, S.; Khan, S. A. Electrospinning and Heat Treatment of Whey Protein Nanofibers. Food Hydrocolloids. 2014, 35, 36–50. DOI: 10.1016/J.FOODHYD.2013.07.023.
  • de la Fuente, M. A.; Singh, H.; Hemar, Y. Recent Advances in the Characterisation of Heat-induced Aggregates and Intermediates of Whey Proteins. Trends Food Sci. Technol. 2002, 13(8), 262–274. DOI: 10.1016/S0924-2244(02)00133-4.
  • Livney, Y. D.; Corredig, M.; Dalgleish, D. G. Influence of Thermal Processing on the Properties of Dairy Colloids. Curr. Opin. Colloid Interface Sci. 2003, 8(4–5), 359–364. DOI: 10.1016/S1359-0294(03)00092-X.
  • Taştan, Ö.; Pataro, G.; Donsì, F.; Ferrari, G.; Baysal, T. Decontamination of Fresh-cut Cucumber Slices by a Combination of a Modified Chitosan Coating Containing Carvacrol Nanoemulsions and Pulsed Light. Int. J. Food Microbiol. 2017, 260, 75–80. DOI: 10.1016/j.ijfoodmicro.2017.08.011.
  • Ghasemi, S.; Jafari, S. M.; Assadpour, E.; Khomeiri, M. Nanoencapsulation of D-limonene within Nanocarriers Produced by Pectin-whey Protein Complexes. Food Hydrocolloids. 2018, 77, 152–162. DOI: 10.1016/J.FOODHYD.2017.09.030.
  • Ghasemi, S.; Jafari, S. M.; Assadpour, E.; Khomeiri, M. Production of Pectin-whey Protein Nano-complexes as Carriers of Orange Peel Oil. Carbohydr. Polym. 2017, 177, 369–377. DOI: 10.1016/J.CARBPOL.2017.09.009.
  • Khorasani, S.; Danaei, M.; Mozafari, M. R. Nanoliposome Technology for the Food and Nutraceutical Industries. Trends Food Sci. Technol. 2018, 79, 106–115. DOI: 10.1016/J.TIFS.2018.07.009.
  • Lasic, D. D.;. Mechanisms of Liposome Formation. J. Liposome Res. 1995, 5(3), 431–441. DOI: 10.3109/08982109509010233.
  • Wen, Z.; Liu, B.; Zheng, Z.; You, X.; Pu, Y.; Li, Q. Preparation of Liposomes Entrapping Essential Oil from Atractylodes Macrocephala Koidz by Modified RESS Technique. Chemical Engineering Research and Design. 2010, 88(8), 1102–1107. DOI: 10.1016/J.CHERD.2010.01.020.
  • Wen, Z.; You, X.; Jiang, L.; Liu, B.; Zheng, Z.; Pu, Y.; Cheng, B. Liposomal Incorporation of Rose Essential Oil by a Supercritical Process. Flavour Fragr. J. 2011, 26(1), 27–33. DOI: 10.1002/ffj.2012.
  • Liolios, C. C.; Gortzi, O.; Lalas, S.; Tsaknis, J.; Chinou, I. Liposomal Incorporation of Carvacrol and Thymol Isolated from the Essential Oil of Origanum Dictamnus L. And in Vitro Antimicrobial Activity. Food Chem. 2009, 112(1), 77–83. DOI: 10.1016/J.FOODCHEM.2008.05.060.
  • Gortzi, O.; Lala, S.; Chinou, I.; Tsaknis, J.; Gortzi, O.; Lala, S.; … Tsaknis, J. Evaluation of the Antimicrobial and Antioxidant Activities of Origanum Dictamnus Extracts before and after Encapsulation in Liposomes. Molecules. 2007, 12(5), 932–945. DOI: 10.3390/12050932.
  • Singh, V.; Chaudhary, A. K. Development and Characterization of Rosiglitazone Loaded Gelatin Nanoparticles Using Two Step Desolvation Method. Int. J. Pharma. Sci. Rev. Res. 2010, 5(1), 100–103.
  • Bajpai, A. K.; Choubey, J. In Vitro Release Dynamics of an Anticancer Drug from Swellable Gelatin Nanoparticles. J. Appl. Polym. Sci. 2006, 101(4), 2320–2332. DOI: 10.1002/app.23761.
  • Hussain, M. R.; Maji, T. K. Preparation of Genipin Cross-linked Chitosan-gelatin Microcapsules for Encapsulation of Zanthoxylum Limonella Oil (ZLO) Using Salting-out Method. J. Microencapsulation. 2008, 25(6), 414–420. DOI: 10.1080/02652040802025901.
  • Sutaphanit, P.; Chitprasert, P. Optimisation of Microencapsulation of Holy Basil Essential Oil in Gelatin by Response Surface Methodology. Food Chem. 2014, 150, 313–320. DOI: 10.1016/J.FOODCHEM.2013.10.159.
  • Wang, L.; Yang, S.; Cao, J.; Zhao, S.; Wang, W. Microencapsulation of Ginger Volatile Oil Based on Gelatin/Sodium Alginate Polyelectrolyte Complex. Chem. Pharm. Bull. 2016, 64(1), 21–26. DOI: 10.1248/cpb.c15-00571.
  • Esfahani, R.; Jafari, S. M.; Jafarpour, A.; Dehnad, D. Loading of Fish Oil into Nanocarriers Prepared through Gelatin-gum Arabic Complexation. Food Hydrocolloids. 2019, 90, 291–298. DOI: 10.1016/J.FOODHYD.2018.12.044.
  • Lin, L.; Zhu, Y.; Cui, H. Electrospun Thyme Essential oil/gelatin Nanofibers for Active Packaging against Campylobacter Jejuni in Chicken. LWT. 2018, 97, 711–718. DOI: 10.1016/J.LWT.2018.08.015.
  • Cui, H.; Bai, M.; Rashed, M. M. A.; Lin, L. The Antibacterial Activity of Clove oil/chitosan Nanoparticles Embedded Gelatin Nanofibers against Escherichia Coli O157: H7biofilms on Cucumber. Int. J. Food Microbiol. 2018, 266, 69–78. DOI: 10.1016/J.IJFOODMICRO.2017.11.019.
  • Tavassoli-Kafrani, E.; Goli, S. A. H.; Fathi, M. Encapsulation of Orange Essential Oil Using Cross-linked Electrospun Gelatin Nanofibers. Food Bioprocess. Technol. 2018, 11(2), 427–434. DOI: 10.1007/s11947-017-2026-9.
  • Ezhilarasi, P. N.; Karthik, P.; Chhanwal, N.; Anandharamakrishnan, C. Nanoencapsulation Techniques for Food Bioactive Components: A Review. Food Bioprocess. Technol. 2013, 6(3), 628–647. DOI: 10.1007/s11947-012-0944-0.
  • Donsì, F.; Ferrari, G.; Maresca, P. High-Pressure Homogenization for Food Sanitization. In Global Issues in Food Science and Technology, 2009. DOI: 10.1016/B978-0-12-374124-0.00019-3.
  • Donsì, F.; Sessa, M.; Ferrari, G. Effect of Emulsifier Type and Disruption Chamber Geometry on the Fabrication of Food Nanoemulsions by High Pressure Homogenization. Ind. Eng. Chem. Res. 2012, 51(22), 7606–7618. DOI: 10.1021/ie2017898.
  • Hashemi Gahruie, H.; Ziaee, E.; Eskandari, M. H.; Hosseini, S. M. H. Characterization of Basil Seed Gum-based Edible Films Incorporated with Zataria Multiflora Essential Oil Nanoemulsion. Carbohydr. Polym. 2017, 166, 93–103. DOI: 10.1016/J.CARBPOL.2017.02.103.
  • Chang, Y.; McLandsborough, L.; McClements, D. J. Physicochemical Properties and Antimicrobial Efficacy of Carvacrol Nanoemulsions Formed by Spontaneous Emulsification. J. Agric. Food Chem. 2013, 61(37), 8906–8913. DOI: 10.1021/jf402147p.
  • Ryu, V.; McClements, D. J.; Corradini, M. G.; McLandsborough, L. Effect of Ripening Inhibitor Type on Formation, Stability, and Antimicrobial Activity of Thyme Oil Nanoemulsion. Food Chem. 2018, 245, 104–111. DOI: 10.1016/J.FOODCHEM.2017.10.084.
  • Tan, C. P.; Nakajima, M. β-Carotene Nanodispersions: Preparation, Characterization and Stability Evaluation. Food Chem. 2005, 92(4), 661–671. DOI: 10.1016/J.FOODCHEM.2004.08.044.
  • Piacentini, E. Coacervation. In Encyclopedia of Membranes; Springer Berlin Heidelberg: Berlin, Heidelberg, 2016; pp. 422–424. DOI:10.1007/978-3-662-44324-8_2019.
  • Lv, Y.; Yang, F.; Li, X.; Zhang, X.; Abbas, S. Formation of Heat-resistant Nanocapsules of Jasmine Essential Oil via gelatin/gum Arabic Based Complex Coacervation. Food Hydrocolloids. 2014, 35, 305–314. DOI: 10.1016/J.FOODHYD.2013.06.003.
  • Dima, C.; Cotârlet, M.; Alexe, P.; Dima, S. Microencapsulation of Essential Oil of Pimento [Pimenta Dioica (L) merr.] By chitosan/k-carrageenan Complex Coacervation Method. Innovative Food Sci. Emerg. Technol. 2014, 22, 203–211. DOI: 10.1016/J.IFSET.2013.12.020.
  • Rutz, J. K.; Borges, C. D.; Zambiazi, R. C.; Crizel-Cardozo, M. M.; Kuck, L. S.; Noreña, C. P. Z. Microencapsulation of Palm Oil by Complex Coacervation for Application in Food Systems. Food Chem. 2017, 220, 59–66. DOI: 10.1016/J.FOODCHEM.2016.09.194.
  • Rakmai, J.; Cheirsilp, B.; Mejuto, J. C.; Torrado-Agrasar, A.; Simal-Gándara, J. Physico-chemical Characterization and Evaluation of Bio-efficacies of Black Pepper Essential Oil Encapsulated in Hydroxypropyl-beta-cyclodextrin. Food Hydrocolloids. 2017, 65, 157–164. DOI: 10.1016/J.FOODHYD.2016.11.014.
  • Zimet, P.; Livney, Y. D. Beta-lactoglobulin and Its Nanocomplexes with Pectin as Vehicles for ω-3 Polyunsaturated Fatty Acids. Food Hydrocolloids. 2009, 23(4), 1120–1126. DOI: 10.1016/J.FOODHYD.2008.10.008.
  • Kong, L.; Yucel, U.; Yoksan, R.; Elias, R. J.; Ziegler, G. R. Characterization of Amylose Inclusion Complexes Using Electron Paramagnetic Resonance Spectroscopy. Food Hydrocolloids. 2018, 82, 82–88. DOI: 10.1016/J.FOODHYD.2018.03.050.
  • da Rocha Neto, A. C.; de Oliveira da Rocha, A. B.; Maraschin, M.; Di Piero, R. M.; Almenar, E. Factors Affecting the Entrapment Efficiency of β-cyclodextrins and Their Effects on the Formation of Inclusion Complexes Containing Essential Oils. Food Hydrocolloids. 2018, 77, 509–523. DOI: 10.1016/J.FOODHYD.2017.10.029.
  • Anaya-Castro, M. A.; Ayala-Zavala, J. F.; Muñoz-Castellanos, L.; Hernández-Ochoa, L.; Peydecastaing, J.; Durrieu, V. β-Cyclodextrin Inclusion Complexes Containing Clove (Eugenia caryophyllata) and Mexican Oregano (Lippia berlandieri) Essential Oils: Preparation, Physicochemical and Antimicrobial Characterization. Food Pack. Shelf Life. 2017, 14, 96–101. DOI: 10.1016/J.FPSL.2017.09.002.
  • Podaralla, S.; Averineni, R.; Alqahtani, M.; Perumal, O. Synthesis of Novel Biodegradable Methoxy poly(ethylene glycol)–Zein Micelles for Effective Delivery of Curcumin. Mol. Pharmaceutics. 2012, 9(9), 2778–2786. DOI: 10.1021/mp2006455.
  • Oliveira, D. A.; Mezzomo, N.; Gomes, C.; Ferreira, S. R. S. Encapsulation of Passion Fruit Seed Oil by Means of Supercritical Antisolvent Process. J. Supercrit. Fluids. 2017, 129, 96–105. DOI: 10.1016/J.SUPFLU.2017.02.011.
  • Almeida, A. P.; Rodríguez-Rojo, S.; Serra, A. T.; Vila-Real, H.; Simplicio, A. L.; Delgadilho, I.; … Duarte, C. M. M. Microencapsulation of Oregano Essential Oil in Starch-based Materials Using Supercritical Fluid Technology. Innovative Food Sci. Emerg. Technol. 2013, 20, 140–145. DOI: 10.1016/J.IFSET.2013.07.009.
  • Fernandes, R. V. D. B.; Borges, S. V.; Silva, E. K.; da Silva, Y. F.; de Souza, H. J. B.; Do Carmo, E. L.; … Botrel, D. A. Study of Ultrasound-assisted Emulsions on Microencapsulation of Ginger Essential Oil by Spray Drying. Ind. Crops Prod. 2016, 94, 413–423. DOI: 10.1016/J.INDCROP.2016.09.010.
  • Rodklongtan, A.; Chitprasert, P. Combined Effects of Holy Basil Essential Oil and Inlet Temperature on Lipid Peroxidation and Survival of Lactobacillus Reuteri KUB-AC5 during Spray Drying. Food Res. Int. 2017, 100, 276–283. DOI: 10.1016/J.FOODRES.2017.07.016.
  • Campelo, P. H.; Do Carmo, E. L.; Zacarias, R. D.; Yoshida, M. I.; Ferraz, V. P.; de Barros Fernandes, R. V.; … Borges, S. V. Effect of Dextrose Equivalent on Physical and Chemical Properties of Lime Essential Oil Microparticles. Ind. Crops Prod. 2017, 102, 105–114. DOI: 10.1016/J.INDCROP.2017.03.021.
  • Kavousi, H. R.; Fathi, M.; Goli, S. A. H. Stability Enhancement of Fish Oil by Its Encapsulation Using a Novel Hydrogel of Cress Seed mucilage/chitosan. Int. J. Food Prop. 2017, 1–11. DOI: 10.1080/10942912.2017.1357042.
  • Jurić, S.; Ferrari, G.; Velikov, K. P.; Donsì, F. High-pressure Homogenization Treatment to Recover Bioactive Compounds from Tomato Peels. J. Food Eng. 2019, 262, 170–180. DOI: 10.1016/J.JFOODENG.2019.06.011.
  • Sessa, M.; Tsao, R.; Liu, R.; Ferrari, G.; Donsì, F. Evaluation of the Stability and Antioxidant Activity of Nanoencapsulated Resveratrol during in Vitro Digestion. J. Agric. Food Chem. 2011, 59(23), 12352–12360. DOI: 10.1021/jf2031346.
  • Chang, Y.; McLandsborough, L.; McClements, D. J. Physical Properties and Antimicrobial Efficacy of Thyme Oil Nanoemulsions: Influence of Ripening Inhibitors. J. Agric. Food Chem. 2012, 60(48), 12056–12063. DOI: 10.1021/jf304045a.
  • Prakash, B.; Kujur, A.; Yadav, A.; Kumar, A.; Singh, P. P.; Dubey, N. K. Nanoencapsulation: An Efficient Technology to Boost the Antimicrobial Potential of Plant Essential Oils in Food System. Food Control. 2018, 89, 1–11. DOI: 10.1016/J.FOODCONT.2018.01.018.
  • Donsì, F.; Ferrari, G. Effect of Nanoemulsion Formulation on Permeation of Essential Oils through Biological Membranes. Chem. Eng. Trans. 2019, 75, 247–252. DOI: 10.3303/CET1975042.
  • Hill, L. E.; Gomes, C.; Taylor, T. M. Characterization of Beta-cyclodextrin Inclusion Complexes Containing Essential Oils (Trans-cinnamaldehyde, Eugenol, Cinnamon Bark, and Clove Bud extracts) for Antimicrobial Delivery Applications. LWT - Food Sci. Technol. 2013, 51(1), 86–93. DOI: 10.1016/J.LWT.2012.11.011.
  • Cui, H.; Li, W.; Li, C.; Vittayapadung, S.; Lin, L. Liposome Containing Cinnamon Oil with Antibacterial Activity against Methicillin-resistant Staphylococcus Aureus Biofilm. Biofouling. 2016, 32(2), 215–225. DOI: 10.1080/08927014.2015.1134516.
  • Ayala-Zavala, J. F.; Soto-Valdez, H.; González-León, A.; Álvarez-Parrilla, E.; Martín-Belloso, O.; González-Aguilar, G. A. Microencapsulation of Cinnamon Leaf (Cinnamomum zeylanicum) and Garlic (Allium sativum) Oils in β-cyclodextrin. J. Inclusion Phenom. Macrocyclic Chem. 2008, 60(3–4), 359–368. DOI: 10.1007/s10847-007-9385-1.
  • Majeed, H.; Liu, F.; Hategekimana, J.; Sharif, H. R.; Qi, J.; Ali, B.; … Zhong, F. Bactericidal Action Mechanism of Negatively Charged Food Grade Clove Oil Nanoemulsions. Food Chem. 2016, 197, 75–83. DOI: 10.1016/j.foodchem.2015.10.015.
  • Moraes-Lovison, M.; Marostegan, L. F. P.; Peres, M. S.; Menezes, I. F.; Ghiraldi, M.; Rodrigues, R. A. F.; … Pinho, S. C. Nanoemulsions Encapsulating Oregano Essential Oil: Production, Stability, Antibacterial Activity and Incorporation in Chicken Pâté. LWT. 2017, 77, 233–240. DOI: 10.1016/J.LWT.2016.11.061.
  • Arana-Sánchez, A.; Estarrón-Espinosa, M.; Obledo-Vázquez, E. N.; Padilla-Camberos, E.; Silva-Vázquez, R.; Lugo-Cervantes, E. Antimicrobial and Antioxidant Activities of Mexican Oregano Essential Oils (Lippia Graveolens H. B. K.) With Different Composition When Microencapsulated inβ-cyclodextrin. Lett Appl. Microbiol. 2010, 50(6), 585–590. DOI: 10.1111/j.1472-765X.2010.02837.x.
  • Moghimi, R.; Aliahmadi, A.; McClements, D. J.; Rafati, H. Investigations of the Effectiveness of Nanoemulsions from Sage Oil as Antibacterial Agents on Some Food Borne Pathogens. LWT - Food Sci. Technol. 2016, 71, 69–76. DOI: 10.1016/J.LWT.2016.03.018.
  • Xue, J.; Michael Davidson, P.; Zhong, Q. Antimicrobial Activity of Thyme Oil Co-nanoemulsified with Sodium Caseinate and Lecithin. Int. J. Food Microbiol. 2015, 210, 1–8. DOI: 10.1016/j.ijfoodmicro.2015.06.003.
  • Ziani, K.; Chang, Y.; McLandsborough, L.; McClements, D. J. Influence of Surfactant Charge on Antimicrobial Efficacy of Surfactant-stabilized Thyme Oil Nanoemulsions. J. Agric. Food Chem. 2011, 59(11), 6247–6255. DOI: 10.1021/jf200450m.
  • Del Toro-Sánchez, C. L.; Ayala-Zavala, J. F.; Machi, L.; Santacruz, H.; Villegas-Ochoa, M. A.; Alvarez-Parrilla, E.; González-Aguilar, G. A. Controlled Release of Antifungal Volatiles of Thyme Essential Oil from β-cyclodextrin Capsules. J. Inclusion Phenom. Macrocyclic Chem. 2010, 67(3–4), 431–441. DOI: 10.1007/s10847-009-9726-3.
  • Dannenfelser, R.-M.; Yalkowsky, S. H. Data Base of Aqueous Solubility for Organic Non-electrolytes. Sci. Total Environ. 1991, 109–110, 625–628. DOI: 10.1016/0048-9697(91)90214-Y.
  • Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; … Lai, L. Computation of Octanol−Water Partition Coefficients by Guiding an Additive Model with Knowledge. J. Chem. Inf. Model. 2007, 47(6), 2140–2148. DOI: 10.1021/CI700257Y.
  • Donsì, F.; Annunziata, M.; Vincensi, M.; Ferrari, G. Design of Nanoemulsion-based Delivery Systems of Natural Antimicrobials: Effect of the Emulsifier. J. Biotechnol. 2012, 159(4), 342–350. DOI: 10.1016/j.jbiotec.2011.07.001.
  • Moghimi, R.; Ghaderi, L.; Rafati, H.; Aliahmadi, A.; Mcclements, D. J. Superior Antibacterial Activity of Nanoemulsion of Thymus Daenensis Essential Oil against E. Coli. Food Chem. 2016, 194, 410–415. DOI: 10.1016/j.foodchem.2015.07.139.
  • Chang, Y.; McLandsborough, L.; McClements, D. J. Fabrication, Stability and Efficacy of Dual-component Antimicrobial Nanoemulsions: Essential Oil (Thyme oil) and Cationic Surfactant (Lauric arginate). Food Chem. 2015, 172, 298–304. DOI: 10.1016/j.foodchem.2014.09.081.
  • Li, W.; Chen, H.; He, Z.; Han, C.; Liu, S.; Li, Y. Influence of Surfactant and Oil Composition on the Stability and Antibacterial Activity of Eugenol Nanoemulsions. LWT - Food Sci. Technol. 2015, 62(1), 39–47. DOI: 10.1016/j.lwt.2015.01.012.
  • Garg, T.; Sharma, G.; Rath, G.; Goyal, A. K. Colloidal Systems: An Excellent Carrier for Nutrient Delivery. Nutr. Delivery. 2017, 681–712. DOI: 10.1016/B978-0-12-804304-2.00018-4.
  • Ben Jemaa, M.; Falleh, H.; Neves, M. A.; Isoda, H.; Nakajima, M.; Ksouri, R. Quality Preservation of Deliberately Contaminated Milk Using Thyme Free and Nanoemulsified Essential Oils. Food Chem. 2017, 217, 726–734. DOI: 10.1016/J.FOODCHEM.2016.09.030.
  • Cui, H.; Zhao, C.; Lin, L. The Specific Antibacterial Activity of Liposome-encapsulated Clove Oil and Its Application in Tofu. Food Control. 2015, 56, 128–134. DOI: 10.1016/J.FOODCONT.2015.03.026.
  • Gonçalves, N. D.; Pena, F. D. L.; Sartoratto, A.; Derlamelina, C.; Duarte, M. C. T.; Antunes, A. E. C.; Prata, A. S. Encapsulated Thyme (Thymus vulgaris) Essential Oil Used as a Natural Preservative in Bakery Product. Food Res. Int. 2017, 96, 154–160. DOI: 10.1016/J.FOODRES.2017.03.006.
  • Bhargava, K.; Conti, D. S.; da Rocha, S. R. P.; Zhang, Y. Application of an Oregano Oil Nanoemulsion to the Control of Foodborne Bacteria on Fresh Lettuce. Food Microbiol. 2015, 47, 69–73. DOI: 10.1016/j.fm.2014.11.007.
  • Ruengvisesh, S.; Loquercio, A.; Castell-Perez, E.; Taylor, T. M. Inhibition of Bacterial Pathogens in Medium and on Spinach Leaf Surfaces Using Plant-Derived Antimicrobials Loaded in Surfactant Micelles. J. Food Sci. 2015, 80(11), M2522–M2529. DOI: 10.1111/1750-3841.13085.
  • Ozogul, Y.; Yuvka, İ.; Ucar, Y.; Durmus, M.; Kösker, A. R.; Öz, M.; Ozogul, F. Evaluation of Effects of Nanoemulsion Based on Herb Essential Oils (Rosemary, Laurel, Thyme and sage) on Sensory, Chemical and Microbiological Quality of Rainbow Trout (Oncorhynchus mykiss) Fillets during Ice Storage. LWT - Food Sci. Technol. 2017, 75, 677–684. DOI: 10.1016/j.lwt.2016.10.009.
  • Khosravi-Darani, K.; Khoosfi, M. E.; Hosseini, H. Encapsulation of Zataria Multiflora Boiss. Essential Oil in Liposome: Antibacterial Activity against E. Coli O157: H7in Broth Media and Minced Beef. J. Food Saf. 2016, 36(4), 515–523. DOI: 10.1111/jfs.12271.
  • Ghaderi-Ghahfarokhi, M.; Barzegar, M.; Sahari, M. A.; Ahmadi Gavlighi, H.; Gardini, F. Chitosan-cinnamon Essential Oil Nano-formulation: Application as a Novel Additive for Controlled Release and Shelf Life Extension of Beef Patties. Int. J. Biol. Macromol. 2017, 102, 19–28. DOI: 10.1016/j.ijbiomac.2017.04.002.
  • Sessa, M.; Ferrari, G.; Donsì, F. Novel Edible Coating Containing Essential Oil Nanoemulsions to Prolong the Shelf Life of Vegetable Products. Chem. Eng. Trans. 2015, 43. DOI: 10.3303/CET1543010.
  • Severino, R.; Vu, K. D.; Donsì, F.; Salmieri, S.; Ferrari, G.; Lacroix, M. Antibacterial and Physical Effects of Modified Chitosan Based-coating Containing Nanoemulsion of Mandarin Essential Oil and Three Non-thermal Treatments against Listeria Innocua in Green Beans. Int. J. Food Microbiol. 2014, 191, 82–88. DOI: 10.1016/j.ijfoodmicro.2014.09.007.
  • Severino, R.; Ferrari, G.; Vu, K. D.; Donsì, F.; Salmieri, S.; Lacroix, M. Antimicrobial Effects of Modified Chitosan Based Coating Containing Nanoemulsion of Essential Oils, Modified Atmosphere Packaging and Gamma Irradiation against Escherichia Coli O157: H7and Salmonella Typhimurium on Green Beans. Food Control. 2015, 50, 215–222. DOI: 10.1016/j.foodcont.2014.08.029.
  • Severino, R.; Vu, K. D.; Donsì, F.; Salmieri, S.; Ferrari, G.; Lacroix, M. Antimicrobial Effects of Different Combined Non-thermal Treatments against Listeria Monocytogenes in Broccoli Florets. J. Food Eng. 2014, 124, 1–10. DOI: 10.1016/j.jfoodeng.2013.09.026.
  • Artiga-Artigas, M.; Acevedo-Fani, A.; Martín-Belloso, O. Improving the Shelf Life of Low-fat Cut Cheese Using Nanoemulsion-based Edible Coatings Containing Oregano Essential Oil and Mandarin Fiber. Food Control. 2017, 76, 1–12. DOI: 10.1016/j.foodcont.2017.01.001.
  • Otoni, C. G.; Pontes, S. F. O.; Medeiros, E. A. A.; Soares, N. D. F. F. Edible Films from Methylcellulose and Nanoemulsions of Clove Bud (Syzygium aromaticum) and Oregano (Origanum vulgare) Essential Oils as Shelf Life Extenders for Sliced Bread. J. Agric. Food Chem. 2014, 62(22), 5214–5219. DOI: 10.1021/jf501055f.
  • Alikhani-Koupaei, M.;. Liposomal and Edible Coating as Control Release Delivery Systems for Essential Oils: Comparison of Application on Storage Life of Fresh-cut Banana. Qual. Assur. Saf. Crops Food. 2015, 7(2), 175–185. DOI: 10.3920/QAS2013.0297.
  • Rajaei, A.; Hadian, M.; Mohsenifar, A.; Rahmani-Cherati, T.; Tabatabaei, M. A Coating Based on Clove Essential Oils Encapsulated by Chitosan-myristic Acid Nanogel Efficiently Enhanced the Shelf-life of Beef Cutlets. Food Pack. Shelf Life. 2017, 14, 137–145. DOI: 10.1016/J.FPSL.2017.10.005.
  • Hu, J.; Wang, X.; Xiao, Z.; Bi, W. Effect of Chitosan Nanoparticles Loaded with Cinnamon Essential Oil on the Quality of Chilled Pork. LWT - Food Sci. Technol. 2015, 63(1), 519–526. DOI: 10.1016/J.LWT.2015.03.049.
  • Donsì, F.; Cuomo, A.; Marchese, E.; Ferrari, G. Infusion of Essential Oils for Food Stabilization: Unraveling the Role of Nanoemulsion-based Delivery Systems on Mass Transfer and Antimicrobial Activity. Innovative Food Sci. Emerging Technol. 2014, 22, 212–220. DOI: 10.1016/j.ifset.2014.01.008.
  • Donsì, F.; Marchese, E.; Maresca, P.; Pataro, G.; Vu, K. D.; Salmieri, S.; … Ferrari, G. Green Beans Preservation by Combination of a Modified Chitosan Based-coating Containing Nanoemulsion of Mandarin Essential Oil with High Pressure or Pulsed Light Processing. Postharvest. Biol. Technol. 2015, 106. DOI: 10.1016/j.postharvbio.2015.02.006.
  • Salvia-Trujillo, L.; Rojas-Grau, M. A.; Soliva-Fortuny, R.; Martin-Belloso, O. Use of Antimicrobial Nanoemulsions as Edible Coatings: Impact on Safety and Quality Attributes of Fresh-cut Fuji Apples. Postharvest. Biol. Technol. 2015, 105, 8–16. DOI: 10.1016/j.postharvbio.2015.03.009.
  • Karimirad, R.; Behnamian, M.; Dezhsetan, S.; Sonnenberg, A. Chitosan Nanoparticles-loaded Citrus Aurantium Essential Oil: A Novel Delivery System for Preserving the Postharvest Quality of Agaricus Bisporus. J. Sci. Food Agric. 2018, 98(13), 5112–5119. DOI: 10.1002/jsfa.9050.
  • Hadian, M.; Rajaei, A.; Mohsenifar, A.; Tabatabaei, M. Encapsulation of Rosmarinus Officinalis Essential Oils in Chitosan-benzoic Acid Nanogel with Enhanced Antibacterial Activity in Beef Cutlet against Salmonella Typhimurium during Refrigerated Storage. LWT. 2017, 84, 394–401. DOI: 10.1016/J.LWT.2017.05.075.
  • Hyldgaard, M.; Mygind, T.; Meyer, R. L. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2012, 3, 12–24. DOI: 10.3389/fmicb.2012.00012.
  • Kuorwel, K. K.; Cran, M. J.; Sonneveld, K.; Miltz, J.; Bigger, S. W. Essential Oils and Their Principal Constituents as Antimicrobial Agents for Synthetic Packaging Films. J. Food Sci. 2011, 76(9), R164–R177. DOI: 10.1111/j.1750-3841.2011.02384.x.
  • Bakry, A. M.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M. Y.; Mousa, A.; Liang, L. Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Compr. Rev. Food Sci. Food Saf. 2016, 15(1), 143–182. DOI: 10.1111/1541-4337.12179.
  • Pedro, A. S.; Cabral-Albuquerque, E.; Ferreira, D.; Sarmento, B. Chitosan: An Option for Development of Essential Oil Delivery Systems for Oral Cavity Care? Carbohydr. Polym. 2009, 76(4), 501–508. DOI: 10.1016/J.CARBPOL.2008.12.016.
  • Bilia, A. R.; Guccione, C.; Isacchi, B.; Righeschi, C.; Firenzuoli, F.; Bergonzi, M. C. Essential Oils Loaded in Nanosystems: A Developing Strategy for A Successful Therapeutic Approach. Evid.-Based Complementary Altern. Med., 2014. ( ID651593), 2014, 1–14.DOI: 10.1155/2014/651593.
  • Vergis, J.; Gokulakrishnan, P.; Agarwal, R. K.; Kumar, A. Essential Oils as Natural Food Antimicrobial Agents: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55(10), 1320–1323. DOI: 10.1080/10408398.2012.692127.
  • Zhang, Y.; Gong, J.; Yu, H.; Guo, Q.; Defelice, C.; Hernandez, M.; … Wang, Q. Alginate-whey Protein Dry Powder Optimized for Target Delivery of Essential Oils to the Intestine of Chickens. Poultr. Sci. 2014, 93(10), 2514–2525. DOI: 10.3382/ps.2013-03843.
  • Nenaah, G. E.; Ibrahim, S. I. A.; Al-Assiuty, B. A. Chemical Composition, Insecticidal Activity and Persistence of Three Asteraceae Essential Oils and Their Nanoemulsions against Callosobruchus Maculatus (F.). J. Stored Prod. Res. 2015, 61, 9–16. DOI: 10.1016/J.JSPR.2014.12.007.
  • Christofoli, M.; Costa, E. C. C.; Bicalho, K. U.; de Cássia Domingues, V.; Peixoto, M. F.; Alves, C. C. F.; … de Melo Cazal, C. Insecticidal Effect of Nanoencapsulated Essential Oils from Zanthoxylum Rhoifolium (Rutaceae) in Bemisia Tabaci Populations. Ind. Crops Prod. 2015, 70, 301–308. DOI: 10.1016/J.INDCROP.2015.03.025.
  • Ziaee, M.; Moharramipour, S.; Mohsenifar, A. Toxicity of Carum Copticum Essential Oil-loaded Nanogel against Sitophilus Granarius and Tribolium Confusum. J. App.Entomol. 2014b, 138(10), 763–771. DOI: 10.1111/jen.12133.
  • Werdin González, J. O.; Gutiérrez, M. M.; Ferrero, A. A.; Fernández Band, B. Essential Oils Nanoformulations for Stored-product Pest Control - Characterization and Biological Properties. Chemosphere. 2014, 100, 130–138. DOI: 10.1016/j.chemosphere.2013.11.056.
  • Lai, F.; Wissing, S. A.; Müller, R. H.; Fadda, A. M. Artemisia Arborescens L Essential Oil-loaded Solid Lipid Nanoparticles for Potential Agricultural Application: Preparation and Characterization. AAPS PharmSciTech. 2006, 7, 10–18. DOI: 10.1208/pt070102.
  • Abreu, F. O. M. S.; Oliveira, E. F.; Paula, H. C. B.; de Paula, R. C. M. chitosan/cashew Gum Nanogels for Essential Oil Encapsulation. Carbohydr. Polym. 2012, 89(4), 1277–1282. DOI: 10.1016/J.CARBPOL.2012.04.048.
  • De Oliveira, J. L.; Campos, E. V. R.; Pereira, A. E. S.; Nunes, L. E. S.; Da Silva, C. C. L.; Pasquoto, T.; … Fraceto, L. F. Geraniol Encapsulated in Chitosan/Gum Arabic Nanoparticles: A Promising System for Pest Management in Sustainable Agriculture. J. Agric. Food Chem. 2018, 66(21), 5325–5334. DOI: 10.1021/acs.jafc.8b00331.
  • Specos, M. M. M.; García, J. J.; Tornesello, J.; Marino, P.; Vecchia, D. M.; Tesoriero, D. M. V.; Hermida, L. G. Microencapsulated Citronella Oil for Mosquito Repellent Finishing of Cotton Textiles. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2010, 104(10), 653–658. DOI: 10.1016/j.trstmh.2010.06.004.
  • Isman, M. B.;. Plant Essential Oils for Pest and Disease Management. Crop Prot. 2000, 19(8–10), 603–608. DOI: 10.1016/S0261-2194(00)00079-X.
  • Zhai, H.; Liu, H.; Wang, S.; Wu, J.; Kluenter, A.-M. Potential of Essential Oils for Poultry and Pigs. Anim. Nutr. 2018, 4(2), 179–186. DOI: 10.1016/J.ANINU.2018.01.005.
  • Omonijo, F. A.; Ni, L.; Gong, J.; Wang, Q.; Lahaye, L.; Yang, C. Essential Oils as Alternatives to Antibiotics in Swine Production. Anim. Nutr. 2018, 4(2), 126–136. DOI: 10.1016/J.ANINU.2017.09.001.
  • Khattak, F.; Ronchi, A.; Castelli, P.; Sparks, N. Effects of Natural Blend of Essential Oil on Growth Performance, Blood Biochemistry, Cecal Morphology, and Carcass Quality of Broiler Chickens. Poultr. Sci. 2014, 93(1), 132–137. DOI: 10.3382/ps.2013-03387.
  • Alali, W. Q.; Hofacre, C. L.; Mathis, G. F.; Faltys, G. Effect of Essential Oil Compound on Shedding and Colonization of Salmonella Enterica Serovar Heidelberg in Broilers. Poultr. Sci. 2013, 92(3), 836–841. DOI: 10.3382/ps.2012-02783.
  • Tiihonen, K.; Kettunen, H.; Bento, M. H. L.; Saarinen, M.; Lahtinen, S.; Ouwehand, A. C.; … Rautonen, N. The Effect of Feeding Essential Oils on Broiler Performance and Gut Microbiota. British Poul. Sci. 2010, 51(3), 381–392. DOI: 10.1080/00071668.2010.496446.
  • Bölükbasi, S. C.; Erhan, M. K.; Ürüsan, H. The Effects of Supplementation of Bergamot Oil (Citrus bergamia) on Egg Production, Egg Quality, Fatty Acid Composition of Egg Yolk in Laying Hens. J. Poul. Sci. 2010, 47(2), 163–169. DOI: 10.2141/jpsa.009072.
  • Remmal, A.; Achahbar, S.; Bouddine, L.; Chami, N.; Chami, F. In Vitro Destruction of Eimeria Oocysts by Essential Oils. Vet. Parasitol. 2011, 182(2–4), 121–126. DOI: 10.1016/J.VETPAR.2011.06.002.
  • Soltan, Y. A.; Natel, A. S.; Araujo, R. C.; Morsy, A. S.; Abdalla, A. L. Progressive Adaptation of Sheep to a Microencapsulated Blend of Essential Oils: Ruminal Fermentation, Methane Emission, Nutrient Digestibility, and Microbial Protein Synthesis. Anim. Feed Sci. Technol. 2018, 237, 8–18. DOI: 10.1016/J.ANIFEEDSCI.2018.01.004.
  • Balasubramanian, B.; Park, J. W.; Kim, I. H. Evaluation of the Effectiveness of Supplementing Micro-encapsulated Organic Acids and Essential Oils in Diets for Sows and Suckling Piglets. Ital. J. Anim. Sci. 2016, 15(4), 626–633. DOI: 10.1080/1828051X.2016.1222243.
  • Mohammadi Gheisar, M.; Hosseindoust, A.; Kim, I. H. Evaluating the Effect of Microencapsulated Blends of Organic Acids and Essential Oils in Broiler Chickens Diet. J. Appl. Poult. Res. 2015, 24(4), 511–519. DOI: 10.3382/japr/pfv063.
  • Isman, M. B.;. Botanical Insecticides, Deterrents, and Repellents in Modern Agriculture and an Increasingly Regulated World. Annu. Rev. Entomol. 2006, 51, 45–66. DOI: 10.1146/annurev.ento.51.110104.151146.
  • Nerio, L. S.; Olivero-Verbel, J.; Stashenko, E. Repellent Activity of Essential Oils: A Review. Bioresour. Technol. 2010, 101(1), 372–378. DOI: 10.1016/J.BIORTECH.2009.07.048.
  • Isman, M. B.; Grieneisen, M. L. Botanical Insecticide Research: Many Publications, Limited Useful Data. Trends Plant Sci. 2014, 19(3), 140–145. DOI: 10.1016/J.TPLANTS.2013.11.005.
  • Loughrin, J. H.; Potter, D. A.; Hamilton-Kemp, T. R. Volatile Compounds Induced by Herbivory Act as Aggregation Kairomones for the Japanese Beetle (Popillia Japonica newman). J. Chem. Ecol. 1995, 21(10), 1457–1467. DOI: 10.1007/BF02035145.
  • Varona, S.; Kareth, S.; Martín, Á.; Cocero, M. J. Formulation of Lavandin Essential Oil with Biopolymers by PGSS for Application as Biocide in Ecological Agriculture. J. Supercrit. Fluids. 2010, 54(3), 369–377. DOI: 10.1016/J.SUPFLU.2010.05.019.
  • Maji, T. K.; Baruah, I.; Dube, S.; Hussain, M. R. Microencapsulation of Zanthoxylum Limonella Oil (ZLO) in Glutaraldehyde Crosslinked Gelatin for Mosquito Repellent Application. Bioresour. Technol. 2007, 98(4), 840–844. DOI: 10.1016/J.BIORTECH.2006.03.005.
  • Chung, S. K.; Seo, J. Y.; Lim, J. H.; Park, H. H.; Yea, M. J.; Park, H. J. Microencapsulation of Essential Oil for Insect Repellent in Food Packaging System. J. Food Sci. 2013, 78(5), E709–E714. DOI: 10.1111/1750-3841.12111.
  • Kim, I. H.; Han, J.; Na, J. H.; Chang, P. S.; Chung, M. S.; Park, K. H.; Min, S. C. Insect-Resistant Food Packaging Film Development Using Cinnamon Oil and Microencapsulation Technologies. J. Food Sci. 2013, 78(2), E229–E237. DOI: 10.1111/1750-3841.12006.
  • Ziaee, M.; Moharramipour, S.; Mohsenifar, A. MA-chitosan Nanogel Loaded with Cuminum Cyminum Essential Oil for Efficient Management of Two Stored Product Beetle Pests. J. Pest Sci. 2014a, 87(4), 691–699. DOI: 10.1007/s10340-014-0590-6.
  • Özyildiz, F.; Karagönlü, S.; Basal, G.; Uzel, A.; Bayraktar, O. Micro-encapsulation of Ozonated Red Pepper Seed Oil with Antimicrobial Activity and Application to Nonwoven Fabric. Lett Appl. Microbiol. 2013, 56(3), 168–179. DOI: 10.1111/lam.12028.
  • Kim, J. R.; Sharma, S. Acaricidal Activities of Clove Bud Oil and Red Thyme Oil Using Microencapsulation against HDMs. J. Microencapsulation. 2011, 28(1), 82–91. DOI: 10.3109/02652048.2010.529949.
  • Sariişik, M.; Okur, S.; Asma, Ş. Odor Adsorption Kinetics on Modified Textile Materials Using Quartz Microbalance Technique. Acta Phys. Pol. A. 2012, 121(1), 243–246. DOI: 10.12693/APhysPolA.121.243.
  • Sánchez-Navarro, M. M.; Cuesta-Garrote, N.; Arán-Áis, F.; Orgilés-Barceló, C. Microencapsulation of Melaleuca Alternifolia (Tea tree) Oil as Biocide for Footwear Applications. J. Dispersion Sci. Technol. 2011, 32(12), 1722–1727. DOI: 10.1080/01932691.2011.616126.
  • Ríos, J.-L.;. Essential Oils: What They are and How the Terms are Used and Defined. Essent. Oil. Food Preserv. Flavor Saf. 2016, 3–10. DOI: 10.1016/B978-0-12-416641-7.00001-8.
  • Edris, A. E.;. Nanoencapsulation of Essential Oils: Potential Application in Food Preservation and in the Perfume Industry. In Essential Oils and Aromas: Green Extractions and Applications; Chemat, F., Ed.; Har Krishan Bhalla & Sons: Dehradun, 2009; pp 184–193.
  • Malhotra, B.; Keshwani, A.; Kharkwal, H. Antimicrobial Food Packaging: Potential and Pitfalls. Front. Microbiol. 2015, 6, 611. DOI: 10.3389/fmicb.2015.00611.
  • Martins, J. T.; Ramos, O. L.; Pinheiro, A. C.; Bourbon, A. I.; Silva, H. D.; Rivera, M. C.; … Vicente, A. A. Edible Bio-Based Nanostructures: Delivery, Absorption and Potential Toxicity. Food Eng. Rev. 2015, 7(4), 491–513. DOI: 10.1007/s12393-015-9116-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.