1,231
Views
32
CrossRef citations to date
0
Altmetric
Review

Recent Trends on the Valorization Strategies for the Management of Citrus By-products

, & ORCID Icon

References

  • Okwu, D. E.; Emenike, I. N. Evaluation of the Phytonutrients and Vitamin Contents of Citrus Fruits. Int. J. Med. Adv. Sci. 2006, 2(1), 1–6.
  • Lv, X.; Zhao, S.; Ning, Z.; Zeng, H.; Shu, Y.; Tao, O.; Xiao, C.; Lu, C.; Liu, Y. Citrus Fruits as a Treasure Trove of Active Natural Metabolites that Potentially Provide Benefits for Human Health. Chem. Cent. J. 2015, 9(1), 68. DOI: 10.1186/s13065-015-0145-9.
  • Liu, Y.; Heying, E.; Tanumihardjo, S. A. History, Global Distribution, and Nutritional Importance of Citrus Fruits. Compr. Rev. Food Sci. F. 2012, 11(6), 530–545. DOI: 10.1111/j.1541-4337.2012.00201.x.
  • FAO. Citrus Fruit Fresh and Processed Statistical Bulletin 2016; Food and Agriculture Organization of the United Nations: Rome, 2017.
  • Satari, B.; Karimi, K. Citrus Processing Wastes: Environmental Impacts, Recent Advances, and Future Perspectives in Total Valorization. Resour. Conserv. Recycl. 2018, 129, 153–167. DOI: 10.1016/j.resconrec.2017.10.032.
  • Zema, D. A.; Calabrò, P. S.; Folino, A.; Tamburino, V.; Zappia, G.; Zimbone, S. M. Valorisation of Citrus Processing Waste: A Review. Waste Manag. 2018, 80, 252–273. DOI: 10.1016/j.wasman.2018.09.024.
  • Curto, R. L.; Tripodo, M. M.; Leuzzi, U.; Giuffrè, D.; Vaccarino, C. Flavonoids Recovery and SCP Production from Orange Peel. Bioresour. Technol. 1992, 42(2), 83–87. DOI: 10.1016/0960-8524(92)90065-6.
  • Tripodo, M. M.; Lanuzza, F.; Micali, G.; Coppolino, R.; Nucita, F. Citrus Waste Recovery: A New Environmentally Friendly Procedure to Obtain Animal Feed. Bioresour. Technol. 2004, 91(2), 111–115. DOI: 10.1016/S0960-8524(03)00183-4.
  • Braddock, R. J.;. By-products of Citrus Fruit. Food Technol. 1995, 49, 74–77.
  • Ruiz, B.; de Benito, A.; Rivera, J. D.; Flotats, X. Assessment of Different Pre-treatment Methods for the Removal of Limonene in Citrus Waste and Their Effect on Methane Potential and methane Production Rate. Waste Manag.Res. 2016, 34(12), 1249–1257. DOI: 10.1177/0734242X16661053.
  • Putnik, P.; Kovačević, D. B.; Jambrak, A. R.; Barba, F.; Cravotto, G.; Binello, A.; Lorenzo, J. M.; Shpigelman, A. Innovative “Green” and Novel Strategies for the Extraction of Bioactive Added Value Compounds from Citrus Wastes—A Review. Molecules. 2017, 22(5), 680. DOI: 10.3390/molecules22050680.
  • Galanakis, C. M.; Tsatalas, P.; Galanakis, I. M. Phenols from Olive Mill Wastewater and Other Natural Antioxidants as UV Filters in Sunscreens. Environ. Technol. Innov. 2018a, 9, 160–168. DOI: 10.1016/j.eti.2017.12.002.
  • Galanakis, C. M.; Tsatalas, P.; Galanakis, I. M. Implementation of Phenols Recovered from Olive Mill Wastewater as UV Booster in Cosmetics. Ind. Crop Prod. 2018b, 111, 30–37. DOI: 10.1016/j.indcrop.2017.09.058.
  • Crawshaw, R.;. Co-product Feeds: Animal feeds from the Food and Drinks Industries; Nottingham University Press: Nottingham, UK, 2003; pp 285. ISBN 1-897676-35-2.
  • Kale, P. N.; Adsule, P. G. Citrus. In Handbook of Fruit Science and Technology Production, Composition, Storage and Processing; Salunkhe, D.K., Kadam, S.S., Eds.; CRC Press: New York, 1995; pp 39–66.
  • Benavente-García, O.; Castillo, J.; Marin, F. R.; Ortuño, A.; Del Río, J. A. Uses and Properties of Citrus Flavonoids. J. Agric. Food Chem. 1997, 45(12), 4505–4515. DOI: 10.1021/jf970373s.
  • Boukroufa, M.; Boutekedjiret, C.; Petigny, L.; Rakotomanomana, N.; Chemat, F. Bio-refinery of Orange Peels Waste: A New Concept Based on Integrated Green and Solvent Free Extraction Processes Using Ultrasound and Microwave Techniques to Obtain Essential Oil, Polyphenols and Pectin. Ultrason. Sonochem. 2015, 24, 72–79. DOI: 10.1016/j.ultsonch.2014.11.015.
  • Mahato, N.; Sharma, K.; Sinha, M.; Cho, M. H. Citrus Waste Derived Nutra-pharmaceuticals for Health Benefits: Current Trends and Future Perspectives. J. Funct. Foods. 2018, 40, 307–316. DOI: 10.1016/j.jff.2017.11.015.
  • Marín, F. R.; Soler-Rivas, C.; Benavente-García, O.; Castillo, J.; Pérez-Alvarez, J. A. By-products from Different Citrus Processes as a Source of Customized Functional Fibres. Food Chem. 2007, 100(2), 736–741. DOI: 10.1016/j.foodchem.2005.04.040.
  • Pourbafrani, M.; Forgács, G.; Horváth, I. S.; Niklasson, C.; Taherzadeh, M. J. Production of Biofuels, Limonene and Pectin from Citrus Wastes. Bioresour. Technol. 2010, 101(11), 4246–4250. DOI: 10.1016/j.biortech.2010.01.077.
  • Oberoi, H. S.; Vadlani, P. V.; Nanjundaswamy, A.; Bansal, S.; Singh, S.; Kaur, S.; Babbar, N. Enhanced Ethanol Production from Kinnow Mandarin (Citrus Reticulata) Waste via a Statistically Optimized Simultaneous Saccharification and Fermentation Process. Bioresour. Technol. 2011, 102(2), 1593–1601. DOI: 10.1016/j.biortech.2010.08.111.
  • Kim, B. S.; Kim, Y. M.; Jae, J.; Watanabe, C.; Kim, S.; Jung, S. C.; Kim, S. C.; Park, Y. K. Pyrolysis and Catalytic Upgrading of Citrus Unshiu Peel. Bioresour. Technol. 2015, 194, 312–319. DOI: 10.1016/j.biortech.2015.07.035.
  • Satari, B.; Palhed, J.; Karimi, K.; Lundin, M.; Taherzadeh, M. J.; Zamani, A. Process Optimization for Citrus Waste Biorefinery via Simultaneous Pectin Extraction and Pretreatment. BioResources. 2017, 12(1), 1706–1722.
  • Calabrò, P. S.; Pontoni, L.; Porqueddu, I.; Greco, R.; Pirozzi, F.; Malpei, F. Effect of the Concentration of Essential Oil on Orange Peel Waste Biomethanization: Preliminary Batch Results. Waste Manag. 2016, 48, 440–447. DOI: 10.1016/j.wasman.2015.10.032.
  • Laufenberg, G.; Kunz, B.; Nystroem, M. Transformation of Vegetable Waste into Value Added Products: (A) the Upgrading Concept; (B) Practical Implementations. Bioresour. Technol. 2003, 87(2), 167–198. DOI: 10.1016/S0960-8524(02)00167-0.
  • Montgomery, R.;. Review Paper- Development of Biobased Products. Bioresour. Technol. 2004, 91, 1–29.
  • Guzman, J.; Mosteo, R.; Ormad, M. P.; Ovelleiro, J. L. Combined photo-fenton–SBR Processes for the Treatment of Wastewater from the Citrus Processing Industry. J. Agric. Food Chem. 2015, 63(2), 391–397. DOI: 10.1021/jf505377a.
  • Martínez, E. J.; Rosas, J. G.; Sotres, A.; Moran, A.; Cara, J.; Sánchez, M. E.; Gómez, X. Codigestion of Sludge and Citrus Peel Wastes: Evaluating the Effect of Biochar Addition on Microbial Communities. Biochem. Eng. J. 2018, 137, 314–325. DOI: 10.1016/j.bej.2018.06.010.
  • Rosas-Mendoza, E. S.; Méndez-Contreras, J. M.; Martínez-Sibaja, A.; Vallejo-Cantú, N. A.; Alvarado-Lassman, A. Anaerobic Digestion of Citrus Industry Effluents Using an anaerobic Hybrid Reactor. Clean Technol. Envir. 2018, 20(7), 1387–1397. DOI: 10.1007/s10098-018-1491-9.
  • Cevolani, D.; Barbieri, L.; Bombardieri, R.; Carrescia, R.; Conte, F.; Frigerio, E.; Mattiello, S.; Menghini, E.; Napoli, G. Alimenti per La Vacca Da Latte E Il Bovino da Carne: 85 Schede per Valutare Le Materie Prime. Edagricole. 2014, 5. ISBN 9788850654383.
  • Liew, S. Q.; Ngoh, G. C.; Yusoff, R.; Teoh, W. H. Acid and Deep Eutectic Solvent (DES) Extraction of Pectin from Pomelo (Citrus Grandis (L.) Osbeck) Peels. Biocatal. Agric. Biotechnol. 2018, 13, 1–11. DOI: 10.1016/j.bcab.2017.11.001.
  • Nayak, A.; Bhushan, B. An Overview of the Recent Trends on the Waste Valorization Techniques for Food Wastes. J. Environ. Manag. 2019, 233, 352–370. DOI: 10.1016/j.jenvman.2018.12.041.
  • Khoddami, A.; Wilkes, M.; Roberts, T. Techniques for Analysis of Plant Phenolic Compounds. Molecules. 2013, 18(2), 2328–2375. DOI: 10.3390/molecules18022328.
  • Wang, L.; Weller, C. L. Recent Advances in Extraction of Nutraceuticals from Plants. Trends Food Sci. Technol. 2006, 17(6), 300–312. DOI: 10.1016/j.tifs.2005.12.004.
  • Negro, V.; Mancini, G.; Ruggeri, B.; Fino, D. Citrus Waste as Feedstock for Bio-based Products Recovery: Review on Limonene Case Study and Energy Valorization. Bioresour. Technol. 2016, 214, 806–815. DOI: 10.1016/j.biortech.2016.05.006.
  • García, A.; Rodríguez-Juan, E.; Rodríguez-Gutiérrez, G.; Rios, J. J.; Fernández-Bolaños, J. Extraction of Phenolic Compounds from Virgin Olive Oil by Deep Eutectic Solvents (Dess). Food Chem. 2016, 197, 554–561. DOI: 10.1016/j.foodchem.2015.10.131.
  • Toledo Hijo, A. A.; Maximo, G. J.; Costa, M. C.; Batista, E. A.; Meirelles, A. J. Applications of Ionic Liquids in the Food and Bioproducts Industries. ACS Sustain. Chem. Eng. 2016, 4(10), 5347–5369. DOI: 10.1021/acssuschemeng.6b00560.
  • Sagar, N. A.; Pareek, S.; Sharma, S.; Yahia, E. M.; Lobo, M. G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food. 2018, 17(3), 512–531. DOI: 10.1111/1541-4337.12330.
  • Naghshineh, M.; Olsen, K.; Georgiou, C. A. Sustainable Production of Pectin from Lime Peel by High Hydrostatic Pressure Treatment. Food Chem. 2013, 136(2), 472–478. DOI: 10.1016/j.foodchem.2012.08.036.
  • Quoc, L. P. T.; Huyen, V. T. N.; Hue, L. T. N.; Hue, N. T. H.; Thuan, N. H. D.; Tam, N. T. T.; Thuan, N. N.; Duy, T. H. Extraction of Pectin from Pomelo (Citrus Maxima) Peels with the Assistance of Microwave and Tartaric Acid. Int. Food Res. J. 2015, 22(4), 1637.
  • Liu, Z.; Qiao, L.; Gu, H.; Yang, F.; Yang, L. Development of Brönsted Acidic Ionic Liquid Based Microwave Assisted Method for Simultaneous Extraction of Pectin and Naringin from Pomelo Peels. Sep. Purif. Technol. 2017, 172, 326–337. DOI: 10.1016/j.seppur.2016.08.026.
  • Su, D. L.; Li, P. J.; Quek, S. Y.; Huang, Z. Q.; Yuan, Y. J.; Li, G. Y.; Shan, Y. Efficient Extraction and Characterization of Pectin from Orange Peel by a Combined Surfactant and Microwave Assisted Process. Food Chem. 2019, 286, 1–7. DOI: 10.1016/j.foodchem.2019.01.200.
  • Şahin, S.;. A Novel Technology for Extraction of Phenolic Antioxidants from Mandarin (Citrus Deliciosa Tenore) Leaves: Solvent-free Microwave extraction. Korean J. Chem. Eng. 2015, 32(5), 950–957. DOI: 10.1007/s11814-014-0293-y.
  • Ateş, F.; Şahin, S.; İlbay, Z.; Kırbaşlar, Ş. İ. A Green Valorisation Approach Using Microwaves and Supercritical CO2 for High-added Value Ingredients from Mandarin (Citrus Deliciosa Tenore) Leaf Waste. Waste Biomass Valorization. 2019, 10(3), 533–546. DOI: 10.1007/s12649-017-0074-z.
  • Nishad, J.; Saha, S.; Dubey, A. K.; Varghese, E.; Kaur, C. Optimization and Comparison of Non-conventional Extraction Technologies for Citrus Paradisi L. Peels: A Valorization Approach. J. Food Sci. Technol. 2019, 56(3), 1221–1233. DOI: 10.1007/s13197-019-03585-0.
  • Golmakani, M. T.; Moayyedi, M. Comparison of Microwave-assisted Hydrodistillation and Solvent-less microwave Extraction of Essential Oil from Dry and Fresh Citrus Limon (Eureka Variety) Peel. J. Essent. Oil Res. 2016, 28(4), 272–282. DOI: 10.1080/10412905.2016.1145606.
  • Trabelsi, D.; Aydi, A.; Zibetti, A. W.; Della Porta, G.; Scognamiglio, M.; Cricchio, V.; Langa, E.; Abderrabba, M.; Mainar, A. M. Supercritical Extraction from Citrus Aurantium Amara Peels Using CO2 with Ethanol as Co-solvent. J. Supercrit. Fluids. 2016, 117, 33–39. DOI: 10.1016/j.supflu.2016.07.003.
  • Hosseini, S. S.; Khodaiyan, F.; Kazemi, M.; Najari, Z. Optimization and Characterization of Pectin Extracted from Sour Orange Peel by Ultrasound Assisted Method. Int. J. Biol. Macromol. 2019, 125, 621–629. DOI: 10.1016/j.ijbiomac.2018.12.096.
  • Wang, L.; Xu, H.; Yuan, F.; Fan, R.; Gao, Y. Preparation and Physicochemical Properties of Soluble Dietary Fiber from Orange Peel Assisted by Steam Explosion and Dilute Acid Soaking. Food Chem. 2015b, 185, 90–98. DOI: 10.1016/j.foodchem.2015.03.112.
  • Karaman, E.; Yılmaz, E.; Tuncel, N. B. Physicochemical, Microstructural and Functional Characterization of Dietary Fibers Extracted from Lemon, Orange and Grapefruit Seeds Press Meals. Bioact. Carbohydr. Dietary Fibre. 2017, 11, 9–17. DOI: 10.1016/j.bcdf.2017.06.001.
  • Auta, M.; Musa, U.; Tsado, D. G.; Faruq, A. A.; Isah, A. G.; Raji, S.; Nwanisobi, C. Optimization of Citrus Peels D-limonene Extraction Using Solvent-free Microwave Green Technology. Chem. Eng. Commun. 2018, 205(6), 789–796. DOI: 10.1080/00986445.2017.1419206.
  • Zhang, H.; Lou, Z.; Chen, X.; Cui, Y.; Wang, H.; Kou, X.; Ma, C. Effect of Simultaneous Ultrasonic and Microwave Assisted Hydrodistillation on the Yield, Composition, Antibacterial and Antibiofilm Activity of Essential Oils from Citrus Medica L. Var. Sarcodactylis. J. Food Eng. 2019, 244, 126–135. DOI: 10.1016/j.jfoodeng.2018.09.014.
  • Ndayishimiye, J.; Chun, B. S. Optimization of Carotenoids and Antioxidant Activity of Oils Obtained from a Co-extraction of Citrus (Yuzu Ichandrin) By-products Using Supercritical Carbon Dioxide. Biomass Bioenergy. 2017, 106, 1–7. DOI: 10.1016/j.biombioe.2017.08.014.
  • Boukroufa, M.; Boutekedjiret, C.; Chemat, F. Development of a Green Procedure of Citrus Fruits Waste Processing to Recover Carotenoids. Resour. Efficient Technol. 2017, 3(3), 252–262. DOI: 10.1016/j.reffit.2017.08.007.
  • Yu, J.; Dandekar, D. V.; Toledo, R. T.; Singh, R. K.; Patil, B. S. Supercritical Fluid Extraction of Limonoids and Naringin from Grapefruit (Citrus Paradisi Macf.) Seeds. Food Chem. 2007, 105(3), 1026–1031. DOI: 10.1016/j.foodchem.2007.04.062.
  • Yu, H.; Wang, C.; Deng, S.; Bi, Y. Optimization of Ultrasonic-assisted Extraction and UPLC-TOF/MS Analysis of Limonoids from Lemon Seed. LWT Food Sci. Technol. 2017, 84, 135–142. DOI: 10.1016/j.lwt.2017.05.059.
  • Ciriminna, R.; Chavarría‐Hernández, N.; Inés Rodríguez Hernández, A.; Pagliaro, M. Pectin: A New Perspective from the Biorefinery Standpoint. Biofuel, Bioprod. Biorefin. 2015, 9(4), 368–377. DOI: 10.1002/bbb.1551.
  • Kulkarni, G. T.; Gowthamarajan, K.; Rao, B. G.; Suresh, B. Evaluation of Binding Properties of Plantago Ovata and Trigonella Foenum Graecum Mucilages. Indian Drugs. 2002, 39(8), 422–425.
  • Espitia, P. J. P.; Du, W. X.; de Jesús Avena-bustillos, R.; Soares, N. D. F. F.; McHugh, T. H. Edible Films from Pectin: Physical-mechanical and Antimicrobial Properties- A Review. Food Hydrocoll. 2014, 35, 287–296. DOI: 10.1016/j.foodhyd.2013.06.005.
  • Wang, W.; Ma, X.; Xu, Y.; Cao, Y.; Jiang, Z.; Ding, T.; Ye, X.; Liu, D. Ultrasound-assisted Heating Extraction of Pectin from Grapefruit Peel: Optimization and Comparison with the Conventional Method. Food Chem. 2015a, 178, 106–114. DOI: 10.1016/j.foodchem.2015.01.080.
  • Wang, W.; Wu, X.; Chantapakul, T.; Wang, D.; Zhang, S.; Ma, X.; Ding, T.; Ye, X.; Liu, D. Acoustic Cavitation Assisted Extraction of Pectin from Waste Grapefruit Peels: A Green Two-stage Approach and Its General Mechanism. Food Res. Int. 2017, 102, 101–110. DOI: 10.1016/j.foodres.2017.09.087.
  • Hosseini, S. S.; Khodaiyan, F.; Yarmand, M. S. Optimization of Microwave Assisted Extraction of Pectin from Sour Orange Peel and Its Physicochemical Properties. Carbohydr. Polym. 2016, 140, 59–65. DOI: 10.1016/j.carbpol.2015.12.051.
  • De Silva, P. H. T. D.; De Silva, H. I. C. Microwave Assisted Extraction of Pectin from the Peel of Citrus Reticulata. Research Symposium on Pure and Applied Sciences, 2018 Faculty of Science, University of Kelaniya, Sri Lanka. 2018.
  • Dominiak, M.; Søndergaard, K. M.; Wichmann, J.; Vidal-Melgosa, S.; Willats, W. G.; Meyer, A. S.; Mikkelsen, J. D. Application of Enzymes for Efficient Extraction, Modification, and Development of Functional Properties of Lime Pectin. Food Hydrocoll. 2014, 40, 273–282. DOI: 10.1016/j.foodhyd.2014.03.009.
  • Wang, X.; Chen, Q.; Lü, X. Pectin Extracted from Apple Pomace and Citrus Peel by Subcritical Water. Food Hydrocoll. 2014, 38, 129–137. DOI: 10.1016/j.foodhyd.2013.12.003.
  • Zouambia, Y.; Ettoumi, K. Y.; Krea, M.; Moulai-Mostefa, N. A New Approach for Pectin Extraction: Electromagnetic Induction Heating. Arab. J. Chem. 2017, 10(4), 480–487. DOI: 10.1016/j.arabjc.2014.11.011.
  • Wang, W.; Ma, X.; Jiang, P.; Hu, L.; Zhi, Z.; Chen, J.; Ding, T.; Ye, X.; Liu, D. Characterization of Pectin from Grapefruit Peel: A Comparison of Ultrasound-assisted and Conventional Heating Extractions. Food Hydrocoll. 2016, 61, 730–739. DOI: 10.1016/j.foodhyd.2016.06.019.
  • Rodsamran, P.; Sothornvit, R. Microwave Heating Extraction of Pectin from Lime Peel: Characterization and Properties Compared with the Conventional heating Method. Food Chem. 2019, 278, 364–372. DOI: 10.1016/j.foodchem.2018.11.067.
  • Dhingra, D.; Michael, M.; Rajput, H.; Patil, R. T. Dietary Fibre in Foods: A Review. J. Food Sci. Technol. 2012, 49(3), 255–266. DOI: 10.1007/s13197-011-0365-5.
  • Dervisoglu, M.; Yazici, F. Note. The Effect of Citrus Fibre on the Physical, Chemical and Sensory Properties of Ice Cream. Food Sci. Technol. Int. 2006, 12(2), 159–164. DOI: 10.1177/1082013206064005.
  • Yang, Y. Y.; Ma, S.; Wang, X. X.; Zheng, X. L. Modification and Application of Dietary Fiber in Foods. J. Chem. 2017, 2017. DOI: 10.1155/2017/9340427.
  • Figuerola, F.; Hurtado, M. L.; Estévez, A. M.; Chiffelle, I.; Asenjo, F. Fibre Concentrates from Apple Pomace and Citrus Peel as Potential fibre Sources for Food Enrichment. Food Chem. 2005, 91(3), 395–401. DOI: 10.1016/j.foodchem.2004.04.036.
  • Tanaka, M.; Takamizu, A.; Hoshino, M.; Sasaki, M.; Goto, M. Extraction of Dietary Fiber from Citrus Junos Peel with Subcritical Water. Food Bioprod. Process. 2012, 90(2), 180–186. DOI: 10.1016/j.fbp.2011.03.005.
  • Sharma, K.; Mahato, N.; Cho, M. H.; Lee, Y. R. Converting Citrus Wastes into Value-added Products: Economic and Environmently Friendly Approaches. Nutrition. 2017, 34, 29–46. DOI: 10.1016/j.nut.2016.09.006.
  • Balasundram, N.; Sundram, K.; Samman, S. Phenolic Compounds in Plants and Agri-industrial By-products: Antioxidant Activity, Occurrence, and Potential Uses. Food Chem. 2006, 99(1), 191–203. DOI: 10.1016/j.foodchem.2005.07.042.
  • Xi, W.; Lu, J.; Qun, J.; Jiao, B. Characterization of Phenolic Profile and Antioxidant Capacity of Different Fruit Part from Lemon (Citrus Limon Burm.) Cultivars. J. Food Sci. Technol. 2017, 54(5), 1108–1118. DOI: 10.1007/s13197-017-2544-5.
  • Liu, R. H.;. Potential Synergy of Phytochemicals in Cancer Prevention: Mechanism of Action. J. Nutr. 2004, 134(12), 3479S–3485S. DOI: 10.1093/jn/134.12.3479S.
  • Chhikara, N.; Devi, H. R.; Jaglan, S.; Sharma, P.; Gupta, P.; Panghal, A. Bioactive Compounds, Food Applications and Health Benefits of Parkia Speciosa (Stinky Beans): A Review. Agric. Food Secur. 2018, 7(1), 46. DOI: 10.1186/s40066-018-0197-x.
  • Benavente-Garcia, O.; Castillo, J. Update on Uses and Properties of Citrus Flavonoids: New Findings in Anticancer, Cardiovascular, and Anti-inflammatory Activity. J. Agric.Food Chem. 2008, 56(15), 6185–6205. DOI: 10.1021/jf8006568.
  • Ignat, I.; Volf, I.; Popa, V. I. A Critical Review of Methods for Characterisation of Polyphenolic Compounds in Fruits and Vegetables. Food Chem. 2011, 126(4), 1821–1835. DOI: 10.1016/j.foodchem.2010.12.026.
  • Yi, L. Z.; Yuan, D. L.; Liang, Y. Z.; Xie, P. S.; Zhao, Y. Quality Control and Discrimination of Pericarpium Citri Reticulatae and Pericarpium Citri Reticulatae Viride Based on High-performance Liquid Chromatographic Fingerprints and Multivariate Statistical Analysis. Anal. Chim. Acta. 2007, 588(2), 207–215. DOI: 10.1016/j.aca.2007.02.012.
  • Goulas, V.; Manganaris, G. A. Exploring the Phytochemical Content and the Antioxidant Potential of Citrus Fruits Grown in Cyprus. Food Chem. 2012, 131(1), 39–47. DOI: 10.1016/j.foodchem.2011.08.007.
  • Chen, X. M.; Tait, A. R.; Kitts, D. D. Flavonoid Composition of Orange Peel and Its Association with Antioxidant and Anti-inflammatory Activities. Food Chem. 2017, 218, 15–21. DOI: 10.1016/j.foodchem.2016.09.016.
  • Safdar, M. N.; Kausar, T.; Jabbar, S.; Mumtaz, A.; Ahad, K.; Saddozai, A. A. Extraction and Quantification of Polyphenols from Kinnow (Citrus Reticulate L.) Peel Using Ultrasound and Maceration Techniques. J. Food Drug Anal. 2017, 25(3), 488–500. DOI: 10.1016/j.jfda.2016.07.010.
  • Ozturk, B.; Parkinson, C.; Gonzalez-Miquel, M. Extraction of Polyphenolic Antioxidants from Orange Peel Waste Using Deep Eutectic Solvents. Sep. Purif. Technol. 2018, 206, 1–13. DOI: 10.1016/j.seppur.2018.05.052.
  • Papoutsis, K.; Pristijono, P.; Golding, J. B.; Stathopoulos, C. E.; Bowyer, M. C.; Scarlett, C. J.; Vuong, Q. V. Screening the Effect of Four Ultrasound-assisted Extraction Parameters on Hesperidin and Phenolic Acid Content of Aqueous Citrus Pomace Extracts. Food Biosci. 2018, 21, 20–26. DOI: 10.1016/j.fbio.2017.11.001.
  • Nipornram, S.; Tochampa, W.; Rattanatraiwong, P.; Singanusong, R. Optimization of Low Power Ultrasound-assisted Extraction of Phenolic Compounds from Mandarin (Citrus Reticulata Blanco Cv. Sainampueng) Peel. Food Chem. 2018, 241, 338–345. DOI: 10.1016/j.foodchem.2017.08.114.
  • Nayak, B.; Dahmoune, F.; Moussi, K.; Remini, H.; Dairi, S.; Aoun, O.; Khodir, M. Comparison of Microwave, Ultrasound and Accelerated-assisted Solvent Extraction for Recovery of Polyphenols from Citrus Sinensis Peels. Food Chem. 2015, 187, 507–516. DOI: 10.1016/j.foodchem.2015.04.081.
  • Namitha, K. K.; Negi, P. S. Chemistry and Biotechnology of Carotenoids. Crit. Rev. Food Sci. Nutr. 2010, 50(8), 728–760. DOI: 10.1080/10408398.2010.499811.
  • Saini, R. K.; Keum, Y. S. Carotenoid Extraction Methods: A Review of Recent Developments. Food Chem. 2018, 240, 90–103. DOI: 10.1016/j.foodchem.2017.07.099.
  • Dugo, P.; Škeříková, V.; Kumm, T.; Trozzi, A.; Jandera, P.; Mondello, L. Elucidation of Carotenoid Patterns in Citrus Products by Means of Comprehensive Normal-phase× Reversed-phase Liquid Chromatography. Anal. Chem. 2006, 78(22), 7743–7750. DOI: 10.1021/ac061290q.
  • Zou, Z.; Xi, W.; Hu, Y.; Nie, C.; Zhou, Z. Antioxidant Activity of Citrus Fruits. Food Chem. 2016, 196, 885–896. DOI: 10.1016/j.foodchem.2015.09.072.
  • Qin, S.; Lv, C.; Wang, Q.; Zheng, Z.; Sun, X.; Tang, M.; Deng, F. Extraction, Identification, and Antioxidant Property Evaluation of Limonin from Pummelo Seeds. Anim. Nutr. 2018, 4(3), 281–287. DOI: 10.1016/j.aninu.2018.05.005.
  • Hasegawa, S.; Miyake, M. Biochemistry and Biological Functions of Citrus Limonoids. Food Rev. Int. 1996, 12(4), 413–435. DOI: 10.1080/87559129609541089.
  • Kaur, J.; Kaur, G. An Insight into the Role of Citrus Bioactives in Modulation of Colon Cancer. J. Funct. Foods. 2015, 13, 239–261. DOI: 10.1016/j.jff.2014.12.043.
  • Manners, G. D.;. Citrus Limonoids: Analysis, Bioactivity, and Biomedical Prospects. J. Agric. Food Chem. 2007, 55(21), 8285–8294. DOI: 10.1021/jf071797h.
  • Breksa, A. P., III; Hidalgo, M. B.; Yuen, M. L. Liquid Chromatography–Electrospray Ionisation Mass Spectrometry Method for the Rapid Identification of Citrus Limonoid Glucosides in citrus Juices and Extracts. Food Chem. 2009, 117(4), 739–744. DOI: 10.1016/j.foodchem.2009.04.050.
  • Bi, J.; Li, H.; Wang, H. Delayed Bitterness of Citrus Wine Is Removed through the Selection of Fining Agents and fining Optimization. Front. Chem. 2019, 7, 185. DOI: 10.3389/fchem.2019.00185.
  • Breksa, A. P., III; Kahn, T.; Zukas, A. A.; Hidalgo, M. B.; Yuen, M. L. Limonoid Content of Sour Orange Varieties. J. Sci. Food Agric. 2011, 91(10), 1789–1794. DOI: 10.1002/jsfa.4383.
  • Russo, M.; Arigò, A.; Calabrò, M. L.; Farnetti, S.; Mondello, L.; Dugo, P. Bergamot (Citrus Bergamia Risso) as a Source of Nutraceuticals: Limonoids and Flavonoids. J. Funct. Foods. 2016, 20, 10–19. DOI: 10.1002/jsfa.4383.
  • Jitpukdeebodintra, S.; Chantachum, S.; Ratanaphan, A.; Chantapromma, K. Stability of Limonin from Lime Seeds. J. Food Agric. Environ. 2005, 4, 938–944.
  • Liu, J.; Liu, C.; Rong, Y.; Huang, G.; Rong, L. Extraction of Limonin from Orange (Citrus Reticulata Blanco) Seeds by the Flash extraction Method. Solvent Extr. Res. Dev. Jpn. 2012, 19, 137–145. DOI: 10.15261/serdj.19.137.
  • Patil, B. S.; Vu, J.; Dandekar, D. V.; Toledo, R. T.; Singh, R. K.; Pike, L. M. Citrus Bioactive Limonoids and Flavonoids Extraction by Supercritical Fluids. Potential Health Benefits of Citrus. 2006, 936, 18–33.
  • El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Addi, E. A.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilale, A.; Renaud, F. N. R.; et al. Essential Oils: From Extraction to Encapsulation. Int. J. Pharm. 2015, 483(1–2), 220–243. DOI: 10.1016/j.ijpharm.2014.12.069.
  • Espina, L.; Somolinos, M.; Lorán, S.; Conchello, P.; García, D.; Pagán, R. Chemical Composition of Commercial Citrus Fruit Essential Oils and Evaluation of Their Antimicrobial Activity Acting Alone or in Combined Processes. Food Control. 2011, 22(6), 896–902. DOI: 10.1016/j.foodcont.2010.11.021.
  • Geraci, A.; Di Stefano, V.; Di Martino, E.; Schillaci, D.; Schicchi, R. Essential Oil Components of Orange Peels and Antimicrobial Activity. Nat. Prod. Res. 2016, 31(6), 653–659. DOI: 10.1080/14786419.2016.1219860.
  • Ferhat, M. A.; Meklati, B. Y.; Chemat, F. Comparison of Different Isolation Methods of Essential Oil from Citrus Fruits: Cold Pressing, Hydrodistillation and Microwave ‘dry’distillation. Flavour. Fragrance J. 2007, 22(6), 494–504. DOI: 10.1002/ffj.1829.
  • Negro, V.; Ruggeri, B.; Mancini, G.; Fino, D. Recovery of D‐limonene through Moderate Temperature Extraction and Pyrolytic Products from Orange Peels. J. Chem. Technol. Biotechnol. 2017, 92(6), 1186–1191. DOI: 10.1002/jctb.5107.
  • Bustamante, J.; van Stempvoort, S.; García-Gallarreta, M.; Houghton, J. A.; Briers, H. K.; Budarin, V. L.; Matharu, A. S.; Clark, J. H. Microwave Assisted Hydro-distillation of Essential Oils from Wet Citrus Peel Waste. J. Cleaner Prod. 2016, 137, 598–605. DOI: 10.1016/j.jclepro.2016.07.108.
  • Ndayishimiye, J.; Lim, D. J.; Chun, B. S. Antioxidant and Antimicrobial Activity of Oils Obtained from a Mixture of Citrus By-products Using a Modified Supercritical Carbon Dioxide. J. Ind. Eng. Chem. 2018, 57, 339–348. DOI: 10.1016/j.jiec.2017.08.041.
  • Chen, Q.; Hu, Z.; Yao, F. Y. D.; Liang, H. Study of Two-stage Microwave Extraction of Essential Oil and Pectin from Pomelo Peels. LWT-Food Sci. Technol. 2016, 66, 538–545. DOI: 10.1016/j.lwt.2015.11.019.
  • Ciriminna, R.; Fidalgo, A.; Delisi, R.; Carnaroglio, D.; Grillo, G.; Cravotto, G.; Tamburino, A.; Ilharco, L. M.; Pagliaro, M. High-quality Essential Oils Extracted by an Eco-friendly Process from Different Citrus Fruits and Fruit Regions. ACS Sustainable Chem. Eng. 2017, 5(6), 5578–5587. DOI: 10.1021/acssuschemeng.7b01046.
  • D’Amato, S.; Serio, A.; López, C. C.; Paparella, A. Hydrosols: Biological Activity and Potential as Antimicrobials for Food Applications. Food Control. 2018, 86, 126–137. DOI: 10.1016/j.foodcont.2017.10.030.
  • Acheampong, A.; Borquaye, L. S.; Acquaah, S. O.; Osei-Owusu, J.; Tuani, G. K. Antimicrobial Activities of Some Leaves and Fruit Peels Hydrosols. Int. J. Chem. Biomol. Sci. 2015, 1(3), 158–162.
  • Rao, B. R.;. Hydrosols and Water-soluble Essential Oils of Aromatic Plants: Future Economic Products. Indian Perfum. 2012, 56, 29–33.
  • Ndiaye, E. H. B.; Gueye, M. T.; Ndiaye, I.; Diop, S. M.; Diop, M. B.; Thiam, A.; Fuconnier, M. L.; Lognay, G. Chemical Composition of Distilled Essential Oils and Hydrosols of Four Senegalese Citrus and Enantiomeric Characterization of Chiral Compounds. J. Essent. Oil Bear. Pl. 2017, 20(3), 820–834. DOI: 10.1080/0972060X.2017.1337525.
  • Ait-Ouazzou, A.; Cherrat, L.; Espina, L.; Lorán, S.; Rota, C.; Pagán, R. The Antimicrobial Activity of Hydrophobic Essential Oil Constituents Acting Alone or in Combined Processes of Food Preservation. Innov. Food Sci. Emerg. Technol. 2011, 12(3), 320–329. DOI: 10.1016/j.ifset.2011.04.004.
  • Değirmenci, H.; Erkurt, H. Relationship between Volatile Components, Antimicrobial and Antioxidant Properties of the Essential Oil, Hydrosol and Extracts of Citrus Aurantium L. Flowers. J. Infect Public Heal. 2019. DOI: 10.1016/j.jiph.2019.06.017.
  • Nizami, A. S.; Rehan, M.; Waqas, M.; Naqvi, M.; Ouda, O. K. M.; Shahzad, K.; Miandad, R.; Khan, M. Z.; Ismail, I. M. I.; Pant, D. Waste Biorefineries: Enabling Circular Economies in Developing Countries. Bioresour. Technol. 2017, 241, 1101–1117. DOI: 10.1016/j.biortech.2017.05.097.
  • Britz, T. J.; Lamprecht, C.; Sigge, G. O. Dealing with Environmental Issues. In Advanced Dairy Science and Technology; Britz, T.J., Robinson, R.K., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2008; pp 262–293.
  • Li, P. J.; Xia, J. L.; Shan, Y.; Nie, Z. Y.; Su, D. L.; Gao, Q. R.; Zhang, C.; Ma, Y. L. Optimizing Production of Pectinase from Orange Peel by Penicillium Oxalicum PJ02 Using Response Surface Methodology. Waste Biomass Valorization. 2015, 6(1), 13–22. DOI: 10.1007/s12649-014-9317-4.
  • Madeira, J. V., Jr; Ferreira, L. R.; Macedo, J. A.; Macedo, G. A. Efficient Tannase Production Using Brazilian Citrus Residues and Potential Application for Orange Juice Valorization. Biocatal. Agric. Biotechnol. 2015, 4(1), 91–97. DOI: 10.1016/j.bcab.2014.11.005.
  • Ahmed, I.; Zia, M. A.; Hussain, M. A.; Akram, Z.; Naveed, M. T.; Nowrouzi, A. Bioprocessing of Citrus Waste Peel for Induced Pectinase Production by Aspergillus Niger; Its Purification and Characterization. J. Radiat. Res. Appl. Sci. 2016, 9(2), 148–154. DOI: 10.1016/j.jrras.2015.11.003.
  • Mehmood, T.; Saman, T.; Irfan, M.; Anwar, F.; Ikram, M. S.; Tabassam, Q. Pectinase Production from Schizophyllum Commune through Central Composite Design Using Citrus Waste and Its Immobilization for Industrial Exploitation. Waste Biomass Valorization. 2018, 1–10. DOI: 10.1007/s12649-018-0279-9.
  • Güzel, M.; Akpınar, Ö. Production and Characterization of Bacterial Cellulose from Citrus Peels. Waste Biomass Valorization. 2018, 1–11. DOI: 10.1007/s12649-018-0241-x.
  • Fan, X.; Gao, Y.; He, W.; Hu, H.; Tian, M.; Wang, K.; Pan, S. Production of Nano Bacterial Cellulose from Beverage Industrial Waste of Citrus Peel and Pomace Using Komagataeibacter Xylinus. Carbohydr. Polym. 2016, 151, 1068–1072. DOI: 10.1016/j.carbpol.2016.06.062.
  • Umesh, M.; Mani, V. M.; Thazeem, B.; Preethi, K. Statistical Optimization of Process Parameters for Bioplastic (PHA) Production by Bacillus Subtilis NCDC0671 Using Orange Peel-Based Medium. Iran. Jour. Sci. Technol. Trans. A Sci. 2018, 1–9. DOI: 10.1007/s40995-017-0457-9.
  • Joshi, S. M.; Waghmare, J. S.; Sonawane, K. D.; Waghmare, S. R. Bio-ethanol and Bio-butanol Production from Orange Peel Waste. Biofuels. 2015, 6(1–2), 55–61. DOI: 10.1080/17597269.2015.1045276.
  • Torquato, L. D.; Pachiega, R.; Crespi, M. S.; Nespeca, M. G.; de Oliveira, J. E.; Maintinguer, S. I. Potential of Biohydrogen Production from Effluents of Citrus Processing Industry Using Anaerobic Bacteria from Sewage Sludge. Waste Manage. 2017, 59, 181–193. DOI: 10.1016/j.wasman.2016.10.047.
  • Chahande, A. D.; Gedam, V. V.; Raut, P. A.; Moharkar, Y. P. Pretreatment and Production of Bioethanol from Citrus Reticulata Fruit Waste with Baker’s Yeast by Solid-state and Submerged Fermentation. In Utilization and Management of Bioresources, Proceedings of 6th International Conference on Solid Waste Management, Kolkata, November 24–26, 2016; Ghosh, S.K., Ed.; Springer: Singapore, 2018; pp 135–141. DOI: 10.1007/978-981-10-5349-8_13.
  • Wikandari, R.; Millati, R.; Taherzadeh, M.; Niklasson, C. Effect of Effluent Recirculation on Biogas Production Using Two-stage Anaerobic Digestion of Citrus Waste. Molecules. 2018, 23(12), 3380. DOI: 10.3390/molecules23123380.
  • Martínez, M.; Yáñez, R.; Alonsó, J. L.; Parajó, J. C. Chemical Production of Pectic Oligosaccharides from Orange Peel Wastes. Ind. Eng. Chem. Res. 2010, 49(18), 8470–8476. DOI: 10.1021/ie101066m.
  • Gómez, B.; Gullón, B.; Yáñez, R.; Schols, H.; Alonso, J. L. Prebiotic Potential of Pectins and Pectic Oligosaccharides Derived from Lemon Peel Wastes and Sugar Beet Pulp: A Comparative Evaluation. J. Funct. Foods. 2016, 20, 108–121. DOI: 10.1016/j.jff.2015.10.029.
  • Ángel Siles López, J.; Li, Q.; Thompson, I. P. Biorefinery of Waste Orange Peel. Crit. Rev. Biotechnol. 2010, 30(1), 63–69. DOI: 10.3109/07388550903425201.
  • Pandey, A.; Soccol, C. R.; Mitchell, D. New Developments in Solid State Fermentation: I-bioprocesses and Products. Process Biochem. 2000, 35(10), 1153–1169. DOI: 10.1016/S0032-9592(00)00152-7.
  • Singhania, R. R.; Patel, A. K.; Soccol, C. R.; Pandey, A. Recent Advances in Solid-state Fermentation. Biochem. Eng. J. 2009, 44(1), 13–18. DOI: 10.1016/j.bej.2008.10.019.
  • El-Bakry, M.; Abraham, J.; Cerda, A.; Barrena, R.; Ponsá, S.; Gea, T.; Sánchez, A. From Wastes to High Value Added Products: Novel Aspects of SSF in the Production of Enzymes. Crit. Rev. Environmen. Sci. Technol. 2015, 45(18), 1999–2042. DOI: 10.1080/10643389.2015.1010423.
  • Rodríguez-Fernández, D. E.; Rodríguez-León, J. A.; De Carvalho, J. C.; Sturm, W.; Soccol, C. R. The Behavior of Kinetic Parameters in Production of Pectinase and Xylanase by Solid-state Fermentation. Bioresour. Technol. 2011, 102(22), 10657–10662. DOI: 10.1016/j.biortech.2011.08.106.
  • Biz, A.; Finkler, A. T. J.; Pitol, L. O.; Medina, B. S.; Krieger, N.; Mitchell, D. A. Production of Pectinases by Solid-state Fermentation of a Mixture of Citrus Waste and Sugarcane Bagasse in a Pilot-scale Packed-bed Bioreactor. Biochem. Eng. J. 2016, 111, 54–62. DOI: 10.1016/j.bej.2016.03.007.
  • Uygut, M. A.; Tanyildizi, M. Ş. Optimization of Alpha-amylase Production by Bacillus Amyloliquefaciens Grown on Orange Peels. Iran. Jour. Sci. Technol. Trans. A Sci. 2018, 1–7. DOI: 10.1007/s40995-016-0077-9.
  • Kricheldorf, H. R.;. Syntheses and Application of Polylactides. Chemosphere. 2001, 43(1), 49–54. DOI: 10.1016/S0045-6535(00)00323-4.
  • Koutinas, A. A.; Vlysidis, A.; Pleissner, D.; Kopsahelis, N.; Garcia, I. L.; Kookos, I. K.; Papanikolaou, S.; Kwan, T. H.; Lin, C. S. K. Valorization of Industrial Waste and By-product Streams via Fermentation for the Production of Chemicals and Biopolymers. Chem. Soc. Rev. 2014, 43(8), 2587–2627. DOI: 10.1039/C3CS60293A.
  • Dahiya, S.; Kumar, A. N.; Sravan, J. S.; Chatterjee, S.; Sarkar, O.; Mohan, S. V. Food Waste Biorefinery: Sustainable Strategy for Circular Bioeconomy. Bioresour. Technol. 2017, 248, 2–12. DOI: 10.1016/j.biortech.2017.07.176.
  • Cao, Y.; Lu, S.; Yang, Y. Production of Bacterial Cellulose from Byproduct of Citrus Juice Processing (Citrus Pulp) by Gluconacetobacter Hansenii. Cellulose. 2018, 25(12), 6977–6988. DOI: 10.1007/s10570-018-2056-0.
  • Dubey, S.; Singh, J.; Singh, R. P. Biotransformation of Sweet Lime Pulp Waste into High-quality Nanocellulose with an Excellent Productivity Using Komagataeibacter Europaeus SGP37 under Static Intermittent Fed-batch Cultivation. Bioresour. Technol. 2018, 247, 73–80. DOI: 10.1016/j.biortech.2017.09.089.
  • John, I.; Muthukumar, K.; Arunagiri, A. A Review on the Potential of Citrus Waste for D-Limonene, Pectin, and Bioethanol Production. Int. J. Green Energy. 2017, 14(7), 599–612. DOI: 10.1080/15435075.2017.1307753.
  • Zhang, Z.; O’Hara, I. M.; Mundree, S.; Gao, B.; Ball, A. S.; Zhu, N.; Bai, Z.; Jin, B. Biofuels from Food Processing Wastes. Curr. Opin. Biotechnol. 2016, 38, 97–105. DOI: 10.1016/j.copbio.2016.01.010.
  • Ruiz, B.; Flotats, X. Effect of Limonene on Batch Anaerobic Digestion of Citrus Peel Waste. Biochem. Eng. J. 2016, 109, 9–18. DOI: 10.1016/j.bej.2015.12.011.
  • Choi, I. S.; Kim, J. H.; Wi, S. G.; Kim, K. H.; Bae, H. J. Bioethanol Production from Mandarin (Citrus Unshiu) Peel Waste Using Popping Pretreatment. Appl. Energy. 2013, 102, 204–210. DOI: 10.1016/j.apenergy.2012.03.066.
  • Wilkins, M. R.; Widmer, W. W.; Grohmann, K. Simultaneous Saccharification and Fermentation of Citrus Peel Waste by Saccharomyces Cerevisiae to Produce Ethanol. Process Biochem. 2007, 42(12), 1614–1619. DOI: 10.1016/j.procbio.2007.09.006.
  • Boluda-Aguilar, M.; López-Gómez, A. Production of Bioethanol by Fermentation of Lemon (Citrus Limon L.) Peel Wastes Pretreated with Steam Explosion. Ind. Crop Prod. 2013, 41, 188–197. DOI: 10.1016/j.indcrop.2012.04.031.
  • John, I.; Pola, J.; Thanabalan, M.; Appusamy, A. Bioethanol Production from Musambi Peel by Acid Catalyzed Steam Pretreatment and Enzymatic Saccharification: Optimization of Delignification Using Taguchi Design. Waste Biomass Valorization. 2019, 1–13. DOI: 10.1007/s12649-018-00565-x.
  • Taghizadeh-Alisaraei, A.; Hosseini, S. H.; Ghobadian, B.; Motevali, A. Biofuel Production from Citrus Wastes: A Feasibility Study in Iran. Renewable Sustainable Energy Rev. 2017, 69, 1100–1112. DOI: 10.1016/j.rser.2016.09.102.
  • Rashid, U.; Ibrahim, M.; Yasin, S.; Yunus, R.; Taufiq-Yap, Y. H.; Knothe, G. Biodiesel from Citrus Reticulata (Mandarin Orange) Seed Oil, a Potential Non-food Feedstock. Ind. Crop Prod. 2013, 45, 355–359. DOI: 10.1016/j.indcrop.2012.12.039.
  • Muniraj, I. K.; Uthandi, S. K.; Hu, Z.; Xiao, L.; Zhan, X. Microbial Lipid Production from Renewable and Waste Materials for Second-generation Biodiesel Feedstock. Environ. Technol. Rev. 2015, 4(1), 1–16. DOI: 10.1080/21622515.2015.1018340.
  • Musthafa, M. M.;. Production of Biodiesel from Citrus Limetta Seed Oil. Energy Sources Part A. 2016, 38(20), 2994–3000. DOI: 10.1080/15567036.2015.1135205.
  • Azad, A.;. Biodiesel from Mandarin Seed Oil: A Surprising Source of Alternative Fuel. Energies. 2017, 10(11), 1689. DOI: 10.3390/en10111689.
  • Gunaseelan, V. N.;. Biochemical Methane Potential of Fruits and Vegetable Solid Waste Feedstocks. Biomass Bioenergy. 2004, 26(4), 389–399. DOI: 10.1016/j.biombioe.2003.08.006.
  • Koppar, A.; Pullammanappallil, P. Anaerobic Digestion of Peel Waste and Wastewater for on Site Energy Generation in a Citrus Processing Facility. Energy. 2013, 60, 62–68. DOI: 10.1016/j.energy.2013.08.007.
  • Wikandari, R.; Nguyen, H.; Millati, R.; Niklasson, C.; Taherzadeh, M. J. Improvement of Biogas Production from Orange Peel Waste by Leaching of Limonene. BioMed. Res. Int. 2015, 2015. DOI: 10.1155/2015/494182.
  • Serrano, A.; Ángel Siles López, J.; Chica, A. F.; Martin, M.; Karouach, F.; Mesfioui, A.; El Bari, H. Mesophilic Anaerobic Co-digestion of Sewage Sludge and Orange Peel Waste. Environ. Technol. 2014, 35(7), 898–906. DOI: 10.1080/09593330.2013.855822.
  • Magare, M. E.; Sahu, N.; Kanade, G. S.; Chanotiya, C. S.; Thul, S. T. An Integrated Process of Value Addition to Citrus Waste and Performance of Fenton process for Its Conversion to Biogas. Waste Biomass Valorization. 2018, 1–8. DOI: 10.1007/s12649-018-0385-8.
  • Babbar, N.; Dejonghe, W.; Gatti, M.; Sforza, S.; Elst, K. Pectic Oligosaccharides from Agricultural By-products: Production, Characterization and Health Benefits. Crit. Rev. Biotechnol. 2015, 36(4), 594–606. DOI: 10.3109/07388551.2014.996732.
  • Gullón, B.; Gómez, B.; Martínez-Sabajanes, M.; Yáñez, R.; Parajó, J. C.; Alonso, J. L. Pectic Oligosaccharides: Manufacture and Functional Properties. Trends Food Sci. Technol. 2013, 30(2), 153–161. DOI: 10.1016/j.tifs.2013.01.006.
  • Gómez, B.; Yáñez, R.; Parajó, J. C.; Alonso, J. L. Production of Pectin‐derived Oligosaccharides from Lemon Peels by Extraction, Enzymatic Hydrolysis and Membrane Filtration. J. Chem. Technol. Biotechnol. 2016, 91(1), 234–247. DOI: 10.1002/jctb.4569.
  • Zhang, S.; Hu, H.; Wang, L.; Liu, F.; Pan, S. Preparation and Prebiotic Potential of Pectin Oligosaccharides Obtained from Citrus Peel pectin. Food Chem. 2018, 244, 232–237. DOI: 10.1016/j.foodchem.2017.10.071.
  • Míguez, B.; Gómez, B.; Gullón, P.; Gullón, B.; Alonso, J. L. Pectic Oligosaccharides and Other Emerging Prebiotics. In Probiotics and Prebiotics in Human Nutrition and Health; Rao, V., Rao, L.G., Eds.; IntechOpen: Croatia, 2016; pp 301–330.
  • Li, P. J.; Xia, J. L.; Nie, Z. Y.; Shan, Y. Pectic Oligosaccharides Hydrolyzed from Orange Peel by Fungal Multi-enzyme Complexes and Their Prebiotic and Antibacterial Potentials. LWT-Food Sci. Technol. 2016, 69, 203–210. DOI: 10.1016/j.lwt.2016.01.042.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.