824
Views
7
CrossRef citations to date
0
Altmetric
Review

In-vitro Digestibility Methods and Factors Affecting Minerals Bioavailability: A Review

, , , &

References

  • Nosratpour, M.; Jafari, S. M. Bioavailability of Minerals (Ca, Mg, Zn, K, Mn, Se) in Food Products. 2019, 7.
  • Gharibzahedi, S. M. T.; Jafari, S. M. The Importance of Minerals in Human Nutrition: Bioavailability, Food Fortification, Processing Effects and Nanoencapsulation. Trends Food Sci. Technol. 2017, 62, 119–132. DOI: 10.1016/j.tifs.2017.02.017.
  • De-Regil, L.; Suchdev, G.; Walleser, S.; Peña-Rosas, S. Home Fortification of Foods with Multiple Micronutrient Powders for Health and Nutrition in Children under Two Years of Age (Review). Evid.-Based Child Health. 2013, 8(1), 112–201. DOI: 10.1002/ebch.1895.
  • Das, J. K.; Salam, R. A.; Kumar, R.; Bhutta, Z. A. Micronutrient Fortification of Food and Its Impact on Woman and Child Health: A Systematic Review. Syst. Rev. 2013, 2(1), 67. DOI: 10.1186/2046-4053-2-67.
  • Bailey, R.; West, K.; Black, R. The Epidemiology of Global Micronutrient Deficiencies. Ann. Nutr. Metab. 2015, 66(2), 22–33. DOI: 10.1159/000371618.
  • Baye, K.; Guyot, J.; Icard-Verniere, C.; Mouquet-Rivier, C. Nutrient Intakes from Complementary Foods Consumed by Young Children (Aged 12-23 Months) from North Wollo, Northern Ethiopia: The Need for Agro-ecologically Adapted Interventions. Public Health Nutrit. 2013, (16), 1741–1750.
  • FAO; IFAD;. UNICEF the State of Food Security and Nutrition in the World. Building Climate Resilience for Food Security and Nutrition, Rome: FAO, 2018; pp2018.
  • Jafari, S. M.; McClements, D. J. Nanotechnology Approaches for Increasing Nutrient Bioavailability. Adv. Food Nutr. Res. 2017, 81, 1–30. DOI: 10.1016/bs.afnr.2016.12.008.
  • Marze, S.;. Bioavailability of Nutrients and Micronutrients: Advances in Modeling and in Vitro Approaches. Annu. Rev. Food Sci. Technol. 2017, 8(1), 35–55. DOI: 10.1146/annurev-food-030216-030055.
  • Quintaes, K.; Barberá, R.; Iron, C. A. Bioavailability in Iron Fortified Cereal Foods: The Contribution of in Vitro Studies. Crit. Rev. Food Sci. 2015, 1–64. DOI: 10.1080/10408398.2013.866543.
  • Al Hasan, S. M.; Hassan, M.; Saha, S.; Islam, M.; Billah, M.; Islam, S. Dietary Phytate Intake Inhibits the Bioavailability of Iron and Calcium in the Diets of Pregnant Women in Rural Bangladesh: A Cross-sectional Study. BMC Nutr. 2016, 2(1), 24. DOI: 10.1186/s40795-016-0064-8.
  • Gibson, R. S.; Perlas, L.; Hotz, C. Improving the Bioavailability of Nutrients in Plant Foods at the Household Level. Proc. Nutr. Soc. 2006, 65(2), 160–168. DOI: 10.1079/PNS2006489.
  • Hemalatha, S.; Platel, K.; Srinivasan, K. Zinc and Iron Contents and Their Bioaccessibility in Cereals and Pulses Consumed in India. Food Chem. 2007, 102(4), 1328–1336. DOI: 10.1016/j.foodchem.2006.07.015.
  • Schönfeldt, H. C.; Pretorius, B.; Hall, N. Bioavailability of Nutrients, Caballero, B.; Finglas, P.; F Toldrá, F; Ed(s).; The Encyclopedia of Food and Health, Elsevier, 2016; Vol. 1, pp401–406. 10.1016/B978-0-12-384947-2.00068-4.
  • Afify, A. E.-M.-M.; El-Beltagi, H. S.; El-Salam, S. M. A.; Omran, A. A. Bioavailability of Iron, Zinc, Phytate and Phytase Activity during Soaking and Germination of White Sorghum Varieties. PloS One. 2011, 6(10), 7. DOI: 10.1371/journal.pone.0025512.
  • Amalraj, A.; Pius, A. Bioavailability of Calcium and Its Absorption Inhibitors in Raw and Cooked Green Leafy Vegetables Commonly Consumed in India–An in Vitro Study. Food Chem. 2015, 170, 430–436. DOI: 10.1016/j.foodchem.2014.08.031.
  • Da Silva, F. L.; De Lima, J. P.; Melo, L. S.; Da Silva, Y. S.; Gouveia, S. T.; Lopes, G. S.; Matos, W. O. Comparison between Boiling and Vacuum Cooking (Sous-vide) in the Bioaccessibility of Minerals in Bovine Liver Samples. Food Res. Int. 2017, 100, 566–571. DOI: 10.1016/j.foodres.2017.07.054.
  • Hemalatha, S.; Platel, K.; Srinivasan, K. Influence of Heat Processing on the Bioaccessibility of Zinc and Iron from Cereals and Pulses Consumed in India. J. Trace Elem. Med. Biol. 2007, 21(1), 1–7. DOI: 10.1016/j.jtemb.2006.10.002.
  • Menezes, E. A.; Oliveira, A. F.; França, C. J.; Souza, G. B.; Nogueira, A. R. A. Bioaccessibility of Ca, Cu, Fe, Mg, Zn, and Crude Protein in Beef, Pork and Chicken after Thermal Processing. Food Chem. 2018, 240, 75–83. DOI: 10.1016/j.foodchem.2017.07.090.
  • Njoumi, S.; Bellagha, S.; Icard-Vernière, C.; Picq, C.; Amiot, M. J.; Mouquet-Rivier, C. Effects of Cooking and Food Matrix on Estimated Mineral Bioavailability in Mloukhiya, a Mediterranean Dish Based on Jute Leaves and Meat. Food Res. Int. 2018, 105, 233–240. DOI: 10.1016/j.foodres.2017.11.020.
  • Seiquer, I.; Delgado-Andrade, C.; Haro, A.; Navarro, M. Assessing the Effects of Severe Heat Treatment of Milk on Calcium Bioavailability: In Vitro and in Vivo Studies. J. Dairy Sci. 2010, 93(12), 5635–5643. DOI: 10.3168/jds.2010-3469.
  • Soetan, K. O.; Olaiya, C. O.; Oyewole, O. E. The Importance of Mineral Elements for Humans, Domestic Animals and Plants: A Review. Afr. J. Food Sci. 2010, 4(5), 200–222.
  • Eruvbetine, D.; Canine Nutrition and Health. A paper presented at the seminar organized by Kensington Pharmaceuticals Nig . Ltd., Lagos on August 21 2003.
  • Shar, G. Q.; Shar, L. A.; Makhija, P. M.; Sahito, S. B. Evaluation of Eleven Macro and Micro Elements Present in Various Hybrids of Millet (Pennisetum glaucum, or P. americanum). Pak. J. Anal. Environ. Chem. 2012, 13(1), 78–84.
  • Murray, R. K.; Granner, D. K.; Mayes, P. A.; Rodwell, V. W. Harper’s Biochemistry, 25th ed.; McGraw-Hill, Health Profession Division: USA, 2000.
  • EFSA EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2015. Scientific Opinion on Dietary Reference Values for Calcium. EFSA J. 2015, 13(6), 4101. DOI:10.2903/j.efsa.2015.4101.
  • Cilla, A.; Barberá, R.; López-García, G.; Blanco-Morales, V.; Alegría, A.; Garcia-Llatas, G. Impact of processing on mineral bioaccessibility/bioavailability. Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds; Elsevier, 2019; pp 209–239.
  • Drago, S.;. Nutraceutical and Functional Food Components; Elsevier, 2017; pp 129–157.
  • EFSA. Scientific Opinion on the Tolerable Upper Intake Level of Calcium. EFSA J. 2012, 10 (7), 1–44. DOI:10.2903/j.efsa.2012.2814.
  • EFSA. Scientific Opinion on Dietary Reference Values for Magnesium. EFSA J. .2015, 13 (6), 4186.10.2903/j.efsa.2015.4186
  • Brown, T.; Mullee, A.; Collings, R.; Harvey, L.; Hooper, L.; Fairweather-Tait, S. Preparation of an Evidence Report Identifying Health Outcomes upon Which Dietary Reference Values Could Potentially Be Based for Magnesium, Potassium and Fluoride. EFSA J. 2012, 3, 1–238.
  • EFSA. Dietary Reference Values for Potassium. EFSA J. 2016, 14(10), 1–56. DOI:10.2903/j.efsa.2016.4592.
  • Pepin, J.; Shields, C. Advances in Diagnosis and Management of Hypokalemic and Hyperkalemic Emergencies. Emerg. Med. Pract. 2012, 4(2), 1–20.
  • Crop, M. J.; Hoorn, E. J.; Lindemans, J.; Zietse, R. Hypokalaemia and Subsequent Hyperkalaemia in Hospitalized Patients. Nephrol. Dial. Transplant. 2007, 22(12), 3471–3477. DOI: 10.1093/ndt/gfm471.
  • Rodenburga, E. M.; Vissera, L. E.; Hoornc, E. J.; Ruitera, R.; Louse, J. J.; Hofmana, A.; Uitterlindena, A. G.; Stricker, B. H. Thiazides and the Risk of Hypokalemia in the General Population. J. Hypertens. 2014, 32(10), 2092–2097. DOI: 10.1097/HJH.0000000000000299.
  • Michel, A.; Martín-Pérez, M.; Ana Ruigómez, A.; García Rodríguez, L. A. Risk Factors for Hyperkalaemia in a Cohort of Patients with Newly Diagnosed Heart Failure: A Nested Case–control Study in UK General Practice. Eur. J. Heart Fail. 2015, 17(2), 205–213. DOI: 10.1002/ejhf.226.
  • EFSA. Dietary Reference Values for Sodium. EFSA J. 2019, 17(9), 1–191. DOI:10.2903/j.efsa.2019.5778.
  • Fairweather-Tait, S. J.; Cashman, K. Minerals and Trace Elements. Nutrit. Health. 2015, 111, 45–52. DOI: 10.1159/000362296.
  • Allen, L.; De Benoist, B.; Dary, O.; Hurrell, R. Guidelines on Food Fortification with Micronutrients. 2006, 376.
  • Lestienne, I.; Contribution À L’étude De La Biodisponibilité Du Fer Et Du Zinc Dans Le Grain De Mil Et Conditions D’amélioration Dans Les Aliments De Complément. Thèse de Doctorat, Université de Montpellier II, 2004, 245.
  • Scientific, E. F. S. A.;. Opinion on Dietary Reference Values for Iron. EFSA J. 2015, 13(10), 1–115. DOI: 10.2903/j.efsa.2015.4254.
  • Gardner, G. W.; Edgerton, V. R.; Senewiratne, B.; Barnard, R. J.; Ohira, Y. Physical Work Capacity and Metabolic Stress in Subjects with Iron Deficiency Anemia. Am. J. Clin. Nutr. 1977, 30(6), 910–917. DOI: 10.1093/ajcn/30.6.910.
  • Malhotra, V. K.;. Biochemistry for Students, Tenth ed.; Jaypee Brothers Medical Publishers (P) Ltd: New Delhi, India, 1998.
  • EFSA. Scientific Opinion on Dietary Reference Values for Copper. EFSA J. 2015, 13(10), 4253. DOI:10.2903/j.efsa.2015.4253.
  • Scientific, E. F. S. A.;. Opinion on Dietary Reference Values for Zinc. EFSA J. 2014, 12(10), 1–77. DOI: 10.2903/j.efsa.2014.3844.
  • Hedera, P.; Peltier, A.; Fink, J. K.; Wilcock, S. W.; London, Z.; Brewer, G. J. Myelopolyneuropathy and Pancytopenia Due to Copper Deficiency and High Zinc Levels of Unknown Origin II. The Denture Cream Is a Primary Source of Excessive Zinc. Neurotoxicology. 2009, 30(6), 996–999. DOI: 10.1016/j.neuro.2009.08.008.
  • SCF. Opinion of the Scientific Committee on Food on the Tolerable Upper Intake Level of Zinc. Scientific Committee on Food (SCF/CS/NUT/UPPLEV/62 Final), 2002; 18.
  • Mitchikpe, C. E. S.; Towards a Food-based Approach to Improve Iron and Zinc Status of Rural Beninese Children: Enhancing Mineral Bioavailability from Sorghum-based Food. Thesis Wageningen University, The Netherlands 2007, 150.
  • Wedler, F. C.;. Biochemical and Nutritional Role of Manganese: An Overview. In Manganese in Health and Disease; Klimis-Tavantzis, D.J., Ed(s).; Boca Raton, LA, USA: CRC Press, 1994; pp 1–36.
  • Avila, D. S.; Puntel, R. L.; Aschner, M. Manganese in health and disease. A. Sigel, H. Sigel; R.K.O. Sigel (Eds). Interrelations between Essential Metal Ions and Human Diseases. Met. Ions Life Sci. 2013, 13, 199–227.
  • EFSA. Scientific Opinion on Dietary Reference Values for Manganese. EFSA J. 2013, 11(11), 1–44. DOI:10.2903/j.efsa.2013.3419.
  • Mertz, W.;. The Essential Trace Elements. Science. 1981, 213(4514), 1332–1338. DOI: 10.1126/science.7022654.
  • Hambidge, K. M.;. Micronutrient Bioavailability: Dietary Reference Intakes and a Future Perspective. Am. J. Clin. Nutr. 2010, 91(5), 1430S–1432S. DOI: 10.3945/ajcn.2010.28674B.
  • Fernández-García, E.; Carvajal-Lérida, I.; Pérez-Gálvez, A. In Vitro Bioaccessibility Assessment as a Prediction Tool of Nutritional Efficiency. Nutr. Res. 2009, 29(11), 751–760. DOI: 10.1016/j.nutres.2009.09.016.
  • Cardoso, C.; Afonso, C.; Lourenço, H.; Costa, S.; Nunes, M. L. Bioaccessibility Assessment Methodologies and Their Consequences for the Risk–benefit Evaluation of Food. Trends Food Sci. Technol. 2015, 41(1), 5–23. DOI: 10.1016/j.tifs.2014.08.008.
  • Khouzam, R. B.; Pohl, P.; Lobinski, R. Bioaccessibility of Essential Elements from White Cheese, Bread, Fruit and Vegetables. Talanta. 2011, 86, 425–428. DOI: 10.1016/j.talanta.2011.08.049.
  • Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carriere, F.; Boutrou, R.; Corredig, M.; Dupont, D. A Standardised Static in Vitro Digestion Method Suitable for Food–an International Consensus. Food Funct. 2014, 5(6), 1113–1124. DOI: 10.1039/c3fo60702j.
  • Glahn, R.;. The use of Caco-2 cells in defining nutrient bioavailability: application to iron bioavailability of foods. In McClements J, E. A. Decker, (Eds)., Designing Functional Foods; measuring and controlling food structure breakdown and nutrient absorption. Elsevier, 2009; pp 340–361.
  • Kiers, J. L.; Nout, R. M. J.; Rombouts, F. M. In Vitro Digestibility of Processed and Fermented Soya Bean, Cowpea and Maize. J. Sci. Food Agric. 2000, 80(9), 1325–1331. DOI: 10.1002/1097-0010(200007)80:9<325::aid-jsfa648>3.0.CO;2-K.
  • Miller, D. D.; Schricker, B. R.; Rasmussen, R. R.; Van Campen, D. An in Vitro Method for Estimation of Iron Availability from Meals. Am. J. Clin. Nutr. 1981, 34(10), 2248–2256. DOI: 10.1093/ajcn/34.10.2248.
  • Gabaza, M.; Shumoy, H.; Louwagie, L.; Muchuweti, M.; Vandamme, P.; Du Laing, G.; Raes, K. Traditional Fermentation and Cooking of Finger Millet: Implications on Mineral Binders and Subsequent Bioaccessibility. J. Food Compos. Anal. 2017, 68, 87–94. DOI: 10.1016/j.jfca.2017.05.011.
  • Gabaza, M.; Shumoy, H.; Muchuweti, M.; Vandamme, P.; Raes, K. Iron and Zinc Bioaccessibility of Fermented Maize, Sorghum and Millets from Five Locations in Zimbabwe. Food Res. Int. 2017, 103, 361–370. DOI: 10.1016/j.foodres.2017.10.047.
  • Gabaza, M.; Shumoy, H.; Muchuweti, M.; Vandamme, P.; Raes, K. Baobab Fruit Pulp and Mopane Worm as Potential Functional Ingredients to Improve the Iron and Zinc Content and Bioaccessibility of Fermented Cereals. Innov. Food Sci. Emerg. Technol. 2018, 47, 390–398. DOI: 10.1016/j.ifset.2018.04.005.
  • Chadare, F.; Hooiveld, G.; Linnemann, A.; Nout, M.; Hounhouigan, D. Effect of Cooking on in Vitro Solubility of Minerals and Carotenoids in Adansonia digitata Leaves Annales des Sciences Agronomiques 2014, 18, 1–19.
  • Kayodé, A.; Hounhouigan, J.; Nout, M. Impact of Brewing Process Operations on Phytate, Phenolic Compounds and in Vitro Solubility of Iron and Zinc in Opaque Sorghum Beer. LWT. 2007, 40(5), 834–841. DOI: 10.1016/j.lwt.2006.04.001.
  • Liang, J.; Han, B.-Z.; Nout, M. R.; Hamer, R. J. Effects of Soaking, Germination and Fermentation on Phytic Acid, Total and in Vitro Soluble Zinc in Brown Rice. Food Chem. 2008, 110(4), 821–828. DOI: 10.1016/j.foodchem.2008.02.064.
  • Liang, J.; Han, B.-Z.; Nout, M. R.; Hamer, R. J. In Vitro Solubility of Calcium, Iron and Zinc in Relation to Phytic Acid Levels in Rice-based Consumer Products in China. Int. J. Food Sci. Nutr. 2010, 61(1), 40–51. DOI: 10.3109/09637480903229017.
  • Adetola, O. Y.; Kruger, J.; White, Z.; Taylor, J. R. Comparison between Food-to-food Fortification of Pearl Millet Porridge with Moringa Leaves and Baobab Fruit and with Adding Ascorbic and Citric Acid on Iron, Zinc and Other Mineral Bioaccessibility. LWT. 2019, 106, 92–97. DOI: 10.1016/j.lwt.2019.02.044.
  • Van Der Merwe, R.; Kruger, J.; Ferruzzi, M. G.; Duodu, K. G.; Taylor, J. R. Improving Iron and Zinc Bioaccessibility through Food-to-food Fortification of Pearl Millet with Tropical Plant Foodstuffs (Moringa Leaf Powder, Roselle Calyces and Baobab Fruit Pulp). J. Food Sci. Technol. 2019, 56(4), 2244–2256. DOI: 10.1007/s13197-019-03711-y.
  • Galán, M. G.; Drago, S. R. Food Matrix and Cooking Process Affect Mineral Bioaccessibility of Enteral Nutrition Formulas. J. Sci. Food Agric. 2013, 94(3), 515–521. DOI: 10.1002/jsfa.6280.
  • Singh, A.; Bains, K.; Kaur, H. Effect of Inclusion of Key Foods on in Vitro Iron Bioaccessibility in Composite Meals. J. Food Sci. Technol. 2016, 53(4), 2033–2039. DOI: 10.1007/s13197-015-2154-z.
  • Gautam, S.; Platel, K.; Srinivasan, K. Influence of Combinations of Promoter and Inhibitor on the Bioaccessibility of Iron and Zinc from Food Grains. Int. J. Food Sci. Nutr. 2011, 62(8), 826–834. DOI: 10.3109/09637486.2011.584861.
  • Krishnan, R.; Meera, M. Assessment of Inhibitory Factors on Bioaccessibility of Iron and Zinc in Pearl Millet (Pennisetum Glaucum (L.) R. BR.) Cultivars. J. Food Sci. Technol. 2017, 54(13), 4378–4386. DOI: 10.1007/s13197-017-2911-2.
  • Luten, J.; Crews, H.; Flynn, A.; Van Dael, P.; Kastenmayer, P.; Hurrell, R.; Deelstra, H.; Shen, L. H.; Fairweather‐Tait, S.; Hickson, K. Interlaboratory Trial on the Determination of the in Vitro Iron Dialysability from Food. J. Sci. Food Agric. 1996, 72(4), 415–424. DOI: 10.1002/(SICI)1097-0010(199612)72:4<415::AID-JSFA675>3.0.CO;2-X.
  • Wolfgor, R.; Drago, S.; Rodriguez, V.; Pellegrino, N.; Valencia, M. J. F. R. I. In Vitro Measurement of Available Iron in Fortified Foods. Food Res. Int. 2002, 35(1), 85–90. DOI: 10.1016/S0963-9969(01)00122-3.
  • Baye, K.; Guyot, J.-P.; Icard-Vernière, C.; Rochette, I.; Mouquet-Rivier, C. Enzymatic Degradation of Phytate, Polyphenols and Dietary Fibers in Ethiopian Injera Flours: Effect on Iron Bioaccessibility. Food Chem. 2015, 174, 60–67. DOI: 10.1016/j.foodchem.2014.11.012.
  • Icard-Vernière, C. L.; Hama, F.; Guyot, J.-P.; Picq, C.; Diawara, B. H.; Mouquet-Rivier, C. Iron Contamination during In-field Milling of Millet and Sorghum. J. Agric. Food Chem. 2013, 61(43), 10377–10383. DOI: 10.1021/jf402612k.
  • Mounicou, S.; Szpunar, J.; Lobinski, R.; Andrey, D.; Blake, C.-J.-J.-J. O. A. A. S. Bioavailability of Cadmium and Lead in Cocoa: Comparison of Extraction Procedures Prior to Size-exclusion Fast-flow Liquid Chromatography with Inductively Coupled Plasma Mass Spectrometric Detection (SEC-ICP-MS). J. Anal. At. Spectrom. 2002, 17(8), 880–886. DOI: 10.1039/b201639g.
  • Cabañero, A. I.; Madrid, Y.; Cámara, C. Selenium and Mercury Bioaccessibility in Fish Samples: An in Vitro Digestion Method. Anal. Chim. Acta. 2004, 526(1), 51–61. DOI: 10.1016/j.aca.2004.09.039.
  • Kulkarni, S.; Acharya, R.; Rajurkar, N.; Reddy, A. Evaluation of Bioaccessibility of Some Essential Elements from Wheatgrass (Triticum aestivum L.) By In Vitro Digestion Method. Food Chem. 2007, 103(2), 681–688. DOI: 10.1016/j.foodchem.2006.07.057.
  • Regula, J.; Cerba, A.; Suliburska, J.; Tinkov, A. In Vitro Bioavailability of Calcium, Magnesium, Iron, Zinc, and Copper from Gluten-free Breads Supplemented with Natural Additives. Biol. Trace Elem. Res. 2017, 182(1), 140–146. DOI: 10.1007/s12011-017-1065-4.
  • Suliburska, J.; Krejpcio, Z. Evaluation of the Content and Bioaccessibility of Iron, Zinc, Calcium and Magnesium from Groats, Rice, Leguminous Grains and Nuts. J. Food Sci. Technol. 2011, 51(3), 589–594. DOI: 10.1007/s13197-011-0535-5.
  • Skibniewska, K. A.; Kozirok, W.; Fornal, L.; Markiewicz, K. J. J. O. T. S. O. F. Agriculture in Vitro Availability of Minerals from Oat Products. J. Sci. Food Agric. 2002, 82(14), 1676–1681. DOI: 10.1002/jsfa.1243.
  • Mesias, M.; Seiquer, I.; Navarro, M. A. P. J. J. O. A.; Chemistry, F. Influence of Diets Rich in Maillard Reaction Products on Calcium Bioavailability. Assays in Male Adolescents and in Caco-2 Cells. J. Agric. Food Chem. 2009, 57(20), 9532–9538. DOI: 10.1021/jf9018646.
  • Vitali, D.; Dragojević, I. V.; Šebečić, B. Bioaccessibility of Ca, Mg, Mn and Cu from Whole Grain Tea-biscuits: Impact of Proteins, Phytic Acid and Polyphenols. Food Chem. 2008, 110(1), 62–68. DOI: 10.1016/j.foodchem.2008.01.056.
  • Schwedt, G.; Tawali, A. B.; Koch, K. Strategy of Analysis for the Estimation of the Bioavailability of Zinc in Foodstuffs. Fresenius J. Anal. Chem. 1998, 360(5), 589–594. DOI: 10.1007/s002160050763.
  • Flores, S. R.; Dobbs, J.; Dunn, M. A. Mineral Nutrient Content and Iron Bioavailability in Common and Hawaiian Seaweeds Assessed by an in Vitro digestion/Caco-2 Cell Model. J. Food Compos. Anal. 2015, 43, 185–193. DOI: 10.1016/j.jfca.2015.06.008.
  • Latunde-Dada, G. O.; Yang, W.; Vera Aviles, M. In Vitro Iron Availability from Insects and Sirloin Beef. J. Agric. Food Chem. 2016, 64(44), 8420–8424. DOI: 10.1021/acs.jafc.6b03286.
  • Lung’aho, M. G.; Glahn, R. P. In Vitro Estimates of Iron Bioavailability in Some Kenyan Complementary Foods. Food Nutr. Bull. 2009, 30(2), 145–152. DOI: 10.1177/156482650903000206.
  • Glahn, R. P.; Lee, O. A.; Yeung, A.; Goldman, M. I.; Miller, D. D. J. T. J. O. N. Caco-2 Cell Ferritin Formation Predicts Nonradiolabeled Food Iron Availability in an in Vitro digestion/Caco-2 Cell Culture Model. Am. Soc. Nutrit. Sci. 1998, 128(9), 1555–1561.
  • Nikooyeh, B.; Neyestani, T. R. Evaluation of Iron Bioavailability in Caco-2 Cell Culture Model: Modification of the Original Method. Nutr. Food Sci. Res. 2016, 3(3), 11–16. DOI: 10.18869/acadpub.nfsr.3.3.11.
  • Glahn, R. P.; Rassier, M.; Goldman, M. I.; Lee, O. A.; Cha, J. J. T.J. o. n. b. A comparison of iron availability from commercial iron preparations using an in vitro digestion/Caco-2 cell culture model. J. Nutr. Biochem. 2000, 11(2), 62–68.
  • Amagloh, F. K.; Atuna, R. A.; McBride, R.; Carey, E. E.; Christides, T. Nutrient and Total Polyphenol Contents of Dark Green Leafy Vegetables, and Estimation of Their Iron Bioaccessibility Using the in Vitro digestion/Caco-2 Cell Model. Foods. 2017, 6(7), 54. DOI: 10.3390/foods6070054.
  • Christides, T.; Wray, D.; McBride, R.; Fairweather, R.; Sharp, P. Iron Bioavailability from Commercially Available Iron Supplements. Eur. J. Nutr. 2014, 54(8), 1345–1352. DOI: 10.1007/s00394-014-0815-8.
  • Christides, T.; Amagloh, F. K.; Coad, J. Iron Bioavailability and Provitamin A from Sweet Potato-and Cereal-based Complementary Foods. Foods. 2015, 4(4), 463–476. DOI: 10.3390/foods4030463.
  • Hur, S. J.; Lim, B. O.; Decker, E. A.; McClements, D. J. In Vitro Human Digestion Models for Food Applications. Food Chem. 2011, 125(1), 1–12. DOI: 10.1016/j.foodchem.2010.08.036.
  • Moreno, F. J.;. Gastrointestinal Digestion of Food Allergens: Effect on Their Allergenicity. Biomed. Pharmacother. 2007, 61(1), 50–60. DOI: 10.1016/j.biopha.2006.10.005.
  • Dahan, A.; Hoffman, A. Rationalizing the Selection of Oral Lipid Based Drug Delivery Systems by an in Vitro Dynamic Lipolysis Model for Improved Oral Bioavailability of Poorly Water Soluble Drugs. J. Control. Release. 2008, 129(1), 1–10. DOI: 10.1016/j.jconrel.2008.03.021.
  • Hallberg, L.; Brune, M.; Rossander, L. Iron Absorption in Man: Ascorbic Acid and Dose-dependent Inhibition by Phytate. Am. J. Clin. Nutr. 1989, 49(1), 140–144. DOI: 10.1093/ajcn/49.1.140.
  • Hurrell, R.; Egli, I. Iron Bioavailability and Dietary Reference Values. Am. J. Clin. Nutr. 2010, 91(5), 1461S–1467S. DOI: 10.3945/ajcn.2010.28674F.
  • Raes, K.; Knockaert, D.; Struijs, K.; Van Camp, J. Role of Processing on Bioaccessibility of Minerals: Influence of Localization of Minerals and Anti-nutritional Factors in the Plant. Trends Food Sci. Technol. 2014, 37(1), 32–41. DOI: 10.1016/j.tifs.2014.02.002.
  • Davies, N.; Olpin, S. Studies on the Phytate: Zinc Molar Contents in Diets as a Determinant of Zn Availability to Young Rats. Br. J. Nutr. 1979, 41(3), 591–603. DOI: 10.1079/BJN19790074.
  • Saha, P. R.; Weaver, C. M.; Mason, A. C. Mineral Bioavailability in Rats from Intrinsically Labeled Whole Wheat Flour of Various Phytate Levels. J. Agric. Food Chem. 1994, 42(11), 2531–2535. DOI: 10.1021/jf00047a029.
  • Morris, E. R.; Ellis, R. Usefulness of the Dietary Phytic Acid/zinc Molar Ratio as an Index of Zinc Bioavailability to Rats and Humans. Biol. Trace Elem. Res. 1989, 19(1–2), 107–117. DOI: 10.1007/BF02925452.
  • Oberleas, D.; Harland, B. F. Phytate Content of Foods: Effect on Dietary Zinc Bioavailability. J. Am. Diet. Assoc. 1981, 79(4), 433–436.
  • Turnlund, J.; King, J.; Keyes, W.; Gong, B.; Michel, M. A Stable Isotope Study of Zinc Absorption in Young Men: Effects of Phytate and A-cellulose. Am. J. Clin. Nutr. 1984, 40(5), 1071–1077. DOI: 10.1093/ajcn/40.5.1071.
  • Morris, E. R.; Ellis, R. Bioavailability of Dietary Calcium: Effect of Phytate on Adult Men Consuming Nonvegetarian Diets. ACS. 1985. DOI: 10.1021/bk-1985-0275.ch006.
  • Clydesdale, F.; Ho, C. T.; Lee, C.; Mondy, N.; Shewfelt, R.; Lee, K. The Effects of Postharvest Treatment and Chemical Interactions on the Bioavailability of Ascorbic Acid, Thiamin, Vitamin A, Carotenoids, and Minerals. Crit. Rev. Food Sci. Nutr. 1991, 30(6), 599–638. DOI: 10.1080/10408399109527558.
  • Gibson, R. S.; Vanderkooy, P. D. S.; Thompson, L. Dietary Phytate× Calcium/zinc Millimolar Ratios and Zinc Nutriture in Some Ontario Preschool Children. Biol. Trace Elem. Res. 1991, 30(1), 87–94. DOI: 10.1007/BF02990345.
  • Krishnan, R.; Meera, M. Pearl Millet Minerals: Effect of Processing on Bioaccessibility. J. Food Sci. Technol. 2018, 55(9), 3362–3372. DOI: 10.1007/s13197-018-3305-9.
  • Platel, K.; Srinivasan, K. Bioavailability of Micronutrients from Plant Foods: An Update. Crit. Rev. Food Sci. 2016, 56(10), 1608–1619. DOI: 10.1080/10408398.2013.781011.
  • Zimmermann, M. B.; Chaouki, N.; Hurrell, R. F. Iron Deficiency Due to Consumption of a Habitual Diet Low in Bioavailable Iron: A Longitudinal Cohort Study in Moroccan Children. Am. J. Clin. Nutr. 2005, 81(1), 115–121. DOI: 10.1093/ajcn/81.1.115.
  • Van Der Merwe, R.; Pearl Millet Porridge: Improvement in Iron and Zinc Bioaccessibilities through Fortification with Micronutrient-rich Plant Food Components. MSc thesis, University of Pretoria 2017, 105.
  • Gautam, S.; Platel, K.; Srinivasan, K. Influence of β-carotene-rich Vegetables on the Bioaccessibility of Zinc and Iron from Food Grains. Food Chem. 2010, 122(3), 668–672. DOI: 10.1016/j.foodchem.2010.03.028.
  • Gautam, S.; Platel, K.; Srinivasan, K. Higher Bioaccessibility of Iron and Zinc from Food Grains in the Presence of Garlic and Onion. J. Agric. Food Chem. 2010, 58(14), 8426–8429. DOI: 10.1021/jf100716t.
  • Affonfere, M.; Formulation of Infant Foods Fortified with Baobab (Adansonia digitata) Fruit Pulp and/or Moringa (Moringa oleifera) Leaf Powder for Under-five-years Old Children in Benin. MSc thesis, University of Abomey-Calavi, Faculty of Agronomic Sciences 2018, p94.
  • Kayodé, A. P. P.; Linnemann, A. R.; Nout, M. J. R.; Van Boekel, M. Impact of Sorghum Processing on Phytate, Phenolic Compounds and in Vitro Solubility of Iron and Zinc in Thick Porridges. J. Sci. Food Agric. 2007, 87(5), 832–838. DOI: 10.1002/jsfa.2782.
  • Chadare, J.; Linnemann, A. R.; Hounhouigan, J. D.; Nout, M. J. R.; Van Boekel, M. A. J. S. Baobab Food Products: A Review on Their Composition and Nutritional Value. Crit. Rev. Food Sci. Nutr. 2009, 49(3), 254–274. DOI: 10.1080/10408390701856330.
  • Uvere, P. O.; Onyekwere, E. U.; Ngoddy, P. O. Production of Maize Bambara Groundnut Complementary Foods Fortified Pre-fermentation with Processed Foods Rich in Calcium, Iron, Zinc and Provitamin A. J. Sci. Food Agric. 2010, 90(4), 566–573. DOI: 10.1002/jsfa.3846.
  • Van Buggenhout, S.; Alminger, M.; Lemmens, L.; Colle, I.; Knockaert, G.; Moelants, K.; Van Loey, A.; Hendrickx, M. In Vitro Approaches to Estimate the Effect of Food Processing on Carotenoid Bioavailability Need Thorough Understanding of Process Induced Microstructural Changes. Trends Food Sci. Technol. 2010, 21(12), 607–618. DOI: 10.1016/j.tifs.2010.09.010.
  • Briones-Labarca, V.; Venegas-Cubillos, G.; Ortiz-Portilla, S.; Chacana-Ojeda, M.; Maureira, H. Effects of High Hydrostatic Pressure (HHP) on Bioaccessibility, as Well as Antioxidant Activity, Mineral and Starch Contents in Granny Smith Apple. Food Chem. 2011, 128(2), 520–529. DOI: 10.1016/j.foodchem.2011.03.074.
  • Briones-Labarca, V.; Muñoz, C.; Maureira, H. Effect of High Hydrostatic Pressure on Antioxidant Capacity, Mineral and Starch Bioaccessibility of a Non Conventional Food: Prosopis Chilensis Seed. Food Res. Int. 2011, 44(4), 875–883. DOI: 10.1016/j.foodres.2011.01.013.
  • Pereira, E. J.; Carvalho, L. M.; Dellamora-Ortiz, G. M.; Cardoso, F. S.; Carvalho, J. L. Effect of Different Home-cooking Methods on the Bioaccessibility of Zinc and Iron in Conventionally Bred Cowpea (Vigna unguiculata L. Walp) Consumed in Brazil. Food Nutr. Res. 2016, 60(1), 29082. DOI: 10.3402/fnr.v60.29082.
  • Ramírez-Moreno, E.; Marques, C. D.; Sánchez-Mata, M.; Goñi, I. In Vitro Calcium Bioaccessibility in Raw and Cooked Cladodes of Prickly Pear Cactus (Opuntia Ficus-indica L. Miller). LWT. 2011, 44(7), 1611–1615. DOI: 10.1016/j.lwt.2011.01.001.
  • Sørensen, A. D.; Sørensen, H.; Søndergaard, I.; Bukhave, K. Non-haem Iron Availability from Pork Meat: Impact of Heat Treatments and Meat Protein Dose. Meat Sci. 2007, 76(1), 29–37. DOI: 10.1016/j.meatsci.2006.10.008.
  • Viadel, B.; Barberá, R.; Farré, R. Effect of Cooking and Legume Species upon Calcium, Iron and Zinc Uptake by Caco-2 Cells. J. Trace Elem. Med. Biol. 2006, 20(2), 115–120. DOI: 10.1016/j.jtemb.2006.02.001.
  • Viadel, B.; Barberá, R.; Farré, R. Calcium, Iron and Zinc Uptakes by Caco-2 Cells from White Beans and Effect of Cooking. Int. J. Food Sci. Nutr. 2006, 57(3–4), 190–197. DOI: 10.1080/09637480600725630.
  • Xia, Q.; Wang, L.; Xu, C.; Mei, J.; Li, Y. Effects of Germination and High Hydrostatic Pressure Processing on Mineral Elements, Amino Acids and Antioxidants in Vitro Bioaccessibility, as Well as Starch Digestibility in Brown Rice (Oryza sativa L.). Food Chem. 2017, 214, 533–542. DOI: 10.1016/j.foodchem.2016.07.114.
  • Xia, Q.; Tao, H.; Huang, P.; Wang, L.; Mei, J.; Li, Y. Minerals in Vitro Bioaccessibility and Changes in Textural and Structural Characteristics of Uncooked Pre-germinated Brown Rice Influenced by Ultra-high Pressure. Food Control. 2017, 71, 336–345. DOI: 10.1016/j.foodcont.2016.07.018.
  • Zaccari, F.; Cabrera, M. C.; Ramos, A.; Saadoun, A. In Vitro Bioaccessibility of β-carotene, Ca, Mg and Zn in Landrace Carrots (Daucus carota, L.). Food Chem. 2015, 166, 365–371. DOI: 10.1016/j.foodchem.2014.06.051.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.