261
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Protective Effect of Indian Herbs and Physical Exercise on Osteoporosis: A Review

ORCID Icon, &

References

  • Kaushal, N.; Vohora, D.; Jalali, K. R.; Jha, S. Prevalence of Osteoporosis and Osteopenia in an Apparently Healthy Indian Population - A Cross-Sectional Retrospective Study. Osteoporos Sarcopenia. 2018, 4(2), 53–60. DOI: 10.1016/j.afos.2018.04.002.
  • Banu, J.; Varela, E.; Bahadur, A. N.; Soomro, R.; Kazi, N.; Fernandes, G. Inhibition of Bone Loss by Cissus Quadrangularis in Mice: A Preliminary Report. J Osteoporos. 2012, 2012, 1–10. DOI: 10.1155/2012/101206.
  • Pandya, K.; Solanki, B.; Maniar, K.; Gurav, N.; Bhatt, S. Bonton Active Granules a Bettere Approach against the Silent Disease-osteoporosis. Int J Drug Dev Res. 2011, 3, 9–25.
  • Seino, Y.; Ishida, H. Diabetic Osteopenia: Pathophysiology and Clinical Aspects. Diabetes Metab Rev. 1995, 11, 21–35. DOI: 10.1002/dmr.5610110103.
  • Verhaeghe, J.; Suiker, A. M.; Nyomba, B. L.; Visser, W. J.; Einhorn, T. A.; Dequeker, J.; Bouillon, R. Bone Mineral Homeostasis in Spontaneously Diabetic BB Rats. Impaired Bone Turnover and Decreased Osteocalcin Synthesis. Endocrinology. 1989, 124, 573–582. DOI: 10.1210/endo-124-2-573.
  • Shubhashree, M. N.; Raghavendra, N.; Doddamani, S. H.; Bhat, S. An Updated Review of Single Herbal Drugs in the Management of Osteoporosis. Int J Complementary Altern. Med. 2018, 11(2), 82–86. DOI: 10.15406/ijcam.2018.11.00372.
  • Ji, M. X.; Yu, Q. Primary Osteoporosis in Postmenopausal Women. Chronic Dis Transl Med. 2015, 1(1), 9–13. DOI: 10.1016/j.cdtm.2015.02.006.
  • Shirwaikar, A.; Khan, S.; Kamariya, Y. H.; Patel, B. D.; Gajera, F. P. Medicinal Plants for the Management of Post Menopausal Osteoporosis/: A Review. Open Bone J. 2010, 2(1), 1–13. DOI: 10.2174/1876525401002010001.
  • Kristle, N. T.; Janette, D. L.; Wan, V. C.; Cameron, M.; Alaina, G. A.; Jenny, K. N.; Van, K.; Hyun, D. Osteoporosis: A Review of Treatment Options. Pharm. Ther. 2018, 43(2), 92–104.
  • Castrogiovanni, P.; Trovato, F. M.; Szychlinska, M. A.; Nsir, H.; Imbesi, R.; Musumeci, G. The Importance of Physical Activity in Osteoporosis. From the Molecular Pathways to the Clinical Evidence. Histol. Histopathol. 2016, 31(11), 1183–1194. DOI: 10.14670/HH-11-793.
  • Musumeci, G.; Mobasheri, A.; Trovato, F. M.; Szychlinska, M. A.; Graziano, A. C.; Lo Furno, D.; Avola, R.; Mangano, S.; Giuffrida, R.; Cardile, R.; ; . Biosynthesis of Collagen I, II, RUNX2 and Lubricin at Different Time Points of Chondrogenic Differentiation in a 3D in Vitro Model of Human Mesenchymal Stem Cells Derived from Adipose Tissue. Acta. Histochem. 2014, 116, 1407–1417. doi:10.1016/j.acthis.2014.09.008.
  • Holick, M. F.;. Resurrection of Vitamin D Deficiency and Rickets. J. Clin. Invest. 2006, 116, 2062–2072. DOI: 10.1172/JCI29449.
  • Musumeci, G.; Loreto, C.; Leonardi, R.; Castorina, S.; Giunta, S.; Carnazza, M. L.; Trovato, F. M.; Pichler, K.; Weinberg, A.; M.; The Effects of Physical Activity on Apoptosis and Lubricin Expression in Articular Cartilage in Rats with Glucocorticoid-induced Osteoporosis. Histol. Histopathol. 2013, 28(9), 1185–1196. DOI:10.1007/s00774-012-0414-9.
  • Bonucci, E.; Ballanti, P. Osteoporosis-bone Remodeling and Animal Models. Toxicol. Pathol. 2014, 42, 957–969. DOI: 10.1177/0192623313512428.
  • Trovato, F. M.; Aiello, F. C.; Larocca, L.; Taylor-Robinson, S. D. The Role of Physical Activity and Nutrition in the Sarcopenia of Cirrhosis. J. Funct. Morphol. Kinesiol. 2016, 1, 118–125. DOI: 10.3390/jfmk1010118.
  • Rizzoli, R.;. Nutritional Aspects of Bone Health. Best Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 795–808. DOI: 10.1016/j.beem.2014.08.003.
  • Pichler, K.; Loreto, C.; Leonardi, R.; Reuber, T.; Weinberg, A. M.; Musumeci, G. RANKL Is Downregulated in Bone Cells by Physical Activity (Treadmill and Vibration Stimulation Training) in Rat with Glucocorticoid-induced Osteoporosis. Histol. Histopathol. 2013, 28, 1185–1196. DOI: 10.14670/HH-28.1185.
  • Shahinian, V. B.; Kuo, Y. F.; Freeman, J. L.; Goodwin, J. S. Risk of Fracture after Androgen Deprivation for Prostate Cancer. N. Engl. J. Med. 2005, 352:, 154–164. DOI: 10.1056/NEJMoa041943.
  • Tannenbaum, C.; Clark, J.; Schwartzman, K.; Wallenstein, S.; Lapinski, R.; Meier, D.; Luckey, M. Yield of Laboratory Testing to Identify Secondary Contributors to Osteoporosis in Otherwise Healthy Women. J Clin Endo Metab. 2002, 87(10), 4431–4437. DOI: 10.1210/jc.2002-020275.
  • Lerner, U. H.;. Bone Remodeling in Post-menopausal Osteoporosis. J. Dent. Res. 2006, 85, 584–595. DOI: 10.1177/154405910608500703.
  • Musumeci, G.; Loreto, C.; Clementi, G.; Fiore, C. E.; Martinez, G. An in Vivo Experimental Study on Osteopenia in Diabetic Rats. Acta Histochem. 2011, 113(6), 619–625. DOI: 10.1016/j.acthis.2010.07.002.
  • Srinivasaiah, S.; Musumeci, G.; Mohan, T.; Castrogiovanni, P.; Absenger-Novak, M.; Zefferer, U.; Mostofi, S.; Rad, E. B.; Grün, N. G.; Weinberg, A. M.; et al. A 300µm Organotypic Bone Slice Culture Model for Temporal Investigation of Endochondral Osteogenesis. Tissue Eng. Part C Methods. 2019, 25(4), 197–212. DOI: 10.1089/ten.TEC.2018.0368.
  • Yuan, R.; Ma, S.; Zhu, X.; Li, J.; Liang, Y.; Liu, T.; Zhu, Y.; Zhang, B.; Tan, S.; Guo, H.; et al. Core Level Regulatory Network of Osteoblast as Molecular Mechanism for Osteoporosis and Treatment. Oncotarget. 2016, 7(4), 3692–3701. DOI: 10.18632/oncotarget.6923.
  • McNamara, L. M.;. Perspective on Post-menopausal Osteoporosis: Establishing an Interdisciplinary Understanding of the Sequence of Events from the Molecular Level to Whole Bone Fractures. J. R. Soc. Interface. 2010, 7, 353–372. DOI: 10.1098/rsif.2009.0282.
  • Siddiqua, A.; Mittapally, S. A. Review on Cissus Quadrangularis. Pharma Innovation J. 2017, 6(7), 329–334.
  • Mehta, M.; Kaur, N.; Bhutani, K. Determination of Marker Constituents from Cissus Quadrangularis Linn and Their Quantitation by HPTLC and HPLC. Phytochem. Anal. 2001, 12(9), 91–95. DOI: 10.1002/pca.569.
  • Mag, P.; Jainu, M.; Vijaimohan, K.; Kannan, K. Cissus Quadrangularis L. Extract Attenuates Chronic Ulcer by Possible Involvement of Polyamines and Proliferating Cell Nuclear Antigen. Pharmaco Mag. 2010, 6(23), 225–233. DOI: 10.4103/0973-1296.66941.
  • Kumar, A.; Lingadurai, S.; Jain, A.; Barman, N. R. Erythrina Variegata Linn: A Review on Morphology, Phytochemistry, and Pharmacological Aspects. Pharmaco Rev. 2010, 4(8), 147–152. DOI: 10.4103/0973-7847.70908.
  • Kumari, P.; Kumari, C.; Kumari, C.; Kumari, C.; Kumari, C.; Kumari, C.; Kumari, C. “Erythrina Variegata Linn. “The Coral Tree: A Review. J Med Sci Clin Res. 2017, 5(8), 26705–26715. DOI: 10.18535/jmscr/v5i8.119.
  • Yao, X.; Wong, M.; Lai, W.-P.; Chen, B.; Chow, H.-K.; Wu, C.-F.; Wang, N.-L.; Yao, X.-S.; Wong, M.-S. Anti-osteoporotic Effect of Erythrina Variegata L. In Ovariectomized Rats. J. Ethnopharmacol. 2007, 109(1), 165–169. DOI: 10.1016/j.jep.2006.07.005.
  • Zhang, Y.; Li, Q.; Li, X.; Wan, H. Y.; Wong, M. S. Erythrina Variegata Extract Exerts Osteoprotective Effects by Suppression of the Process of Bone Resorption. Br. J. Nutr. 2010, 104(7), 965–971. DOI: 10.1017/S0007114510001789.
  • Upadhyay, P.; Mk, Y.; Mishra, S.; Sharma, P.; Purohit, S.; Asia, S. Moringa Oleifera/ : A Review of the Medical Evidence for Its Nutritional and Pharmacological Properties. Int. J. Life. Sci. Scienti. Res. 2015, 5(2), 12–16.
  • Patel, C.; Rangrez, A.; Parikh, P. The Anti-osteoporotic Effect of Moringa Oliefera on Osteoblastic Cells: SaOS. ISOR J of Phar and Bio Sci. 2013, 5(2), 10–17.
  • Habib, M. K.; Maalem, H. Effect of Moringa Leaves and Seeds on Osteoporosis in Rats. J. Food and Dairy Sci. 2018, 2018, 129–135. DOI: 10.21608/jfds.2018.77771.
  • Al-snafi, A. E.;. Anticancer Effects of Arabian Medicinal Plants (Part 1) - A Review. IOSR J. Pharm. 2017, 7(4), 63–102.
  • Mawa, S.; Husain, K.; Jantan, I. Ficus Carica L. (Moraceae): Phytochemistry, Traditional Uses and Biological Activities. Hindawi. 2013. DOI: 10.1155/2013/974256.
  • Schwarz, H. P.; Dorner, F.; Turecek, P. L.; Bioscience, B. Activation and Inactivation of Human Factor X by Proteases Derived from Ficus Carica. Br J Haematol. 2002, 119(4), 1042–1051. DOI: 10.1046/j.1365-2141.2002.03954.x.
  • Gilani, A. H.; Mehmood, M. H.; Janbaz, K. H.; Khan, A. U.; Saeed, S. A. Ethnopharmacological Studies on Antispasmodic and Antiplatelet Activities of Ficus Carica. J. Ethnopharmacol. 2008, 119(1), 1–5. DOI: 10.1016/j.jep.2008.05.040.
  • Lydia, D. E.Wonders of Figs. In Summaries and Short Reviews.2009, http://www.shvoong.com/medicine-and-health/nutrition/1866223-wonders-figs
  • Choi, B. Y.; Eun, J. S.; Nepal, M.; Lee, M. K.; Bae, T. S.; Kim, B. I.; Soh, Y. J. Ethyl Docosahexaenoate and Its Acidic Form Increase Bone Formation by Induction of Osteoblast Differentiation and Inhibition of Osteoclastogenesis. Biomolecules Ther. 2011, 19(1), 70–76. DOI: 10.4062/biomolther.2011.19.1.070.
  • Raggatt, L. J.; Partridge, N. C. Cellular and Molecular Mechanisms of Bone Remodeling. J. Biol. Chem. 2010, 285(33), 25103–25108. DOI: 10.1074/jbc.R109.041087.
  • Boyce, B. F.; Xing, L. Functions of RANKL/RANK/OPG in Bone Modeling and Remodelling. Arch. Biochem. Biophys. 2008, 473(2), 139–146. DOI: 10.1016/j.abb.2008.03.018.
  • Uddin, Q.; Samiulla, L.; Singh, V. K.; Jamil, S. S. Phytochemical and Pharmacological Profile of Withania Somnifera Dunal/: A Review. J Appl Pharm Sci. 2012, 2(1), 170–175.
  • Ahlawat, P.; Khajuria, A.; Bhagwat, D. Therapeutic Benefits of Withania Somnifera: An Exhaustive Review. Intr J Pharma Chem Sci. 2012, 1(2), 491–496.
  • Khedgikar, V.; Kushwaha, P.; Gautam, J.; Verma, A.; Changkija, B.; Kumar, A.; Sharma, S.; Nagar, G. K.; Singh, D.; Trivedi, P. K.; et al. A: A Proteasomal Inhibitor Promotes Healing after Injury and Exerts Anabolic Effect on Osteoporotic Bone. Cell Death Dis. 2013, 4(8), 778. DOI: 10.1038/cddis.2013.294.
  • Weber-Rajek, M.; Mieszkowski, J.; Niespodziński, B.; Ciechanowska, K. Whole-body Vibration Exercise in Postmenopausal Osteoporosis. Prz. Menopauzalny. 2015, 14, 41–47. DOI: 10.5114/pm.2015.48679.
  • Lautenschlager, N. T.; Almeida, O. P. Physical Activity and Cognition in Old Age. Curr. Opin. Psychiatry. 2006, 19, 190–193. DOI: 10.1097/01.yco.0000214347.38787.37.
  • Kirchengast, S.;. Bone Loss and Physical Activity - A Bio Anthropological Perspective. J Osteopor Phys Act. 2015, 4(1), 1–8. DOI: 10.4172/2329-9509.1000164.
  • Musumeci, G.; Castrogiovanni, P.; Trovato, F. M.; Imbesi, R.; Giunta, S.; Szychlinska, M. A.; Loreto, C.; Castorina, S.; Mobasheri, A. Moderate Physical Activity Ameliorates Cartilage Degeneration in A Rat Model of Aging: A Study on Lubricin Expression. Scand. J. Med. Sci. Sports. 2015, 25, 222–230. DOI: 10.1111/sms.12290.
  • McMillan, L. B.; Zengin, A.; Ebeling, P. R.; Scott, D. Prescribing Physical Activity for the Prevention and Treatment of Osteoporosis in Older Adults. Healthcare. 2017, 5, 1–15. DOI: 10.3390/healthcare5040085.
  • Turner, C. H.; Pavalko, F. M. Mechanotransduction and Functional Response of the Skeleton to Physical Stress: The Mechanisms and Mechanics of Bone Adaptation. J. Orthop. Sci. 1998, 3, 346–355. DOI: 10.1007/s007760050064.
  • Scott, J. P.; Sale, C.; Greeves, J. P.; Casey, A.; Dutton, J.; Fraser, W. D. The Role of Exercise Intensity in the Bone Metabolic Response to an Acute Bout of Weight-bearing Exercise. J. Appl. Physiol. 2014, 110, 423–432. DOI: 10.1152/japplphysiol.00764.2010.
  • Erickson, C. R.; Vukovich, M. D. Osteogenic Index and Changes in Bone Markers during a Jump Training Program: A Pilot Study. Med. Sci. Sports Exerc. 2010, 42, 1485–1492. DOI: 10.1249/MSS.0b013e3181d0fa7a.
  • Lester, M. E.; Urso, M. L.; Evans, R. K.; Pierce, J. R.; Spiering, B. A.; Maresh, C. M.; Hatfield, D. L.; Kraemer, W. J.; Nindl, B. C. Influence of Exercise Mode and Osteogenic Index on Bone Biomarker Responses during Short-term Physical Training. Bone. 2009, 45, 768–776. DOI: 10.1016/j.bone.2009.06.001.
  • Marędziak, M.; Śmieszek, A.; Chrząstek, K.; Basinska, K.; Marycz, K. Physical Activity Increases the Total Number of Bone-marrowderived Mesenchymal Stem Cells, Enhances Their Osteogenic Potential, and Inhibits Their Adipogenic Properties. Stem Cells Int. 2015, 379093. doi:10.1155/2015/379093.
  • Yuan, Y.; Chen, X.; Zhang, L.; Wu, J.; Guo, J.; Zou, D.; Chen, B.; Sun, Z.; Shen, C.; Zou, J. The Roles of Exercise in Bone Remodeling and in Prevention and Treatment of Osteoporosis. Prog. Biophys. Mol. Biol. 2015, 122(2), 122–130. DOI: 10.1016/j.pbiomolbio.2015.11.005.
  • Menuki, K.; Mori, T.; Sakai, A.; Sakuma, M.; Okimoto, N.; Shimizu, Y.; Kunugita, N.; Nakamura, T. Climbing Exercise Enhances Osteoblast Differentiation and Inhibits Adipogenic Differentiation with High Expression of PTH/PTHrP Receptor in Bone Marrow Cells. Bone. 2008, 43(3), 613–620. DOI: 10.1016/j.bone.2008.04.022.
  • Santos, R. V.; Viana, V. A.; Boscolo, R. A.; Marques, V. G.; Santana, M. G.; Lira, F. S.; Tufik, S. ;.; De Mello, M. T. Moderate Exercise Training Modulates Cytokine Profile and Sleep in Elderly People. Cytokine. 2012, 60(3), 731–735. DOI: 10.1016/j.cyto.2012.07.028.
  • Bergström, I.; Parini, P.; Gustafsson, S. A.; Andersson, G.; Brinck, J. Physical Training Increases Osteoprotegerin in Postmenopausal Women. J. Bone Miner. Metab. 2012, 30(2), 202–207. DOI: 10.1007/s00774-011-0304-6.
  • Notomi, T.; Karasaki, I.; Okazaki, Y.; Okimoto, N.; Kato, Y.; Ohura, K.; Noda, M.; Nakamura, T.; Suzuki, M. Insulinogenic Sucrose+amino Acid Mixture Ingestion Immediately after Resistance Exercise Has an Anabolic Effect on Bone Compared with Noninsulinogenic Fructose+amino Acid Mixture in Growing Rats. Bone. 2014, 65, 42–48. DOI: 10.1016/j.bone.2014.05.002.
  • Chien, M. Y.; Wu, Y. T.; Hsu, A. T.; Yang, R. S.; La, I. J. S. Efficacy of a 24-week Aerobic Exercise Program for Osteopenic Postmenopausal Women. Calcif. Tissue Int. 2000, 67(6), 443–448. DOI: 10.1007/s002230001180.
  • Dalsky, G. P.; Stocke, K. S.; Ehsani, A. A.; Slatopolsky, E.; Lee, W. C.; Birge, S. J.; Stocke, K. S.; Ehsani, A. A.; Slatopolsky, E.; Lee, W. C.; et al. Weight-bearing Exercise Training and Lumbar Bone Mineral Content in Postmenopausal Women. Ann. Intern. Med. 1988, 108(6), 24–28. DOI: 10.7326/0003-4819-108-6-824.
  • Mobasheri, A.; Matta, C.; Zákány, R.; Musumeci, G. Chondrosenescence: Definition, Hallmarks and Potential Role in the Pathogenesis of Osteoarthritis. Maturitas. 2015, 80(3), 237–244. DOI: 10.1016/j.maturitas.2014.12.003.
  • Bocalini, D. S.; Serra, A. J.; Dos Santos, L.; Murad, N.; Levy, R. FStrength Training Preserves the Bone Mineral Density of Postmenopausal Women without Hormone Replacement Therapy. J. Aging Health. 2009, 21(3), 519–527. DOI: 10.1177/0898264309332839.
  • De Matos, O.; Lopes Da Silva, D. J.; Martinez De Oliveira, J.; CasteloBranco, C. Effect of Specific Exercise Training on Bone Mineral Density in Women with Postmenopausal Osteopenia or Osteoporosis. Gynecol. Endocrinol. 2009, 25(9), 616–620. DOI: 10.1080/09513590903015593.
  • Marques, E. A.; Mota, J.; Machado, L.; Sousa, F.; Coelho, M.; Moreira, P.; Carvalho, J. Multicomponent Training Program with Weight-bearing Exercises Elicits Favorable Bone Density, Muscle Strength, and Balance Adaptations in Older Women. Calcif. Tissue Int. 2011, 88(2), 117–129. DOI: 10.1007/s00223-010-9437-1.
  • Villareal, D. T.; Binder, E. F.; Yarasheski, K. E.; Williams, D. B.; Brown, M.; Sinacore, D. R.; Kohrt, W. M. Effects of Exercise Training Added to Ongoing Hormone Replacement Therapy on Bone Mineral Density in Frail Elderly Women. J. Am. Geriatr. Soc. 2003, 51(7), 985–990. DOI: 10.1046/j.1365-2389.2003.51312.x.
  • Karinkanta, S.; Heinonen, A.; Sievänen, H.; Uusi-Rasi, K.; Pasanen, M.; Ojala, K.; Fogelholm, M.; Kannus, P. A Multi-component Exercise Regimen to Prevent Functional Decline and Bone Fragility in Home-dwelling Elderly Women: Randomized, Controlled Trial. Osteoporos. Int. 2007, 18(4), 453–462. DOI: 10.1007/s00198-006-0256-1.
  • Runge, M.; Rehfeld, G.; Resnicek, E. Balance Training and Exercise in Geriatric Patients. J. Musculoskelet. Neuronal Interact. 2000, 1(1), 61–65.
  • Musumeci, G.;. The Use of Vibration as Physical Exercise and Therapy. J. Funct. Morphol. Kinesiol. 2017, 2(2), 17. DOI: 10.3390/jfmk2020017.
  • Iwamoto, J.; Takeda, T.; Sato, Y.; Uzawa, M. Effect of Wholebody Vibration Exercise on Lumbar Bone Mineral Density, Bone Turnover, and Chronic Back Pain in Post-menopausal Osteoporotic Women Treated with Alendronate. Aging Clin. Exp. Res. 2005, 17(2), 157–163. DOI: 10.1007/BF03324589.
  • Iwamoto, J.; Sato, Y.; Takeda, T.; Matsumoto, H. Whole Body Vibration Exercise Improves Body Balance and Walking Velocity in Postmenopausal Osteoporotic Women Treated with Alendronate: Galileo and Alendronate Intervention Trail (GAIT). J. Musculoskelet. Neuronal Interact. 2012, 12(3), 136–143.
  • Ruan, X. Y.; Jin, F. Y.; Liu, Y. L.; Peng, Z. L.; Sun, Y. G. Effects of Vibration Therapy on Bone Mineral Density in Postmenopausal Women with Osteoporosis. Chin. Med. J. (Engl. 2008, 121(13), 1155–1158. DOI: 10.1097/00029330-200807010-00001.
  • Layne, J. E.; Nelson, M. E. The Effects of Progressive Resistance Training on Bone Density: A Review. Med. Sci. Sports Exerc. 1999, 31(1), 25–30. DOI: 10.1097/00005768-199901000-00006.
  • Suominen, H.; Rahkila, P. Bone Mineral Density of the Calcaneus in 70-to 81-year-old Male Athletes and a Population Med. Sci. Sport Exerc Sample. 1991, 23, 1227–1233.
  • Karlsson, M. K.; Johnell, O.; Obrant, K. J. Bone Mineral Density in Weight Lifters. Calcif. Tissue Int. 1993, 52(3), 212–215. DOI: 10.1007/BF00298721.
  • Krahl, H.; Michaelis, U.; Pieper, H.-G.; Quack, G.; Montag, M. Stimulation of Bone Growth through Sports. Am. J. Sports Med. 1994, 22(6), 751–757. DOI: 10.1177/036354659402200605.
  • Kukuljan, S.; Nowson, C. A.; Bass, S. L.; Sanders, K. M.; Nicholson, G. C.; Seibel, M. J.; Salmon, J.; Daly, R. M. Effects of A Multi-component Exercise Program and calcium-vitamin-D3-fortified Milk on Bone Mineral Density in Older Men: A Randomised Control Trial. Osteoporos. Int. 2009, 20(7), 1241–1251. DOI: 10.1007/s00198-008-0776-y.
  • Nikander, R.; Sievänen, H.; Heinonen, A.; Daly, R. M.; Uusi-Rasi, K.; Kannus, P. Targeted Exercise against Osteoporosis: A Systematic Review and Meta-analysis for Optimising Bone Strength Throughout Life. BMC Med. 2010, 8(1), 47. DOI: 10.1186/1741-7015-8-47.
  • Langsetmo, L.; Hitchcock, C. L.; Kingwell, E. J.; Davison, K. S.; Berger, C.; Forsmo, S.; Zhou, W.; Kreiger, N.; Prior, J. C. Physical Activity, Body Mass Index and Bone Mineral Density-associations in a Prospective Population-based Cohort of Women and Men: The Canadian Multicentre Osteoporosis Study (Camos). Bone. 2012, 50(1), 401–408. DOI: 10.1016/j.bone.2011.11.009.
  • Feskanich, D.;. Walking and Leisure-Time Activity and Risk of Hip Fracture in Postmenopausal Women. JAMA. 2002, 288(18), 2300. DOI: 10.1001/jama.288.18.2300.
  • Foley, S.; Quinn, S.; Jones, G. Pedometer Determined Ambulatory Activity and Bone Mass: A Population-based Longitudinal Study in Older Adults. Osteoporos. Int. 2010, 21(11), 1809–1816. DOI: 10.1007/s00198-009-1137-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.