1,367
Views
34
CrossRef citations to date
0
Altmetric
Review

Ethylene Scavenging Systems in Packaging of Fresh Produce: A Review

, & ORCID Icon

References

  • Mahajan, P. V.; Caleb, O. J.; Gil, M. I.; Izumi, H.; Colelli, G.; Watkins, C. B.; Zude, M. J. F. P.; Life, S. Quality and Safety of Fresh Horticultural Commodities: Recent Advances and Future Perspectives. Food Packag. Shelf. 2017, 14, 2–11. DOI: 10.1016/j.fpsl.2017.08.001.
  • Sharif, Z. I. M. F. A.; Mustapha, J.; Jai, N.; Yusof, M. N.; Zaki, A. M. Review on Methods for Preservation and Natural Preservatives for Extending the Food Longevity. Chem. Eng. Res. Bull. 2017, 19, 145–153. DOI: 10.3329/cerb.v19i0.33809.
  • Wang, L.; Luo, Z.; Li, J.; Yang, M.; Yan, J.; Lu, H.; Li, D.; Chen, C.; Aghdam, M. S.; Wu, B.; et al. Morphological and Quality Characterization of Grape Berry and Rachis in Response to Postharvest 1-methylcyclopropene and Elevated Oxygen and Carbon Dioxide Atmospheres. Postharvest Biol. Technol. 2019, 153, 107–117. DOI: 10.1016/j.postharvbio.2019.04.001.
  • Li, D.; Li, L.; Xiao, G.; Limwachiranon, J.; Xu, Y.; Lu, H.; Yang, D.; Luo, Z. Effects of Elevated CO2 on Energy Metabolism and γ-aminobutyric Acid Shunt Pathway in Postharvest Strawberry Fruit. Food Chem. 2018, 265, 281–289. DOI: 10.1016/j.foodchem.2018.05.106.
  • Li, D.; Zhang, X.; Lia, L.; Aghdam, M. S.; Wei, X.; Liu, J.; Xu, Y.; Luo, Z. Elevated CO2 Delayed the Chlorophyll Degradation and Anthocyanin Accumulation in Postharvest Strawberry Fruit. Food Chem. 2019, 285, 163–170. DOI: 10.1016/j.foodchem.2019.01.150.
  • Amit, S. K.; Uddin, M. M.; Rahman, R.; Islam, S. M. R.; Khan, M. S. A Review on Mechanisms and Commercial Aspects of Food Preservation and Processing. J. Agric. Food Sec. 2017, 6(1), 51. DOI: 10.1186/s40066-017-0130-8.
  • Gaikwad, K. K.; Lee, Y. S. Effect of Storage Conditions on the Absorption Kinetics of Non-metallic Oxygen Scavenger Suitable for Moist Food Packaging. J. Food Meas. Charact. 2017, 11(3), 965–971. DOI: 10.1007/s11694-017-9470-0.
  • Sivakumar, D.; Bautista-Baños, S. J. Review on the Use of Essential Oils for Postharvest Decay Control and Maintenance of Fruit Quality during Storage. J. Crop Prot. 2014, 64, 27–37. DOI: 10.1016/j.cropro.2014.05.012.
  • Cao, J.; Li, X.; Wu, K.; Jiang, W.; Qu, G. Preparation of a Novel PdCl2–CuSO4–Based Ethylene Scavenger Supported by Acidified Activated Carbon Powder and its Effects on Quality and Ethylene Metabolism of Broccoli during Shelf-life. Postharvest Biol. Technol. 2015, 99, 50–57. DOI: 10.1016/j.postharvbio.2014.07.017.
  • Chopra, S.; Dhumal, S.; Abeli, P.; Beaudry, R.; Almenar, E. Metal-organic Frameworks Have Utility in Adsorption and Release of Ethylene and 1-methylcyclopropene in Fresh Produce Packaging. Postharvest Biol. Technol. 2017, 130, 48–55. DOI: 10.1016/j.postharvbio.2017.04.001.
  • Gaikwad, K. K.; Singh, S.; Lee, Y. S. High Adsorption of Ethylene by Alkali-treated Halloysite Nanotubes for Food-packaging Applications. Environ. Chem. Lett. 2018, 16(3), 1055–1062. DOI: 10.1007/s10311-018-0718-7.
  • Hussain, M.; Bensaid, S.; Geobaldo, F.; Saracco, G.; Russo, N. Photocatalytic Degradation of Ethylene Emitted by Fruits with TiO2 Nanoparticles. Ind. Eng. Chem. Res. 2011, 50(5), 2536–2543. DOI: 10.1021/ie1005756.
  • Zhai, H.; Wang, P.; Zhang, Q.; Liu, X.; Wang, Z.; Liu, Y.; Zheng, Z.; Huang, B. Plasmonic Au-Ag Bimetallic Alloy Nanoparticles Decorated ZnO Nanorod with Enhanced Photocatalytic Activity for Ethylene-oxidation. Appl. Catal. A 2018. DOI: 10.1016/j.apcata.2018.06.019.
  • Luo, Z.; Wang, Y.; Jiang, L.; Xu, X. Effect of nano-CaCO3-LDPE Packaging on Quality and Browning of Fresh-cut Yam. LWT-Food Sci. Technol. 2015, 60, 1155–1161. DOI: 10.1016/j.lwt.2014.09.021.
  • Gaikwad, K. K.; Lee, Y. S. Current Scenario of Gas Scavenging Systems Used in Active Packaging: A Review. Korean J. Packag. Sci. Technol. 2017, 23(2), 109–117. DOI: 10.20909/kopast.2017.23.2.109.
  • Prasad, P.; Kochhar, A. Active Packaging in Food Industry: A Review. IOSR J. Environ. Sci. Toxicol. Food Technol. 2014, 8(5), 01–07. DOI: 10.9790/2402-08530107.
  • Gustavsson, J.; Cederberg, C.; Sonesson, U.; van Otterdijk, R.; Meybeck, A. Global Food Losses and Food Waste. Extent, Causes and Prevention. Study Conducted for the International Congress SAVE FOOD, Interpack: Düsseldorf, Germany, 2011.
  • Warton, M. A.; Wills, R. B. H.; Ku, V. Ethylene Levels Associated with Fruit and Vegetables during Marketing. Aust. J. Exp. Agric. 2000, 40(3), 465–470. DOI: 10.1071/EA99125.
  • Aghdam, M. S.; Luo, Z.; Jannatizadeh, A.; Sheikh-Assadi, M.; Sharafi, Y.; Farmani, B.; Fard, J. R.; Razavi, F. Employing Exogenous Melatonin Applying Confers Chilling Tolerance in Tomato Fruits by Upregulating ZAT2/6/12 Giving Rise to Promoting Endogenous Polyamines, Proline, and Nitric Oxide Accumulation by Triggering Arginine Pathway Activity. Food Chem. 2019, 275, 549–556. DOI: 10.1016/j.foodchem.2018.09.157.
  • Aghdam, M. S.; Jannatizadeh, A.; Luo, Z.; Paliyath, G. Ensuring Sufficient Intracellular ATP Supplying and Friendly Extracellular ATP Signaling Attenuates Stresses, Delays Senescence and Maintains Quality in Horticultural Crops during Postharvest Life. Trends Food Sci. Technol. 2018, 76, 67–81. DOI: 10.1016/j.tifs.2018.04.003.
  • Chaves, A. L. S.; Mello-Farias, P. C. D. Ethylene and Fruit Ripening: From Illumination Gas to the Control of Gene Expression, More than a Century of Discoveries. J. Genet. Mol. Biol. 2006, 29, 508–515. DOI: 10.1590/S1415-47572006000300020.
  • Martínez-Romero, D.; Bailén, G.; Serrano, M.; Guillén, F.; Valverde, J. M.; Zapata, P.; Castillo, S.; Valero, D. J. Tools to Maintain Postharvest Fruit and Vegetable Quality through the Inhibition of Ethylene Action: A Review. Crit. Rev. Food Sci. Nutr. 2007, 47(6), 543–560. DOI: 10.1080/10408390600846390.
  • Keller, N.; Ducamp, M. N.; Robert, D.; Keller, V. Ethylene Removal and Fresh Product Storage: A Challenge at the Frontiers of Chemistry. Toward an Approach by Photocatalytic Oxidation. Chem. Rev. 2013, 113(7), 5029–5070. DOI: 10.1021/cr900398v.
  • Golden, K.; Williams, O. J.; Dunkley, H. M. Ethylene in Postharvest Technology: A Review. Asian J. Biol. Sci. 2014, 7(4), 135–143. DOI: 10.3923/ajbs.2014.135.143.
  • Adams-Phillips, L.; Barry, C.; Kannan, P.; Leclercq, J.; Bouzayen, M.; Giovannoni, J. J. Evidence that CTR1-mediated Ethylene Signal Transduction in Tomato Is Encoded by a Multigene Family Whose Members Display Distinct Regulatory Features. Plant Mol. Biol. 2004, 54(3), 387–404. DOI: 10.1023/B:PLAN.0000036371.30528.26.
  • Dubois, M.; Van den Broeck, L.; Inze, D. The Pivotal Role of Ethylene in Plant Growth. Trends Plant Sci. 2018, 23(4), 311–323. DOI: 10.1016/j.tplants.2018.01.003v.
  • Hershkovitz, V.; Friedman, H.; Goldschmidt, E. E.; Pesis, E. The Role of the Embryo and Ethylene in Avocado Fruit Mesocarp Discoloration. J. Exp. Bot. 2009, 60(3), 791–799. DOI: 10.1093/jxb/ern328.
  • Jones, R. B.; Faragher, J. D.; Winkler, S. A Review of the Influence of Postharvest Treatments on Quality and Glucosinolate Content in Broccoli (Brassica oleracea Var. Italica) Heads. Postharvest Biol. Technol. 2006, 41(1), 1–8. DOI: 10.1016/j.postharvbio.2006.03.003.
  • Murmu, S. B.; Mishra, H. N. Post-harvest Shelf-life of Banana and Guava: Mechanisms of Common Degradation Problems and Emerging Counteracting Strategies. Innovative Food Sci. Emerging Technol. 2018, 49, 20–30. DOI: 10.1016/j.ifset.2018.07.011.
  • Saltveit, M. E. Effect of Ethylene on Quality of Fresh Fruits and Vegetables. Postharvest Biol. Technol. 1999, 15(3), 279–292. DOI: 10.1016/S0925-5214(98)00091-X.
  • Terry, L. A.; Ilkenhans, T.; Poulston, S.; Rowsell, L.; Smith, A. W. J. Development of New Palladium-promoted Ethylene Scavenger. Postharvest Biol. Technol. 2007, 45(2), 214–220. DOI: 10.1016/j.postharvbio.2006.11.020.
  • Dash, S.; Patel, S.; MishraB, K. Oxidation by Permanganate: Synthetic and Mechanistic Aspects. Tetrahedron 2009, 65, 707–739. DOI: 10.1016/j.tet.2008.10.038.
  • Martínez Romero, D.; Bailén, G.; Guillén, F.; Castillo, S.; Zapata, P.; Valero, D.; Serrano, M. J. Use of a Palladium Catalyst to Improve the Capacity of Activated Carbon to Absorb Ethylene, and Its Effect on Tomato Ripening. Span. J. Agric. Res. 2007, 5(4), 579–586. DOI: 10.5424/sjar/2007054-5359.
  • Bhattacharjee, D.; Dhua, R. Ethylene Absorbents Improve the Shelf Life of Pointed Gourd (Trichosanthes dioica roxb.) Fruits. Int. J. Pure Appl. Biosci. 2017, 5(1), 64–71. DOI: 10.18782/2320-7051.2450.
  • Álvarez-Hernández, M. H.; Artés-Hernández, F.; Ávalos-Belmontes, F.; Castillo-Campohermoso, M. A.; Contreras-Esquivel, J. C.; Ventura-Sobrevilla, J. M.; Martínez-Hernández, G. Current Scenario of Adsorbent Materials Used in Ethylene Scavenging Systems to Extend Fruit and Vegetable Postharvest Life. Food Bioprocess Tech. 2018, 11(3), 511–525. DOI: 10.1007/s11947-018-2076-7.
  • Spricigo, P. C.; Foschini, M. M.; Ribeiro, C.; Corrêa, D. S.; Ferreira, M. D. Nanoscaled Platforms Based on SiO2 and Al2O3 Impregnated with Potassium Permanganate Use Color Changes to Indicate Ethylene Removal. Food Bioproc. Tech. 2017, 10(9), 1622–1630. DOI: 10.1007/s11947-017-1929-9.
  • Mallakpour, S.; Khadem, E. Recent Development in the Synthesis of Polymer Nanocomposites Based on Nano-alumina. Prog. Polym. Sci. 2015, 51, 74–93. DOI: 10.1016/j.progpolymsci.2015.07.004.
  • Wills, R. B. H.; Kim, G. H. Effect of Ethylene on Postharvest Life of Strawberries. Postharvest Biol. Technol. 1995, 6(3), 249–255. DOI: 10.1016/0925-5214(95)00005-Q.
  • Luo, Z.; Xu, X.; Cai, Z.; Yan, B. Effect of Ethylene and 1-methylcyclopropene on Lignification of Postharvest Bamboo Shoot. Food Chem. 2007, 105, 521–527. DOI: 10.1016/j.foodchem.2007.04.007.
  • Luo, Z.; Xu, X.; Yan, B. Use of 1-methylcyclopropene for Alleviating Chilling Injury and Lignification of Bamboo Shoot (Phyllostachys praecox F. prevernalis) during Cold Storage. J. Sci. Food Agric. 2008, 88, 151–157. DOI: 10.1002/jsfa.3064.
  • Scariot, V.; Paradiso, R.; Rogers, H.; De Pascale, S. Ethylene Control in Cut Flowers: Classical and Innovative Approaches. Postharvest Biol. Technol. 2014, 97, 83–92. DOI: 10.1016/j.postharvbio.2014.06.010.
  • Mallakpour, S.; Khadema, E. 1-methylcyclopropene (1-MCP), Storage Time, and Shelf Life and Temperature Affect Phenolic Compounds and Antioxidant Activity of ‘Jonagold’ Apple. Postharvest Biol. Technol. 2019, 150, 71–79. DOI: 10.1016/j.postharvbio.2018.12.015.
  • Schaller G.E.; Binder B.M. Inhibitors of Ethylene Biosynthesis and Signaling. In Ethylene Signaling. Methods in Molecular Biology, Binder B., Eric Schaller G., Eds.; New York: Human Press, Springer, 2017; 1573, 223–235. DOI:10.1007/978-1-4939-6854-1_15.
  • Bazzano, M.; Barolo, C.; Buscaino, R.; D’Agostino, G.; Ferri, A.; Sangermano, M.; Pisano, R.; Research, E. C. Controlled Atmosphere in Food Packaging Using Ethylene− α-cyclodextrin Inclusion Complexes Dispersed in Photocured Acrylic Films. Ind. Eng. Chem. Res. 2016, 55(3), 579–585. DOI:10.1021/acs.iecr.5b03980.
  • Letort, S.; Bosco, M.; Cornelio, B.; Brégier, F.; Daulon, S.; Gouhier, G.; Estour, F. Structure–Efficiency Relationships of Cyclodextrin Scavengers in the Hydrolytic Degradation of Organophosphorus Compounds. Beilstein J. Org. Chem. 2017, 13, 417. DOI: 10.3762/bjoc.13.45.
  • López-de-Dicastillo, C.; Catalá, R.; Gavara, R.; Hernández-Muñoz, P. Food Applications of Active Packaging EVOH Films Containing Cyclodextrins for the Preferential Scavenging of Undesirable Compounds. J. Food Eng. 2011, 104(3), 380–386. DOI: 10.1016/j.jfoodeng.2010.12.033.
  • Manjunatha, G.; Gupta, K. J.; Lokesh, V.; Mur, L. A. J.; Neelwarne, B. Nitric Oxide Counters Ethylene Effects on Ripening Fruits. Plant Signal. Behav. 2012, 7(4), 476–483. DOI: 10.4161/psb.19523.
  • Benkeblia, N.; Varoquaux, P. Effect of Nitrous Oxide (N2O) on Respiration Rate, Soluble Sugars and Quality Attributes of Onion Bulbs Alliumcepa Cv. Rouge Amposta during Storage. Postharvest Biol. Technol. 2003, 30(2), 161–168. DOI: 10.1016/S09255214(03)00101-7.
  • Liu, L.-Q.; Yu, D.; Guan, J.-F. Effects of Nitric Oxide on the Quality and Pectin Metabolism of Yali Pears during Cold Storage. Agric. Sci. China. 2011, 10(7), 1125–1133. DOI: 10.1016/S1671-2927(11)60102-8.
  • Rocculi, P.; Romani, S.; Rosa, M. D. Effect of MAP with Argon and Nitrous Oxide on Quality Maintenance of Minimally Processed Kiwifruit. Postharvest Biol. Technol. 2005, 35(3), 319–328. DOI: 10.1016/j.postharvbio.2004.09.003.
  • Liu, J.; Yang, J.; Zhang, H.; Cong, L.; Zhai, R.; Yang, C.; Wang, Z.; Ma, F.; Xu, L. 1. Melatonin Inhibits Ethylene Synthesis via Nitric Oxide Regulation to Delay Postharvest Senescence in Pears. J. Agric. Food Chem. 2019, 67(8), 2279–2288. DOI: 10.1021/acs.jafc.8b06580.
  • Casey, P. S.; Boskovic, S.; Lawrence, K.; Turney, T. Controlling the Photoactivity of Nanoparticles. NSTI-Nanotech. 2004, 3, 370–374.
  • Luo, Z.; Wang, Y.; Wang, H.; Feng, S. Impact of nano-CaCO3-LDPE Packaging on Quality of Fresh-cut Sugarcane. J. Sci. Food Agric. 2014, 94, 3273–3280. Epub 2014 Apr 30. DOI: 10.1002/jsfa.6680.
  • Li, D.; Li, L.; Luo, Z.; Lu, H.; Yue, Y. Effect of Nano-zno-packaging on Chilling Tolerance and Pectin Metabolism of Peaches during Cold Storage. Sci. Hortic. 2017, 225(18), 128–133. DOI: 10.1016/j.scienta.2017.07.003.
  • Li, D.; Ye, Q.; Jiang, L.; Luo, Z. Effects of nano-TiO2 Packaging on Postharvest Quality and Antioxidant Activity of Strawberry (Fragaria × Ananassa duch.) Stored at Low Temperature. J. Sci. Food Agric. 2017, 97, 1116–1123. Epub 2016 Jul 11. DOI: 10.1002/jsfa.7837.
  • Li, H.; Li, F.; Wang, L.; Sheng, J.; Xin, Z.; Zhao, L.; Xiao, H.; Zheng, Y.; Hu, Q. Effect of Nano-packing on Preservation Quality of Chinese Jujube (Ziziphus jujuba Mill. Var. Inermis (Bunge) Rehd). Food Chem. 2009, 114(2), 547–552. DOI: 10.1016/j.foodchem.2008.09.085.
  • Yang, H.; Ma, C.; Li, Y.; Wang, J.; Zhang, X.; Wang, G.; Qiao, N.; Sun, Y.; Cheng, J.; Hao, Z. Synthesis, Characterization and Evaluations of the Ag/ZSM-5 for Ethylene Oxidation at Room Temperature: Investigating the Effect of Water and Deactivation. Chem. Eng. J. 2018, 347, 808–818. DOI: 10.1016/j.cej.2018.04.095.
  • Wang, K.; Jin, P.; Shang, H.; Li, H.; Xu, F.; Hu, Q.; Zheng, Y. A. Combination of Hot Air Treatment and Nano-packing Reduces Fruit Decay and Maintains Quality in Postharvest Chinese Bayberries. J. Sci. Food Agric. 2010, 90(14), 2427–2432. DOI: 10.1002/jsfa.4102.
  • Han, Y.; Nie, L. The Mechanism of Protecting Fresh and Preparation of Nano TiO2 Thin Film. J. Zhuzhou Inst. Technol. 2004, 18, 148–150.
  • Schoonheydt, R.; Johnston, C. The Surface Properties of Clay Minerals, EMU Notes in Mineralogy. Mineral. Soc. Great Br. Irel. 2011, 335–370. DOI: 10.1180/EMU-notes.11.10.
  • Yildirim, S.; Röcker, B.; Pettersen, M. K.; Nilsen-Nygaard, J.; Ayhan, Z.; Rutkaite, R.; Radusin, T.; Suminska, P.; Marcos, B.; Coma, V. Active Packaging Applications for Food. Compr. Rev. Food Sci. Food Saf. 2018, 17(1), 165–199. DOI: 10.1111/15414337.12322.
  • Abreu, N. J.; Valdés, H.; Zaror, C. A.; Azzolina-Jury, F.; Meléndrez, M. F. Ethylene Adsorption onto Natural and Transition Metal Modified Chilean Zeolite: An Operando DRIFTS Approach. Micropor. Mesopor. Mat. 2019, 274, 138–148. DOI: 10.1016/j.micromeso.2018.07.043.
  • Sue-aok, N.; Srithanratana, T.; Rangsriwatananon, K.; Hengrasmee, S. Study of Ethylene Adsorption on Zeolite NaY Modified with Group I Metal Ions. Appl. Surf. Sci. 2010, 256(12), 3997–4002. DOI: 10.1016/j.apsusc.2010.01.065.
  • Sothornvit, R.; Sampoompuang, C. Rice Straw Paper Incorporated with Activated Carbon as an Ethylene Scavenger in a Paper-making Process. Int. J. Food Sci. Technol. 2012, 47(3), 511–517. DOI: 10.1111/j.1365-2621.2011.02871.x.
  • Esturk, O.; Ayhan, Z.; Gokkurt, T. Production and Application of Active Packaging Film with Ethylene Adsorber to Increase the Shelf Life of Broccoli (Brassica oleracea L. Var. Italica). Packag. Technol. Sci. 2014, 27(3), 179–191. DOI: 10.1002/pts.2023.
  • Chamara, D.; Illeperuma, K.; Galappatty, P. T. Effect of Modified Atmosphere and Ethylene Absorbers on Extension of Storage Life of ‘kolikuttu’ Banana at Ambient Temperature. Fruits 2000, 55(6), 381–388.
  • Srithammaraj, K.; Magaraphan, R.; Manuspiya, H. Modified Porous Clay Heterostructures by Organic–Inorganic Hybrids for Nanocomposite Ethylene scavenging/sensor Packaging Film. Packag. Technol. Sci. 2012, 25(2), 63–72. DOI: 10.1002/pts.958.
  • Silva, D. F. P.; Salomão, L. C. C.; Siqueira, D. L. D.; Cecon, P. R.; Rocha, A. Potassium Permanganate Effects in Postharvest Conservation of the Papaya Cultivar Sunrise Golden. Pesq. Agropec. Bras. 2009, 44, 669–675. DOI: 10.1590/S0100-204X2009000700003.
  • Silva, F. C.; Ribeiro, W. S.; França, C. M.; Araújo, F. F.; Finger, F. L. Action of Potassium Permanganate on the Shelf-life of Cucumis Anguria Fruit. XI International Controlled and Modified Atmosphere Research Conference, 2013 June, 1071, 105–111. Leuven, Belgium.
  • Sneddon, G.; Greenaway, A.; Yiu, H. H. P. The Potential Applications of Nanoporous Materials for the Adsorption, Separation, and Catalytic Conversion of Carbon Dioxide. Adv. Energy Mater. 2014, 4(10), 1301873. DOI: 10.1002/aenm.201301873.
  • Zhang, G.; Sun, Y.; Zhao, P.; Xu, Y.; Su, A.; Qu, J. Characteristics of Activated Carbon Modified with Alkaline KMnO4 and Its Performance in Catalytic Reforming of Greenhouse Gases CO2/CH4. J. CO2 Util. 2017, 20, 129–140. DOI: 10.1016/j.jcou.2017.05.013.
  • Emadpour, M.; Rezaei Kalaj, Y. Effect of Ethylene Absorption Using Nano-particles on the Storage and Quality Characteristics of Apricot. Agron. Hortic. 2009, 21, 115–121.
  • Biji, K. B.; Ravishankar, C. N.; Mohan, C. O.; Srinivasa Gopal, T. K. Smart Packaging Systems for Food Applications: A Review. J. Food Sci. Technol. 2015, 52(10), 6125–6135. DOI: 10.1007/s13197-015-1766-7.
  • Realini, C. E.; Marcos, B. Active and Intelligent Packaging Systems for a Modern Society. Meat Sci. 2014, 98(3), 404–419. DOI: 10.1016/j.meatsci.2014.06.031.
  • Huang, H.; Tang, K.; Luo, Z.; Zhang, H.; Qin, Y. Migration of Ti and Zn from Nanoparticle Modified LDPE Films into Food Simulants. Food Sci. Technol. Res. 2017, 23(6), 827–834. DOI: 10.3136/fstr.23.827.
  • Vilela, C.; Kurek, M.; Hayouka, Z.; Röcker, B.; Yildirim, S.; Antunes, M. D. C.; Nilsen-Nygaard, J.; Pettersen, M. K.; Freire, C. S. R. A Concise Guide to Active Agents for Active Food Packaging. Trends Food Sci. Technol. 2018, 80, 212–222. DOI: 10.1016/j.tifs.2018.08.006.
  • Aday, M. S.; Yener, U. Assessing Consumers’ Adoption of Active and Intelligent Packaging. Br. Food J. 2015, 117(1), 157–177. DOI: 10.1108/BFJ-07-2013-0191.
  • Han, J.-W.; Ruiz-Garcia, L.; Qian, J.-P.; Yang, X.-T. Food Packaging: A Comprehensive Review and Future Trends. Compr. Rev. Food Sci. Food Saf. 2018, 17(4), 860–877. DOI: 10.1111/1541-4337.12343.
  • Suppakul, P.; Miltz, J.; Sonneveld, K.; Bigger, S. W. Active Packaging Technologies with an Emphasis on Antimicrobial Packaging and Its Applications. J. Food Sci. 2003, 68(2), 408–420. DOI: 10.1111/j.1365-2621.2003.tb05687.x.
  • Gaikwad, K. K.; Singh, S.; Lee, Y. S. Oxygen Scavenging Films in Food Packaging. Environ. Chem. Lett. 2018, 16(2), 523–538. DOI: 10.1007/s10311-018-0705-z.
  • Janjarasskul, T.; Suppakul, P. Active and Intelligent Packaging: The Indication of Quality and Safety. Crit. Rev. Food Sci. Nutr. 2018, 58(5), 808–831. DOI: 10.1080/10408398.2016.1225278.
  • De-Souza-Freitas, W. E.; Bezerra Almeida, M. L.; Dantas de Morais, P. L.; Da-Curnha Moura, A. K.; Sales-Júnior, R. Potassium Permanganate Effects on the Quality and Post- Harvest Conservation of Sapodilla (Manilkara zapota (L.) P.Royen) Fruits under Modified Atmosphere. Acta Agron. 2017, 66(3), 331–337. DOI: 10.15446/acag.v66n3.54579.
  • Sedelmeier, J.; Ley, S. V.; Baxendale, I. R.; Baumann, M. KMnO4-mediated Oxidation as a Continuous Flow Process. Org. Lett. 2010, 12(16), 3618–3621. DOI: 10.1021/ol101345z.
  • Wyrwa, J.; Barska, A. Innovations in the Food Packaging Market: Active Packaging. Eur. Food Res. Technol. 2017, 243(10), 1681–1692. DOI: 10.1007/s00217017-2878-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.