2,640
Views
16
CrossRef citations to date
0
Altmetric
Review

Edible Bird’s Nest: Physicochemical Properties, Production, and Application of Bioactive Extracts and Glycopeptides

, , , , ORCID Icon &

References

  • Chantler, P.; Driessens, G. Swifts: A Guide to the Swifts & Treeswifts of the World, 2nd ed.; A&C Black: Edinburgh, 2002.
  • Medway, L. The Swiftlets (Collocalia) of Niah Cave, Sarawak. Int. J. Avian Sci. 1962, 104(1), 45–66.
  • Goh, D. L. M.; Chua, K. Y.; Chew, F. T.; Liang, R. C.; Seow, T. K.; Ou, K. L.; Yi, F. C.; Lee, B. W. Immunochemical Characterization of Edible Bird’s Nest Allergens. J. Allergy Clin. Immunol. 2001, 107(6), 1082–1088. DOI: 10.1067/mai.2001.114342.
  • Babji, A. S.; Nurfatin, M. H.; Etty Syarmila, I. K.; Masitah, M. Secrets of Edible Bird’s Nest. UTAR Agric. Sci. J. 2015, 1(1), 32–37.
  • Ramlan, M.; Aini, I.; Jalila, A.; Anum, M.; Rosini, A. Centre of Excellence for Swiftlet – An Overview of Research and Industry Connectivity for EBNIn Edible-nest Swiftlet Industry in Malaysia: Compilation of Research Findings, 1st ed.; Department of Veterinary Services, Ed.; LoveAds: Malaysia, 2017; pp. 1–9.
  • Babji, A. S. Review: Development of Downstream Products from Edible Bird’s Nest. Edible Bird’s Nest Industry Conference, Putrajaya, Malaysia, 2014.
  • Kong, Y. C.; Keung, W. M.; Yip, T. T.; Ko, K. M.; Tsao, S. W.; Ng, M. H. Evidence that Epidermal Growth Factor Is Present in Swiftlet’s (Collocalia) Nest. Comp. Biochem. Physiol. B. 1987, 87(2), 221–226. DOI: 10.1016/0305-0491(87)90133-7.
  • Lim, C. K.; Cranbrook, G. G. H.; Zoologist, G. B. Swiftlets of Borneo: Builders of Edible Nests; Natural History Publications: Borneo, 2002.
  • Vercruysse, L.; Van Camp, J.; Smagghe, G. ACE Inhibitory Peptides Derived from Enzymatic Hydrolysates of Animal Muscle Protein: A Review. J. Agric. Food Chem. 2005, 53(21), 8106–8115. DOI: 10.1021/jf0508908.
  • Chalamaiah, M.; Dinesh Kumar, B.; Hemalatha, R.; Jyothirmayi, T. Fish Protein Hydrolysates: Proximate Composition, Amino Acid Composition, Antioxidant Activities and Applications: A Review. Food Chem. 2012, 135(4), 3020–3038. DOI: 10.1016/j.foodchem.2012.06.100.
  • Haghani, A.; Mehrbod, P.; Safi, N.; Aminuddin, N. A.; Bahadoran, A.; Omar, A. R.; Ideris, A. In Vitro and in Vivo Mechanism of Immunomodulatory and Antiviral Activity of Edible Bird’s Nest (EBN) against Influenza A Virus (IAV) Infection. J. Ethnopharmacol. 2016, 185, 327–340. DOI: 10.1016/j.jep.2016.03.020.
  • Aswir, A. R.; Wan Nazaimoon, W. M. Effect of Edible Bird’s Nest on Cell Proliferation and Tumor Necrosis Factor- Alpha (TNF-α) Release in Vitro. Int. Food Res. J. 2011, 18, 1123–1127.
  • Guo, C.; Takahashi, T.; Bukawa, W.; Takahashi, N.; Yagi, H.; Kato, K.; Hidari, K. I.; Miyamoto, D.; Suzuki, T.; Suzuki, Y. Edible Bird’s Nest Extract Inhibits Influenza Virus Infection. Antiviral Res. 2006, 70, 140–146. DOI: 10.1016/j.antiviral.2006.02.005.
  • Ma, F. C.; Liu, D. C. Extraction and Determination of Hormones in the Edible Bird’s Nest. Asian J. Chem. 2012, 24(1), 117–120.
  • Wong, R. S. Y. Edible Bird’s Nest: Food or Medicine? Chin. J. Integr. Med. 2013, 19(9), 643–649. DOI: 10.1007/s11655-013-1563-y.
  • Zhang, Y.; Imam, M. U.; Maznah, I. In Vitro Bioaccessibility and Antioxidant Properties of Edible Bird’s Nest following Simulated Human Gastro-intestinal Digestion. BMC Complement. Altern. Med. 2014, 14(468), 1–7. DOI: 10.1186/1472-6882-14-1.
  • Saengkrajang, W.; Matan, N.; Matan, N. Nutritional Composition of the Farmed Edible Bird’s Nest (Collocalia fuciphaga) in Thailand. J. Food Compost. Anal. 2013, 31, 41–45. DOI: 10.1016/j.jfca.2013.05.001.
  • Chua, L. S.; Zukefli, S. N. A Comprehensive Review on Edible Bird’s Nests and Swiftlet Farming. J. Integr. Med. 2016, 14(6), 415–428. DOI: 10.1016/S2095-4964(16)60282-0.
  • Sims, R. W. The Identification of Malaysian Species of Swiftlets Collocalia. Int. J. Avian Sci. 1960, 103a(2), 205–210.
  • But, P. P. H.; Jiang, R. W.; Shaw, P. C. Edible Bird’s Nests – How Do the Red Ones Get Red? J. Ethnopharmacol. 2013, 145(1), 378–380. DOI: 10.1016/j.jep.2012.10.050.
  • Quek, M. C.; Chin, N. L.; Yus Aniza, Y.; Tan, S. W.; Law, C. L. Preliminary Nitrite, Nitrate and Colour Analysis of Malaysian Edible Bird’s Nest. Information Process. Agric. 2015, 2, 1–5. DOI: 10.1016/j.inpa.2014.12.002.
  • Paydar, M.; Wong, Y. L.; Wong, W. F.; Hamdi, O. A. A.; Kadir, N. A.; Looi, C. Y. Prevalence of Nitrite and Nitrate Contents and Its Effect on Edible Bird Nest’s Colour. J. Food Sci. 2013, 78(12), T1940–T1947. DOI: 10.1111/1750-3841.12313.
  • Hun, L. T.; Waseem, A. W.; Eddie, T. T. T.; Nur Ardawati, A.; Ling, Y. L.; Ramlan, A. A. Investigations into the Physicochemical, Biochemical and Antibacterial Properties of Edible Bird’s Nest. J. Chem. Pharm. Res. 2015, 7(7), 228–247.
  • Berdanier, C. D.; Dwyer, J. T.; Heber, D. Handbook of Nutrition and Food, 3rded.; CRC Press: Boca Raton, 2013; pp 199.
  • Zainab, H.; Nur Hulwani, I.; Sarojini, J.; Kamarudin, H.; Othman, H.; Lee, B. Nutritional Properties of Edible Bird’s Nest. J. Asian Sci. Res. 2013, 3(6), 600–607.
  • Kamarudin, M. I. Prevalence of Nitrite (NO2) and Nitrate (NO3) in Edible Bird Nest Harvested from Swiftlet Ranches in the State of Johor; Department of Veterinary Services: Malaysia, 2012.
  • Norhayati, M. K.; Azman, O.; Wan Nazaimoon, W. M. Preliminary Study of the Nutritional Content of Edible Bird’s Nest. Malays. J. Nutr. 2010, 16(3), 389–396.
  • Marcone, M. F. Characterization of the Edible Bird’s Nest the “Caviar of the East”. Food Res. Int. 2005, 38(10), 1125–1134. DOI: 10.1016/j.foodres.2005.02.008.
  • Seow, E. K.; Ibrahim, B.; Muhammad, S. A.; Lee, L. H.; Lalung, J.; Cheng, L. H. Discrimination between Cave and House-farmed Edible Bird’s Nest Based on Major Mineral Profiles. Pertanika J. Trop. Agric. Sci. 2016, 39(2), 181–195.
  • Tan, N.; Shobana, C.; Sani, M. D.; Lim, C. W.; Ideris, A.; Stanslas, J.; Lim, T. S. Safety Profile and Nutritional Content of Raw Cleaned Edible Bird Nest. Edible Bird Nest Industry Conference, Putrajaya, Malaysia, 2014.
  • Seow, E. K.; Ibrahim, B.; Muhammad, S. A.; Lee, L. H.; Cheng, L. H. Differentiation between House and Cave Edible Bird’s Nests by Chemometric Analysis of Amino Acid Composition Data. LWT–Food Sci. Technol. 2016, 65, 428–435. DOI: 10.1016/j.lwt.2015.08.047.
  • Wang, C. C. The Composition of Chinese Edible Birds’ Nests and the Nature of Their Proteins. J. Biol. Chem. 1921, 49(2), 429–439.
  • Kathan, R. H.; Weeks, D. I. Structure Studies of Collocalia Mucoid. I. Carbohydrate and Amino Acid Composition. Arch. Biochem. Biophys. 1969, 134(2), 572–576. DOI: 10.1016/0003-9861(69)90319-1.
  • Tung, C. H.; Pan, J. Q.; Chang, H. M.; Chou, S. S. Authentic Determination of Bird’s Nests by Saccharides Profile. J. Food Drug Anal. 2008, 16(4), 86–91.
  • Chua, Y. G.; Chan, S. H.; Bloodworth, B. C.; Li, S. F. Y.; Leong, L. P. Identification of Edible Bird’s Nest with Amino Acid and Monosaccharide Analysis. J. Agric. Food Chem. 2015, 63, 279–289. DOI: 10.1021/jf503157n.
  • Rühmann, B.; Schmid, J.; Sieber, V. Fast Carbohydrate Analysis via Liquid Chromatography Coupled with Ultra Violet and Electrospray Ionization Ion Trap Detection in 96-well Format. J. Chromatogr. A. 2014, 1350, 44−50. DOI: 10.1016/j.chroma.2014.05.014.
  • Colombo, J. P.; Garcia Rodenas, C.; Guesry, P. R.; Rey, J. Potential Effects of Supplementation with Amino Acids, Choline or Sialic Acid on Cognitive Development in Young Infants. Acta Paediatrica Supplementum. 2003, 92(442), 42–46. DOI: 10.1111/j.1651-2227.2003.tb00662.x.
  • Chau, Q.; Cantor, S. B.; Caramel, E.; Hicks, M.; Kurtin, D.; Grover, T.; Elting, L. S. Cost-effectiveness of the Bird’s Nest Filter for Preventing Pulmonary Embolism among Patients with Malignant Brain Tumors and Deep Venous Thrombosis of the Lower Extremities. Support Care Cancer. 2003, 11(12), 795–799. DOI: 10.1007/s00520-003-0520-2.
  • Wang, B.; Brand-Miller, J. The Role and Potential of Sialic Acid in Human Nutrition. Eur. J. Clin. Nutr. 2003, 57(11), 1351–1369. DOI: 10.1038/sj.ejcn.1601704.
  • Lehmann, F.; Tiralongo, E.; Tiralongo, J. Sialic Acid-specific Lectins: Occurrence, Specificity and Function. Cell. Mol. Life Sci. 2006, 63(12), 1331–1354. DOI: 10.1007/s00018-005-5589-y.
  • Utomo, B.; Rosyidi, D.; Radiati, L. E.; Puspaningsih, N. N. T.; Proborini, W. D. Protein Characterization of Extracted Water from Three Kinds of Edible Bird Nest Using SDS-PAGE CBB Staining and SDS- PAGE Glycoprotein Staining and LC-MS/MS Analyses. J. Agric. Vet. Sci. 2014, 7(9), 33–38.
  • You, Y.; Cao, Y.; Guo, S.; Xu, J.; Li, Z.; Wang, J.; Xue, C. Purification and Identification of α 2-3 Linked Sialoglycoprotein and α 2-6 Linked Sialoglycoprotein in Edible Bird’s Nest. Eur. Food Res. Technol. 2015, 240, 389–397. DOI: 10.1007/s00217-014-2338-1.
  • Nurul Nadia, M.; Babji, A. S.; Ayub, M. K.; Nur‘Aliah, D. Effect of Enzymatic Hydrolysis on Antioxidant Capacity of Cave Edible Bird’s Nests Hydrolysate. Int. J. ChemTech Res. 2017, 10(2), 1100–1107.
  • Mulloy, B.; Hart, G. W.; Stanley, P. Structural Analysis of Glycans: Essentials of Glycobiology, 2nd ed., Chapter 47; Cold Spring Harbor Laboratory Press: Cold Spring Harbor (NY), 2009.
  • Xian, X. M.; Hou, Y.; Lin, J. R.; Huang, S.; Lai, X. P.; Chen, J. N. Study on Degradation of Protein of the Edible Birds’ Nest (Aerodramus) in Vitro. J. Chin. Med. Mater. 2010, 33(11), 1760–1763.
  • Looi, Q. H.; Omar, A. R. Swiftlets and Edible Bird’s Nest Industry in Asia. Pertanika J. Scholar. Res. Rev. 2016, 2(1), 32–48.
  • Wu, R. H.; Chen, Y.; Wu, Y. J.; Zhao, J. Y.; Ge, Y. Q. Review of EBN Authentication Method. Inspect. Quarantine Sci. 2007, 17(4), 60–62.
  • Deng, Y. E.; Sun, S. Q.; Zhou, Q.; Li, A. Analysis and Discrimination of Collocalia esculenta L. Via FTIR Spectroscopy. Guang Pu Xue Yu Guang Pu Fen Xi 2006, 26(7), 1242–1245.
  • Sun, S. Q.; Leung, H. W.; Yeung, H. W. A Rapid Method for Classification of Six Kinds Collocalia esculenta L. By Fourier Transform Infrared Spectroscopy. Chin. J. Anal. Chem. 2001, 29(5), 552–554.
  • Zainab, H.; Sarojini, J.; Nur Hulwani, I.; Othman, H.; Lee, B. B.; Kamaruddin, H. A Rapid Technique to Determine Purity of Edible Bird Nest. Adv. Environ. Biol. 2013, 7(12), 3758–3765.
  • Lin, J. R.; Dong, Y.; Zhou, H.; Lai, X. P. Identification of Edible Bird’s Nest with Electrophoresis. World Sci. Technol./Modern. Traditional Chin. Med. Mater. Med. 2006, 8(3), 30–32.
  • Yu-Qin, Y.; Liang, X.; Hua, W.; Hui-Xing, Z.; Xin-Fang, Z.; Bu-Sen, L. Determination of Edible Bird’s Nest & Its Products by Gas Chromatography. J. Chromatogr. Sci. 2000, 38(1), 27–32. DOI: 10.1093/chromsci/38.1.27.
  • Yang, M.; Cheung, S. H.; Li, S. C.; Cheung, H. Y. Establishment of a Holistic and Scientific Protocol for the Authentication and Quality Assurance of Edible Bird’s Nest. Food Chem. 2014, 151, 271–278.
  • Teo, P.; Ma, F.; Liu, D. Evaluation of Taurine by HPTLC Reveals the Mask of Adulterated Edible Bird’s Nest. J. Chem. 2013, 1–5. doi:10.1155/2013/325372.
  • Wu, Y.; Chen, Y.; Wang, B.; Bai, L.; Ge, Y.; Yuan, F. Application of SYBR Green PCR and 2DGE Methods to Authenticate Edible Bird’s Nest Food. Food Res. Int. 2010, 43(8), 2020–2026. DOI: 10.1016/j.foodres.2010.05.020.
  • Demirci, M. N.; Soon, J. M.; Wallace, C. A. Positioning Food Safety in Halal Assurance. Food Control. 2016, 70, 257–270. DOI: 10.1016/j.foodcont.2016.05.059.
  • Abdullah, M. S.; Rosman, A. S. B.; Mia, M. H. Halal Food and Sufism-Introduction of New Technology. J. Eng. Technol. 2017, 6(2), 842–852.
  • Hanisch, F. G.; Uhlenbruck, G. Structural Studies on O- and N-glycosidically Linked Carbohydrate Chains on Collocalia Mucin. Hoppe-Seyler’S Z. Physiol. Chem. 1984, 365(2), 119–128. DOI: 10.1515/bchm2.1984.365.1.119.
  • Wong, C. F.; Chan, G. K. L.; Zhang, M. L.; Yao, P.; Lin, H. Q.; Dong, T. T. X.; Li, G.; Lai, X. P.; Tsim, K. W. K. Characterization of Edible Bird’s Nest by Peptide Fingerprinting with Principal Component Analysis. Food Qual. Saf. 2017, 1(1), 83–92. DOI: 10.1093/fqs/fyx002.
  • Marin, F.; Luquet, G.; Marie, B.; Medakovic, D. Molluscan Shell Proteins: Primary Structure, Origin, and Evolution. Curr. Topics Dev. Biol. 2007, 80, 209–276.
  • Wieruszeski, J. M.; Michalski, J. C.; Montreuil, J.; Strecker, G.; Peter-Katalinic, J.; Egge, H.; Halbeek, H. V.; Mutsaers, J. H. G. M.; Vliegenthart, J. F. G. Structure of the Monosialyl Oligosaccharides Derived from Salivary Gland Mucin Glycoproteins of the Chinese Swiftlet (Genus Collocalia). J. Biol. Chem. 1987, 262(14), 6650–6657.
  • Yagi, H.; Yasukawa, N.; Yu, S. Y.; Guo, C. T.; Takahashi, N.; Takahashi, T.; Bukawa, W.; Suzuki, T.; Khoo, K. H.; Suzuki, Y.; et al. The Expression of Sialylated High-antennary N-glycans in Edible Bird’s Nest. Carbohydr. Res. 2008, 343(8), 1373–1377. DOI: 10.1016/j.carres.2008.03.031.
  • Oda, M.; Ohta, S.; Suga, T.; Aoki, T. Study on Food Components: The Structure of N-linked Asialo Carbohydrate from the Edible Bird’s Nest Built by Collocalia fuciphaga. J. Agric. Food Chem. 1998, 46(8), 3047–3053. DOI: 10.1021/jf980094k.
  • Herrero, M.; Cifuentes, A.; Ibañez, E. Sub-And Supercritical Fluid Extraction of Functional Ingredients from Different Natural Sources: Plants, Food-by-products, Algae and Microalgae: A Review. Food Chem. 2006, 98(1), 136–148. DOI: 10.1016/j.foodchem.2005.05.058.
  • Brink, H. R. B. T.; Huis In’t Veld, J. H. J. Selection of Strains for Probiotic Use. In Probiotics; Fuller, R., Ed.; Chapman & Hall: London, 1992; pp 209–224.
  • Najafian, L.; Babji, A. S. A Review of Fish-derived Antioxidant and Antimicrobial Peptides: Their Production, Assessment, and Applications. Peptides. 2014, 33, 178–185. DOI: 10.1016/j.peptides.2011.11.013.
  • Tahir, R.; Ellis, P. R.; Butterworth, P. J. The Relation of Physical Properties of Native Starch Granules to the Kinetics of Amylolysis Catalysed by Porcine Pancreatic α-amylase. Carbohydr. Polym. 2010, 81(1), 57–62. DOI: 10.1016/j.carbpol.2010.01.055.
  • Zainal Abidin, F.; Hui, C. K.; Luan, N. S.; Mohd Ramli, E. S.; Hun, L. T.; Abd Ghafar, N. Effects of Edible Bird’s Nest (EBN) on Cultured Rabbit Corneal Keratocytes. BMC Complement Alternate Med. 2011, 11, 94. DOI: 10.1186/1472-6882-11-94.
  • Kong, H.; Wong, K.; Lo, S. C. Identification of Peptides Released from Hot Water Insoluble Fraction of Edible Bird’s Nest under Simulated Gastro-intestinal Conditions. Food Res. J. 2016, 85, 19–25. DOI: 10.1016/j.foodres.2016.04.002.
  • Marfo, E. K.; Oke, O. L. Effect of Sodium Chloride, Calcium Chloride and Sodium Hydroxide on Denolix Regia Protein Solubility. Food Chem. 1989, 31(2), 117–127. DOI: 10.1016/0308-8146(89)90022-8.
  • Ragab, D. M.; Babiker, E. E.; El Tinay, A. H. Fractionation, Solubility and Functional Properties of Cowpea (Vigna unguiculata) Proteins as Affected by pH and/or Salt Concentration. Food Chem. 2004, 84, 207–212. DOI: 10.1016/S0308-8146(03)00203-6.
  • Bilgi, B.; Celik, S. Solubility and Emulsifying Properties of Barley Protein Concentrate. Eur. Food Res. Technol. 2004, 218(5), 437–441. DOI: 10.1007/s00217-004-0895-4.
  • Elicia, T. Y. M.; Nurfatin, M. H.; Farahniza, Z.; Norhasidah, S.; Etty Syarmila, I. K.; Babji, A. S. Effect of Enzymatic Hydrolysis on the Antioxidant Activity of Edible Bird Nest. 16th Food Innovation Asia Conference, Bangkok, Thailand, 2014.
  • Etty Syarmila, I. K.; Nurfatin, M. H.; Masitah, M.; Farahniza, Z.; Ayub, M. K.; Zalifah, M. K.; Babji, A. S. Natural Antioxidant and Antihypertensive Peptides from Edible Bird Nest Hydrolysates. 18th World Congress on Clinical Nutrition (WCCN) Agriculture, Food and Nutrition for Health and Wellness, Ubon Ratchathani, Thailand, 2014.
  • Nurfatin, M. H.; Etty Syarmila, I. K.; Nur‘Aliah, D.; Zalifah, M. K.; Babji, A. S.; Ayob, M. K. Effect of Enzymatic Hydrolysis on Angiotensin Converting Enzyme (ACE) Inhibitory Activity in Swiftlet Saliva. Int. Food Res. J. 2016, 23(1), 141–146.
  • Lahl, W. J.; Braun, S. D. Enzymatic Production of Protein Hydrolysates for Food Use. Food Technol. 1994, 48, 68–71.
  • Kim, S. K.; Jeon, Y. J.; Byun, H. G.; Park, P. J. Calcium Absorption Acceleration Effect on Phosphorylated and Nonphosphorylated Peptides from Hoki (Johnius belengeri) Frame. J. Korean Fisher. Soc. 1999, 32, 713–717.
  • Amiza, M. A.; Sai, J. Y.; Norizah, M. S. Optimization of Enzymatic Hydrolysis Conditions on Angiotensin Converting Enzyme (ACE) Inhibitory Activity from Edible Bird’s Nest. International Conference on Food Innovation, Bangkok, Thailand, 2014.
  • Ou, K.; Liu, Y.; Zhang, L.; Yang, X.; Huang, Z.; Robert Nout, M. J.; Liang, J. Effect of Neutrase, Alcalase, and Papain Hydrolysis of Whey Protein Concentrates on Iron Uptake by Caco-2 Cells. J. Agric. Food Chem. 2010, 58, 4894–4900. DOI: 10.1021/jf100055y.
  • Ghassem, M.; Arihara, K.; Salimeh, M.; Norrakiah, A. S.; Babji, A. S. Identification of Two Novel Antioxidant Peptides from Edible Bird Nest (Aerodramus fuciphagus) Protein Hydrolysate. Food Funct. 2017, 00, 1–7.
  • Reilly, J. M. Role of the Maillard, or “Protein-Sugar” Reaction in Highlight Yellowing of Albumen Photographic Prints. AIC Prepr. 1982, 60–169.
  • Lee, K. S. Effects of Particle Size and Double Boiling Time on the Antioxidant Activities of Bird Nest Soup (Collocalia fuciphaga). Undergraduate Thesis, Food Science Program, Universiti Kebangsaan Malaysia, 2014.
  • Babji, A. S.; Nurfatin, M. H.; Etty Syarmila, I. K.; Nurul Nadia, M.; Farahniza, Z.; Norhasidah, S. Research on Functional Properties and Product Development from Swiftlet Edible Bird Nest. INNOVA Food 2014 International Conference on Food Innovation, Penang, Malaysia, 2014.
  • Norhasidah, S.; Engku Hanisah, E. U.; Farahniza, Z.; Maaruf, A. G.; Abdul Salam, B. Antioxidative Properties of Edible Bird’s Nest Mincroparticulates Incorporated into Red Dates Drink. Edible Bird Nest Industry Conference, Putrajaya, Malaysia, 2014.
  • Masitah, M.; Farahniza, Z.; Abdul Salam, B. Effects of Spray Drying and Size Reduction of Edible Bird’s Nest on In-vitro Digestibility. Edible Bird Nest Industry Conference, Putrajaya, Malaysia, 2014.
  • Pintado, T.; Ruiz-Capillas, C.; Jiménez-Colmenero, F.; Carmona, P.; Herrero, A. M. Oil-in-water Emulsion Gels Stabilized with Chia (Salvia hispanica L.) and Cold Gelling Agents: Technological and Infrared Spectroscopic Characterization. Food Chem. 2015, 185, 470–478. DOI: 10.1016/j.foodchem.2015.04.024.
  • Maalej, H.; Hmidet, N.; Boisset, C.; Bayma, E.; Heyraud, A.; Nasri, M. Rheological and Emulsifying Properties of a Gel-like Exopolysaccharide Produced by Pseudomonas Stutzeri AS22. Food Hydrocolloids. 2016, 52, 634–647. DOI: 10.1016/j.foodhyd.2015.07.010.
  • Dickinson, E. Biopolymer-based Particles as Stabilizing Agents for Emulsions and Foams. Food Hydrocolloids. 2017, 68, 219–231. DOI: 10.1016/j.foodhyd.2016.06.024.
  • Sovrani, V.; de Jesus, L. I.; Simas-Tosin, F. F.; Smiderle, F. R.; Iacomini, M. Structural Characterization and Rheological Properties of a Gel-like β-d-glucan from Pholiota nameko. Carbohydr. Polym. 2017, 169, 1–8. DOI: 10.1016/j.carbpol.2017.03.093.
  • Zhang, M.; Wang, D.; Wang, J. The Effects of the Zhenzhu- Yanwo Extracts on Animal Function. Pharm. Biotechnol. 1994, 1, 49–51.
  • Martin, J. E.; Tanenbaum, S. W.; Flashner, M. A Facile Procedure for the Isolation of N-acetylneuramic Acid from Edible Bird’s-nest. Carbohydr. Res. 1977, 56, 423–425. DOI: 10.1016/S0008-6215(00)83368-6.
  • Pozsgay, V.; Jennings, H.; Kasper, D. L. 4,8-anhydro- Nacetylneuraminic Acid. Isolation from Edible Bird’s Nest and Structure Determination. Eur. J. Biochem. 1987, 162, 445–450. DOI: 10.1111/ejb.1987.162.issue-2.
  • Reuter, G.; Schauer, R.; Szeiki, C.; Kamerling, J. P.; Vliegenthart, J. F. A Detailed Study of the Periodate Oxidation of Sialic Acids in Glycoproteins. Glycoconj. J. 1989, 6, 35–44. DOI: 10.1007/BF01047888.
  • Kakehi, K.; Susami, A.; Taga, A.; Suzuki, S.; Honda, S. High Performance Capillary Electrophoresis of O-glycosidically Linked Sialic Acid-containing Oligosaccharides in Glycoproteins as Their Alditol Derivatives with Low-wavelength UV Monitoring. J. Chromatogr. A. 1994, 680, 209–215. DOI: 10.1016/0021-9673(94)80069-3.
  • Sillerud, L. O.; Prestegard, J. H.; Yu, R. K.; Konigsberg, W. H.; Schafer, D. E. Observation by 13C NMR of Interactions between Cholera Toxin and the Oligosaccharide of Ganglioside GM1. J. Biol. Chem. 1981, 256, 1094–1097.
  • Schultze, B.; Gross, H. J.; Brossmer, R.; Klenk, H. D.; Herrler, G. Hemagglutinating Encephalomyelitis Virus Attaches to N-acetyl-9-Oacetylneuraminic Acid-containing Receptors on Erythrocytes: Comparison with Bovine Coronavirus and Influenza C Virus. Virus Res. 1990, 16, 185–194. DOI: 10.1016/0168-1702(90)90022-4.
  • Guo, C. T.; Wong, C. H.; Kajimoto, T.; Miura, T.; Ida, Y.; Juneja, L. R.; Kim, M. J.; Masuda, H.; Suzuki, T.; Suzuki, Y. Synthetic Sialylphosphatidylethanolamine Derivatives Bind to Human Influenza A Viruses and Inhibit Viral Infection. Glycoconj. J. 1998, 15, 1099–1108. DOI: 10.1023/A:1006961912465.
  • Suzuki, T.; Portner, A.; Scroggs, R. A.; Uchikawa, M.; Koyama, N.; Matsuo, K.; Suzuki, Y.; Takimoto, T. Receptor Specificities of Human Respiroviruses. J. Virol. 2001, 75, 4604–4613. DOI: 10.1128/JVI.75.10.4604-4613.2001.
  • Matsukawa, N.; Matsumoto, M.; Bukawa, W.; Chiji, H.; Nakayama, K.; Hara, H.; Tsukahara, T. Improvement of Bone Strength and Dermal Thickness Due to Dietary Edible Bird’s Nest Extract in Ovariectomized Rats. Biosci. Biotechnol. Biochem. 2011, 75, 590–592. DOI: 10.1271/bbb.100705.
  • Sarbini, S. R.; Rastall, R. A. Prebiotics: Metabolism, Structure, and Function. Funct. Food Rev. 2011, 3(3), 93–106.
  • Daud, N. A.; Sarbini, S. R.; Babji, A. S.; Yusop, S. M.; Lim, S. J. Characterization of Edible Swiftlet’s Nest as a Prebiotic Ingredient Using a Simulated Colon Model. Ann. Microbiol. 2019, 69(12), 1–12.
  • Zou, T. B.; He, T. P.; Li, H. B.; Tang, H. W.; Xia, E. Q. The Structure-activity Relationship of the Antioxidant Peptides from Natural Proteins. Molecules 2016, 21(1), 72. DOI: 10.3390/molecules21010072.
  • Himaya, S. W.; Ryu, B.; Ngo, D. H.; Kim, S. K. Peptide Isolated from Japanese Flounder Skin Gelatin Protects against Cellular Oxidative Damage. J. Agric. Food Chem. 2012, 60, 9112–9119. DOI: 10.1021/jf302161m.
  • Chen, H. M.; Muramoto, K.; Yamauchi, F.; Fujimoto, K.; Nokihara, K. Antioxidative Properties of Histidine-containing Peptides Designed from Peptide Fragments Found in the Digests of a Soybean Protein. J. Agric. Food Chem. 1998, 46, 49–53. DOI: 10.1021/jf970649w.
  • Saito, K.; Jin, D. H.; Ogawa, T.; Muramoto, K.; Hatakeyama, E.; Yasuhara, T.; Nokihara, K. Antioxidative Properties of Tripeptide Libraries Prepared by the Combinatorial Chemistry. J. Agric. Food Chem. 2003, 51, 3668–3674. DOI: 10.1021/jf021191n.
  • Hu, Q.; Li, G.; Yao, H.; He, S.; Li, H.; Liu, S.; Wu, Y.; Lai, X. Edible Bird’s Nest Enhances Antioxidant Capacity and Increases Lifespan in Drosophila melanogaster. Cell. Mol. Biol. 2016, 62(4), 116–122.
  • Belović, M. M.; Ilić, N. M.; Tepić, A. N.; Šumić, Z. M. Selection of Conditions for Angiotensin–Converting Enzyme Inhibition Assay: Influence of Sample Preparation and Buffer. Food Feed Res. 2013, 40(1), 11–15.
  • Jao, C. L.; Huang, S. L.; Hsu, K. C. Review Article: Angiotensin I-converting Enzyme Inhibitory Peptides: Inhibition Mode, Bioavailability, and Antihypertensive Effects. Biomed. 2012, 2, 130–136. DOI: 10.1016/j.biomed.2012.06.005.
  • Daskaya-Dikmen, C.; Yucetepe, A.; Karbancioglu-Guler, F.; Daskaya, H.; Ozcelik, B. Angiotensin-I-converting Enzyme (Ace)-inhibitory Peptides from Plants. Nutr. 2017, 9(4), 316.
  • Azjeemah Bee, S. H. Kesan penambahan sarang burung walit terhadap aktiviti antioksidan coklat. MSc. Thesis, Food Science Program, Universiti Kebangsaan Malaysia, 2014.
  • Nur Amalina, A. R. Ciri-ciri fizikokimia, aktiviti antioksidan dan penerimaan pengguna terhadap aiskrim yang diperkaya dengan sarang burung walit. MSc. Thesis, Food Science Program, Universiti Kebangsaan Malaysia, 2015.
  • Mohd Khan, A.; Etty Syarmila, I. K.; Nurfatin, M. H.; Farahniza, Z.; Engku Hanisah, E. U.; Norhasidah, S.; Masitah, E. H.; Masturah, A. K.; Nurul’Ain, M.; Maaruf, A. G.; et al. Antioxidative Properties of Ready-to-drink Products Incorporated with Enzymatically Hydrolysed Edible Bird Nest. Edible Bird Nest Industry Conference, Putrajaya, Malaysia, 2014.
  • Tan, L. Y. Effects of Cooking Methods on Angiotensin Converting Enzyme Inhibition Activity of Edible Bird Nest Blended in Rozelle and Aloe Vera Juices. MSc. Thesis, Food Science Program, Universiti Kebangsaan Malaysia, 2016.
  • Ravisangkar, R.; Nurfatin, M. H.; Etty Syamila, I. K.; Masitah, M.; Norhasidah, S.; Babji, A. S. Effects of Adding Edible Bird Microparticulates on the Oxidation of Chicken Burger. Malays. J. Anim. Sci. 2014, 17(2), 55–72.
  • Gençcelep, H.; Anil, M.; Saricaoğlu, F. T.; Ağar, B. The Effects of Different Modified Starches on Some Physical and Texture Properties of Meat Emulsion. GIDA/J. Food. 2017, 42(6), 773–786. DOI: 10.15237/gida.GD17038.
  • Han, M.; Bertram, H. C. Designing Healthier Comminuted Meat Products: Effect of Dietary Fibers on Water Distribution and Texture of a Fat-Reduced Meat Model System. Meat Sci. 2017, 133, 159–165. DOI: 10.1016/j.meatsci.2017.07.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.