276
Views
0
CrossRef citations to date
0
Altmetric
Review

Effects of Different Seaweed Bioactive Compounds on Neurodegenerative Disorders, Potential Uses on Insomnia: A Mini-review

&

References

  • Rengasamy, K. R. R.; Mahomoodally, M. F.; Aumeeruddy, M. Z.; Zengin, G.; Xiao, J.; Kim, D. H. Bioactivecompounds in Seaweeds: An Overview of Their Biological Properties and Safety. Food Chem. Toxicol. 2020, 135, 111013. DOI: 10.1016/j.fct.2019.111013.
  • Bennion, M.; Fisher, J.; Yesson, C.; Brodie, J. Remote Sensing of Kelp (Laminariales, Ochrophyta): Monitoring Tools and Implications for Wild Harvesting. Rev. Fish. Sci. 2019, 27(2), 127–141.
  • Puligundla, P.; Kim, J. W.; Mok, C. Effect of Low-pressure Air Plasma on the Microbial Load and Physicochemical Characteristics of Dried Laver(Article). LWT–Food Sci. Technol. 2015, 63(2), 966–971. DOI: 10.1016/j.lwt.2015.04.010.
  • Zhao, Y.; Zheng, Y.; Wang, J.; Ma, S.; Yu, Y.; White, W. L.; Yang, S.; Yang, F.; Lu, J. Fucoidan Extracted from Undaria Pinnatifida: Source for Nutraceuticals/Functional Foods. Mar Drugs. 2018, 16(9), 321. DOI: 10.3390/md16090321.
  • Hewitt, C. L.; Campbell, M. L.; Mcennulty, F.; Moore, K. M.; Murfet, N. B.; Robertson, B.; Schaffelke, B. Efficacy of Physical Removal of a Marine Pest: The Introduced Kelp Undaria Pinnatifida in a Tasmanian Marine Reserve. Biol Invasions. 2005, 7(2), 251–263. DOI: 10.1007/s10530-004-0739-y.
  • Prabhasankar, P.; Ganesan, P.; Bhaskar, N.; Hirose, A.; Stephen, N.; Gowda, L. R. Edible Japanese Seaweed, Wakame (Undaria Pinnatifida) as an Ingredient in Pasta: Chemical, Functional and Structural Evaluation. Food Chem. 2009, 115, 501–508.
  • Shilpi, G.; Nissreen, A.-G. Recent Developments in the Application of Seaweeds or Seaweed Extracts as a Means for Enhancing the Safety and Quality Attributes of Foods. Innovative Food Sci. Emerging Technol. 2011, 12(4), 600–609. DOI: 10.1016/j.ifset.2011.07.004.
  • Zhang, L.; Hao, J.; Zheng, Y.; Su, R.; Liao, Y.; Gong, X.; Liu, L.; Wang, X. Fucoidan Protects Dopaminergic Neurons by Enhancing the Mitochondrial Function in a Rotenone-induced Rat Model of Parkinson’s Disease. Introd Rev Sirtuins Biol Aging Dis. 2018, 9(4), 590–604. DOI: 10.14336/AD.2017.0831.
  • Mohamed, S.; Hashim, S. N.; Rahman, H. A. Seaweeds: A Sustainable Functional Food for Complementary and Alternative Therapy. Trends Food Sci. Technol. 2012, 23(2), 83–96. DOI: 10.1016/j.tifs.2011.09.001.
  • Karpiński, T. M.; Fucoxantjin–An Antibacterial, A. A. Carotenoid. Food Antioxid. 2019, 8(8), 239. DOI: 10.3390/antiox8080239.
  • Kim, S. K.; Ravichandran, Y. D.; Kong, C. S. Applications of Calcium and Its Supplement Derived from Marine Organisms. Crit. Rev. Food Sci. Nutr. 2012, 52(6), 469–474. DOI: 10.1080/10408391003753910.
  • Barrow, C.; Shahidi, F. Marine Nutraceuticals and Functional Foods; CRC Press: Boca Raton, FL, 2008.
  • Sanjeewa, K. K. A.; Kim, E. A.; Son, K. T.; Jeon, Y. J. Bioactive Properties and Potentials Cosmeceutical Applications of Phlorotannins Isolated from Brown Seaweeds: A Review. Journal of Photochemistry and Photobiology B: Biology. 2016, 162, 100–105. DOI: 10.1016/j.jphotobiol.2016.06.027.
  • Rivero, F.; Fallarero, A.; Castañeda, O.; Dajas, F.; Manta, E.; Areces, F.; Mancini Filho, J.; Vidal, A. Antioxidant Activity in Vivo and in Vitro of Halimeda Incrassata Aqueous Extracts. Cienc. Tecnol. Aliment. 2003, 23(2), 256–263. DOI: 10.1590/S0101-20612003000200026.
  • Nguyen, P. H.; Choi, I. W.; Kim, S. W.; Jung, W. K. Immune Regulatory Effects of Phlorotannins Derived from Marine Brown Algae (Phaeophyta). In Handb. Mar. Macroalgae. Wiley: New Jersey, 2012; pp 340–347.
  • Hosseini, S. F.; Rezaei, M.; McClements, D. J. Bioactive Functional Ingredients from Aquatic Origin: A Review of Recent Progress in Marine-derived Nutraceuticals. Crit. Rev. Food Sci. Nutr. 2020, 1–28. DOI: 10.1080/10408398.2020.1839855.
  • Granda, H.; Pascual, T. S. Interaction of Polyphenols with Other Food Components as a Means for Their Neurological Health Benefits. J. Agric. Food Chem. 2018, 66(31), 8224–8230. DOI: 10.1021/acs.jafc.8b02839.
  • Jung, W. K.; Heo, S. J.; Jeon, Y. J.; Lee, C. M.; Park, Y. M.; Byun, H. G.; Choi, Y. H.; Park, S. G.; Choi, I. W. Inhibitory Effects and Molecular Mechanism of Dieckol Isolated from Marine Brown Alga on COX-2 and iNOS in Microglial Cells. J. Agric. Food Chem. 2009, 57(10), 4439–4446. DOI: 10.1021/jf9003913.
  • Olasehinde, T. A.; Olaniran, A. O.; Okoh, A. I. Macroalgae as a Valuable Source of Naturally Occurring Bioactive Compounds for the Treatment of Alzheimer’s Disease. Mar Drugs. 2019, 17(11), 609. DOI: 10.3390/md17110609.
  • Taylor, D. J.; Mallory, L. J.; Lichstein, K. L.; Durrence, H. H.; Riedel, B. W.; Bush, A. J. Comorbidity of Chronic Insomnia with Medical Problems. Sleep Hypn. 2007, 30(2), 213–218. DOI: 10.1093/sleep/30.2.213.
  • Choi, B. W.; Ryu, G. L.; Park, S. H.; Kim, E. S.; Shin, J.; Roh, S. S.; Shin, H. C.; Lee, B. H. Anticholinesterase Activity of Plastoquinones fromSargassum Sagamianum: Lead Compounds for Alzheimer’s Disease Therapy. Phytotherapy Research. 2007, 21(5), 423–426. DOI: 10.1002/ptr.2090.
  • Choi, J. S.; Haulader, S.; Karki, S.; Jung, H. J.; Kim, H. R.; Jung, H. A. Acetyl- and Butyryl-cholinesterase Inhibitory Activities of the Edible Brown Alga Eisenia Bicyclis. Archives of Pharmacal Research. 2015, 38(8), 1477–1487. DOI: 10.1007/s12272-014-0515-1.
  • Fallarero, A.; Peltoketo, A.; Loikkanen, J.; Tammela, P.; Vidal, A.; Vuorela, P. Effects of the Aqueous Extract of Bryothamnion Triquetrum on Chemical Hypoxia and Aglycemia-induced Damage in GT1-7 Mouse Hypothalamic Immortalized Cells. Phytomedicine. 2006, 13(4), 240–245. DOI: 10.1016/j.phymed.2003.10.009.
  • Irma, E. V.; Genaro, G. O.; Lucia, V. C.; Elva, D. Á.; Fermín, P. P.; Migule, A. M.; Prevalence of Dementia, Emotional State and Physical Performance among Older Adults in the Metropolitan Area of Guadalajara, Jalisco, Mexico. Curr Gerontol Geriatr Res 2014, 387528.
  • Seong, S. H.; Paudel, P.; Choi, J. W.; Ahn, D. H.; Nam, T. J.; Jung, H. A.; Choi, J. S. Probing Multi-Target Action of Phlorotannins as New Monoamine Oxidase Inhibitors and Dopaminergic Receptor Modulators with the Potential for Treatment of Neuronal Disorders. Mar Drugs. 2019, 17(6), 377. DOI: 10.3390/md17060377.
  • Paudel, P.; Seong, S. H.; Jung, H. A.; Choi, J. S. Characterizing Fucoxanthin as a Selective Dopamine D3/D4 Receptor Agonist: Relevance to Parkinson’s Disease. Chemico-Biological Interactions 2019, 310, 108757. DOI: 10.1016/j.cbi.2019.108757.
  • Jung, H. A.; Roy, A.; Jung, J. H.; Choi, J. S. Evaluation of the Inhibitory Effects of Eckol and Dieckol Isolated from Edible Brown Alga Eisenia Bicyclis on Human Monoamine Oxidases A and B. Archives of Pharmacal Research. 2017, 40(4), 480–491. DOI: 10.1007/s12272-017-0904-3.
  • Paudel, P.; Park, S. E.; Seong, S. H.; Jung, H. A.; Choi, J. S. Bromophenols from Symphyocladia Latiuscula Target Human Monoamine Oxidase and Dopaminergic Receptors for the Management of Neurodegenerative Diseases. J. Agric. Food Chem. 2020, 68(8), 2426–2436. DOI: 10.1021/acs.jafc.0c00007.
  • Jung, H. A.; Roy, A.; Choi, J. S. In Vitro Monoamine Oxidase A and B Inhibitory Activity and Molecular Docking Simulations of Fucoxanthin. Fish. Sci. (Tokyo, Jpn.). 2016, 83, 123–132.
  • Mariana, B.; Patrícia, V.; Federico, F.; Ángel, G. I.; Paula, B. A. In Vitro Multifunctionality of Phlorotannin Extracts from Fdible Fucus Species on Targets Underpinning Neurodegeneration. Food Chemistry. 2020, 333, 127456. DOI: 10.1016/j.foodchem.2020.127456.
  • Dias, V.; Junn, E.; Mouradian, M. M. The Role of Oxidative Stress in Parkinson’s Disease. . Journal of Parkinson’s Disease. 2013, 3(4), 461–491. DOI: 10.3233/JPD-130230.
  • Kim, M. H.; Namgoong, H.; Jung, B. D.; Kwon, M. S.; Choi, Y. S.; Shin, T.; Kim, H. C.; Wie, M. B. Fucoidan Attenuates 6-hydroxydopamine-induced Neurotoxicity by Exerting Anti-oxidative and Anti-apoptotic Actions in SH-SY5Y Cells. Korean Journal of Veterinary Research. 2017, 57(1), 1–7. DOI: 10.14405/kjvr.2017.57.1.1.
  • Smeyne, M.; Smeyne, R. J.; Metabolism, G. Parkinson’s Disease. Free Radical Biol. Med. 2013, 62, 13–25.
  • Liu, H.; Wang, J.; Zhang, Q.; Zhang, H. The Effect of Different Substitute Groups and Molecular Weights of Fucoidan on Neuroprotective and Anticomplement Activity. Int. J. Biol. Macromol. 2018, 113, 82–89. DOI: 10.1016/j.ijbiomac.2018.02.109.
  • Jhamandas, J. H.; Wie, M. B.; Harris, K.; MacTavish, D.; Kar, S. Fucoidan Inhibits Cellular and Neurotoxic Effects of β-amyloid (Aβ) in Rat Cholinergic Basal Forebrain Neurons. European Journal of Neuroscience. 2005, 21(10), 2649–2659. DOI: 10.1111/j.1460-9568.2005.04111.x.
  • Shrestha, S.; Zhang, W.; Begbie, A. J.; Pukala, T. L.; Smid, S. D. Ecklonia Radiata Extract Containing Eckol Protects Neuronal Cells against Aβ 1–42 Evoked Toxicity and Reduces Aggregate Density. Food & Function. 2020, 11(7), 6509–6516. DOI: 10.1039/D0FO01438A.
  • Meenakshi, S.; Umayaparvathi, S.; Saravanan, R.; Manivasagam, T.; Balasubramanian, T. Neuroprotective Effect of Fucoidan from Turbinaria Decurrens in MPTP Intoxicated Parkinsonic Mice. International Journal of Biological Macromolecules. 2016, 86(2016), 425–433. DOI: 10.1016/j.ijbiomac.2015.12.025.
  • Silva, J.; Alves, C.; Pinteus, S.; Mendes, S.; Pedrosa, R. Neuroprotective Effects of Seaweeds against 6-hydroxidopamine-induced Cell Death on an in Vitro Human Neuroblastoma Model. BMC Complementary Altern. Med. 2018, 18(1), 58. DOI: 10.1186/s12906-018-2103-2.
  • Liang, Z.; Liu, Z.; Sun, X.; Tao, M.; Xiao, X.; Yu, G.; Wang, X. The Effect of Fucoidan on Cellular Oxidative Stress and the CatD-Bax Signaling Axis in MN9D Cells Damaged by 1-Methyl-4-Phenypyridinium. Front. Aging Neurosci. 2019, 10, 429. DOI: 10.3389/fnagi.2018.00429.
  • Han, Y.-S.; Lee, J. H.; Lee, S. H. Fucoidan Suppresses Mitochondrial Dysfunction and Cell Death against 1-Methyl-4-Phenylpyridinum-Induced Neuronal Cytotoxicity via Regulation of PGC-1α Expression. Marine Drugs. 2019, 17(9), 518. DOI: 10.3390/md17090518.
  • Ryu, J.; Zhang, R.; Hong, B. H.; Yang, E. J.; Kang, K. A.; Choi, M.; Kim, K. C.; Noh, S. J.; Kim, H. S.; Lee, N. H.; et al. Phloroglucinol Attenuates Motor Functional Deficits in an Animal Model of Parkinson’s Disease by Enhancing Nrf2 Activity. PLoS One. 2013, 8(8), e71178. DOI: 10.1371/journal.pone.0071178.
  • Cha, S. H.; Heo, S. J.; Jeon, Y. J.; Park, S. M. Dieckol, an Edible Seaweed Polyphenol, Retards Rotenone-induced Neurotoxicity and α-synuclein Aggregation in Human Dopaminergic Neuronal Cells. RSC Adv. 2016, 6(111), 110040–110046. DOI: 10.1039/C6RA21697H.
  • Luo, D.; Zhang, Q.; Wang, H.; Cui, Y.; Sun, Z.; Yang, J.; Zheng, Y.; Jia, J.; Yu, F.; Wang, X. Fucoidan Protects against Dopaminergic Neuron Death in Vivo and in Vitro. Eur. J. Pharmacol. 2009, 617(1–3), 33–40. DOI: 10.1016/j.ejphar.2009.06.015.
  • Zhang, F. L.; He, Y.; Zheng, Y.; Zhang, W. J.; Wang, Q.; Jia, Y. J.; Song, H. L.; An, H. T.; Zhang, H. B.; Qian, Y. J.;; et al. Therapeutic Effects of Fucoidan in 6-Hydroxydopamine-lesioned Rat Model of Parkinson’s Disease: Role of NADPH Oxidase-1. CNS Neuroscience & Therapeutics. 2014, 20(12), 1036–1044.
  • Bankiewicz, K. S.; Sanchez-Pernaute, R.; Oiwa, Y.; Kohutnicka, M.; Cummins, A.; Eberling, J. Preclinical Models of Parkinson’s Disease. Curr Protoc Toxicol. 2004, 18, 1.8.1–1.8.31.
  • Yue, X.; Hariri, D. J.; Caballero, B.; Zhang, S.; Bartlett, M. J.; Kaut, O.; Mount, D. W.; Wüllner, U.; Sherman, S. J.; Falk, T. Comparative Study of the Neurotrophic Effects Elicited by VEGF-B and GDNF in Preclinical in Vivo Models of Parkinson’s Disease. Neuroscience. 2014, 258, 385–400. DOI: 10.1016/j.neuroscience.2013.11.038.
  • Tieu, K. A.;. Guide to Neurotoxic Animal Models of Parkinson’s Disease. Cold Spring Harbor Perspect Med. 2011, 1(1), a9316. DOI: 10.1101/cshperspect.a009316.
  • Coyle, J. T.; Puttfarcken, P. P. Oxidative Stress, Glutamate, and Neurodegenerative Disorders. Science. 1993, 262(5134), 689–695. DOI: 10.1126/science.7901908.
  • Koh, J. Y.; Suh, S. W.; Gwag, B. J.; He, Y. Y.; Hsu, C. Y.; Choi, D. W. The Role of Zinc in Selective Neuronal Death after Transient Global Cerebral Ischemia. Science. 1996, 272(5264), 1013–1016. DOI: 10.1126/science.272.5264.1013.
  • Ghebouli, R.; Loyau, S.; Maire, M.; Saboural, P.; Collet, J.-P.; Jandrot-Perrus, M.; Letourneur, D.; Chaubet, F.; Michel, J.-B. Amino-Fucoidan as a Vector for rtPA-Induced Fibrinolysis in Experimental Thrombotic Events. Thrombosis and Haemostasis. 2018, 118(1), 42–53. DOI: 10.1160/TH17-02-0132.
  • Lichstein, K. L.; Durrence, H. H.; Riedel, B. W.; Taylor, D. J.; Bush, A. J. Epidemiology of Sleep: Age, Gender, and Ethnicity; Erlbaum: Mahwah, NJ, 2004.
  • Ahn, J. H.; Shin, B. N.; Park, J. H.; Lee, T. K.; Park, Y. E.; Lee, J. C.; Yang, G. E.; Shin, M. C.; Cho, J. H.; Lee, K. C.;, et al. Pre- and Post-Treatment with Novel Antiepileptic Drug Oxcarbazepine Exerts Neuroprotective Effect in the Hippocampus in a Gerbil Model of Transient Global Cerebral Ischemia. Brain Sci. 2019, 9(10), 279. DOI: 10.3390/brainsci9100279
  • Kapoor, M.; Sharma, S.; Sandhir, R.; Nehru, B. Temporal Changes in Physiological and Molecular Markers in Various Brain Regions following Transient Global Ischemia in Rats. Mol. Biol. Rep. 2019, 8, 56–62.
  • Martin, M.; Does Platelet, C. W. Transfusion Improve Outcomes in Patients with Spontaneous or Traumatic Intracerebral Hemorrhage. Ann. Emerg. Med. 2013, 61(1), 58–61. DOI: 10.1016/j.annemergmed.2012.03.025.
  • Nieswandt, B.; Pleines, I.; Platelet Adhesion, B. M. Activation Mechanisms in Arterial Thrombosis and Ischaemic Stroke. Journal of Thrombosis and Haemostasis. 2011, 9(1), 92–104. DOI: 10.1111/j.1538-7836.2011.04361.x.
  • Emiru, T.; Bershad, E. M.; Zantek, N. D.; Datta, Y. H.; Rao, G. H.; Hartley, E. W.; Divani, A. A. Intracerebral Hemorrhage: A Review of Coagulation Function. Clinical and Applied Thrombosis/Hemostasis. 2013, 19(6), 652–662. DOI: 10.1177/1076029612454938.
  • Ritter, L. S.; Stempel, K. M.; Coull, B. M.; McDonagh, P. F. Leukocyte-platelet Aggregates in Rat Peripheral Blood after Ischemic Stroke and Reperfusion. Biological Research For Nursing. 2005, 6(4), 281–288. DOI: 10.1177/1099800405274579.
  • Wei, J. L.;. Effect of Naoningkang Granules on the CD62P Level of Platelet in Rats with Cerebral Ischemia-reperfusion. Chin. J. Clin. Rehabil. 2005, 9(41), 174–175.
  • Li, X.; Li, J.; Li, Z.; Sang, Y.; Niu, Y.; Zhang, Q.; Ding, H.; Yin, S. Fucoidan from Undaria Pinnatifida Prevents Vascular Dysfunction through PI3K/Akt/eNOS-dependent Mechanisms in the l-NAME-induced Hypertensive Rat Model. Food & Function. 2016, 7(5), 2398–2408. DOI: 10.1039/C6FO00288A.
  • Ikeda, K.; Akiko, K.; Hiroko, M.; Miyuki, M.; Hiroko, N.; Junko, H.; Takahisa, N. Effect of Undaria Pinnatifida (Wakame) on the Development of Cerebrovascular Diseases in Stroke-prone Spontaneously Hypertensive Rats. Clin Exp Pharmacol Physiol. 2003, 30(1–2), 44–48. DOI: 10.1046/j.1440-1681.2003.03786.x.
  • Park, J. H.; Ahn, J. H.; Lee, T. K.; Park, C. W.; Kim, B.; Lee, J. C.; Kim, D. W.; Shin, M. C.; Cho, J. H.; Lee, C. H.;; et al. Laminarin Pretreatment Provides Neuroprotection against Forebrain Ischemia/Reperfusion Injury by Reducing Oxidative Stress and Neuroinflammation in Aged Gerbils. Marine Drugs. 2020, 18(4), 213.
  • Kowaltowski, A. J.; Vercesi, A. E.; Fiskum, G. Bcl-2 Prevents Mitochondrial Permeability Transition and Cytochrome C Release via Maintenance of Reduced Pyridine Nucleotides. Cell Death & Differentiation. 2000, 7(10), 903–910. DOI: 10.1038/sj.cdd.4400722.
  • Jung, H. A.; Ali, M. Y.; Choi, R. J.; Jeong, H. O.; Chung, H. Y.; Choi, J. S. Kinetics and Molecular Docking Studies of Fucosterol and Fucoxanthin, BACE1 Inhibitors from Brown Algae Undaria Pinnatifida and Ecklonia Stolonifera. Food and Chemical Toxicology. 2016, 89, 104–111. DOI: 10.1016/j.fct.2016.01.014.
  • Kim, T.; Son, H. J.; Lim, D. W.; Yoon, M.; Lee, J.; Kim, Y. T.; Han, D.; Lee, C.; Um, M. Y. Memory-enhancing Effects of Ishige Foliacea Extract: In Vitro and in Vivo Study. Journal of Food Biochemistry. 2020, 44(4), e13162. DOI: 10.1111/jfbc.13162.
  • Tosin, A. O.; Ademola, O. O.; Anthony, I. O. Sulfated Polysaccharides of Some Seaweeds Exhibit Neuroprotection via Mitigation of Oxidative Stress, Cholinergic Dysfunction and Inhibition of Zn – Induced Neuronal Damage in HT-22 Cells. BMC Complementary Medicine and Therapies. 2020, 20(1), 251. DOI: 10.1186/s12906-020-03047-7.
  • Barone, F. C.; Feuerstein, G. Z. Inflammatory Mediators and Stroke: New Opportunities for Novel Therapeutics. J. Cereb. Blood Flow Metab. 1999, 19(8), 819–834. DOI: 10.1097/00004647-199908000-00001.
  • Pangestuti, R.; Vo, T. S.; Ngo, D. H.; Kim, S. K. Fucoxanthin Ameliorates Inflammation and Oxidative Reponses in Microglia. J. Agric. Food Chem. 2013, 61(16), 3876–3883. DOI: 10.1021/jf400015k.
  • Lee, T. K.; Ahn, J. H.; Park, C. W.; Kim, B.; Park, Y. E.; Lee, J. C.; Park, J. H.; Yang, G. E.; Shin, M. C.; Cho, J. H.;; et al. Pre-Treatment with Laminarin Protects Hippocampal CA1 Pyramidal Neurons and Attenuates Reactive Gliosis following Transient Forebrain Ischemia in Gerbils. Marine Drugs. 2020, 18(1), 52.
  • Kang, G. H.; Yan, B. C.; Cho, G. S.; Kim, W. K.; Lee, C. H.; Cho, J. H.; Kim, M.; Kang, I. J.; Won, M. H.; Lee, J. C. Neuroprotective Effect of Fucoidin on Lipopolysaccharide Accelerated Cerebral Ischemic Injury through Inhibition of Cytokine Expression and Neutrophil Infifiltration. J. Neurol. Sci. 2012, 318(1–2), 25–30. DOI: 10.1016/j.jns.2012.04.013.
  • Kim, H.; Ahn, J. H.; Song, M.; Kim, D. W.; Lee, T. K.; Lee, J. C.; Kim, Y. M.; Kim, J. D.; Cho, J. H.; Hwang, I. K.;; et al. Pretreated Fucoidan Confers Neuroprotection against Transient Global Cerebral Ischemic Injury in the Gerbil Hippocampal CA1 Area via Reducing of Glial Cell Activation and Oxidative Stress. Biomedicine & Pharmacotherapy. 2019, 109, 1718–1727. DOI: 10.1016/j.biopha.2018.11.015.
  • Murai, U.; Yamagishi, K.; Sata, M.; Kokubo, Y.; Saito, I.; Yatsuya, H.; Ishihara, J.; Inoue, M.; Sawada, N.; Iso, H.; et al. Jphc Study Group. Seaweed Intake and Risk of Cardiovascular Disease: The Japan Public Health Center-based Prospective (JPHC) Study. Am. J. Clin. Nutr. 2019, 110(6), 1449–1455. DOI: 10.1093/ajcn/nqz231.
  • Iso, H.; Kubota, Y. Nutrition and Disease in the Japan Collaborative Cohort Study for Evaluation of Cancer (JACC). Asian Pac. J. Cancer Prev. 2007, 8, 35–80.
  • Burchell, S. R.; Iniaghe, L. O.; Zhang, J. H.; Tang, J. Fucoidan from Fucus Vesiculosus Fails to Improve Outcomes following Intracerebral Hemorrhage in Mice. Brain Edema XVI. 2016, 121, 191–198.
  • Krueger, J. M.; Rector, D. M.; Roy, S.; Van Dongen, H. P.; Belenky, G.; Panksepp, J. Sleep as a Fundamental Property of Neuronal Assemblies. Nature Reviews Neuroscience. 2008, 9(12), 910–919. DOI: 10.1038/nrn2521.
  • Imeri, L.; Opp, M. R. How (And Why) the Immune System Makes Us Sleep. Nature Reviews Neuroscience. 2009, 10(3), 199–210. DOI: 10.1038/nrn2576.
  • Borja, N. L.; Daniel, K. L. Ramelteon for the Treatment of Insomnia. Clin. Ther. 2006, 28(10), 1540–1555. DOI: 10.1016/j.clinthera.2006.10.016.
  • Phillips, B.; Mannino, D. M. Do Insomnia Complaints Cause Hypertension or Cardiovascular Disease? Journal of Clinical Sleep Medicine. 2007, 3(5), 489–494. DOI: 10.5664/jcsm.26913.
  • Leger, D.; Poursain, B. An International Survey of Insomnia: Under-recognition and Under-treatment of a Polysymptomatic Condition. Curr. Med. Res. Opin. 2005, 21(11), 1785–1792. DOI: 10.1185/030079905X65637.
  • Riemann, D.; Spiegelhalder, K.; Espie, C.; Pollmächer, T.; Léger, D.; Bassetti, C.; Van Someren, E. Chronic Insomnia: Clinical and Research Challenges—an Agenda. Pharmacopsychiatry. 2011, 44, 1–14. DOI: 10.1055/s-0030-1267978.
  • Musiek, E. S.; Holtzman, D. M. Mechanisms Linking Circadian Clocks, Sleep, and Neurodegeneration. Science. 2016, 354(6315), 1004–1008. DOI: 10.1126/science.aah4968.
  • Roth, R.; Drake, D. Evolution of Insomnia: Current Status and Future Direction. Sleep Medicine. 2004, 5(1), 23–30. DOI: 10.1016/S1389-9457(04)90004-4.
  • Cho, S.; Shimizu, M. Natural Sleep Aids and Polyphenols as Treatments for Insomnia. In Bioactive Nutriceuticals and Dietary Supplements in Neurological and Brain Disease: Prevention and Therapy; Watson, R.R., Preedy, V., Eds.; Elsevier Academic Press: San Diego, CA, USA, 2015; pp 141–151.
  • Cho, S.; Yang, H.; Jeon, Y. J.; Lee, C. J.; Jin, Y. H.; Baek, N. I.; Kim, D.; Kang, S. M.; Yoon, M.; Yong, H.;; et al. Phlorotannins of the Edible Brown Seaweed Ecklonia Cava Kjellman Induce Sleep via Positive Allosteric Modulation of Gamma-aminobutyric Acid Type A-benzodiazepine Receptor: A Novel Neurological Activity of Seaweed Polyphenols. Food Chemistry. 2012, 132(3), 1133–1142.
  • Murugan, A. C.; Karim, M. R.; Yusoff, M. B.; Tan, S. H.; Asras, M. F.; Rashid, S. S. New Insights into Seaweed Polyphenols on Glucose Homeostasis. Pharmaceutical Biology. 2015, 53(8), 1087–1097. DOI: 10.3109/13880209.2014.959615.
  • Ebert, B.; Wafford, K. A.; Treating Insomnia:, D. S. Current and Investigational Pharmacological Approaches. Pharmacol. Ther. 2006, 112(3), 612–629. DOI: 10.1016/j.pharmthera.2005.04.014.
  • Cho, S.; Han, D.; Kim, S. B.; Yoon, M.; Yang, H.; Jin, Y. H.; Jo, J.; Yong, H.; Lee, S. H.; Jeon, Y. J.;; et al. Depressive Effects on the Central Nervous System and Underlying Mechanism of the Enzymatic Extract and Its Phlorotannin-Rich Fraction from Ecklonia Cava Edible Brown Seaweed. Bioscience, Biotechnology, and Biochemistry. 2012, 76(1), 163–168.
  • Cho, S.; Yoon, M.; Pae, A. N.; Jin, Y. H.; Cho, N. C.; Takata, Y.; Urade, Y.; Kim, S.; Kim, J. S.; Yang, H.;; et al. Marine Polyphenol Phlorotannins Promote Non-rapid Eye Movement Sleep in Mice via the Benzodiazepine Site of the GABAA Receptor. Psychopharmacology. 2014, 231(14), 2825–2837.
  • Yoon, M.; Triphlorethol, C. S. A, a Dietary Polyphenol from Seaweed, Decreases Sleep Latency and Increases Non-Rapid Eye Movement Sleep in Mice. Marine Drugs. 2018, 16(5), 139. DOI: 10.3390/md16050139.
  • Yoon, M.; Kim, J. S.; Seo, S.; Lee, K.; Um, M. Y.; Lee, J.; Jung, J.; Cho, S. Dieckol, a Major Marine Polyphenol, Enhances Non-rapid Eye Movement Sleep in Mice via the GABAA-benzodiazepine Receptor. Front. Pharmacol. 2020, 11, 494.
  • Kwon, S.; Yoon, M.; Lee, J.; Moon, K. D.; Kim, D.; Kim, S. B.; Cho, S. A Standardized Phlorotannin Supplement Attenuates Caffeine-Induced Sleep Disruption in Mice . (b) Dieckol is a Natural Positive Allosteric Modulator of GABAA-benzodiazepine Receptors and Enhances Inhibitory Synaptic Activity in Cultured Neurons. Nutr Neurosci. 2019, 1028-415X. Nutrients.2019, 11(556), 556. DOI: 10.3390/nu11030556.
  • Um, M. Y.; Kim, J. Y.; Han, J. K.; Kim, J.; Yang, H.; Yoon, M.; Kim, J.; Kang, S. W.; Cho, S. Phlorotannin Supplement Decreases Wake after Sleep Onset in Adults with Self-reported Sleep Disturbance: A Randomized, Controlled, Double-blind Clinical and Polysomnographic Study. Phytotherapy Research. 2018, 32(4), 698–704. DOI: 10.1002/ptr.6019.
  • Will Castro, L. P.; Gomes Castro, A. J.; Nascimento Santos, M. S.; Pinheiro, T. S.; Florentin, K. Q.; Alves, L. G.; Soriano, E. M.; Araújo, R. M.; Leite, E. L. Effect of Galactofucan Sulfate of a Brown Seaweed on Induced Hepatotoxicity in Rats, Sodium Pentobarbital-induced Sleep, and Anti-inflammatory Activity. J Appl Phycol. 2015, 28(3), 2005–2017.
  • Neves, S. A.; Freitas, A. L. P.; Souza, B. W. S.; Rocha, M. L. A.; Correia, M. V. O.; Sampaio, D. A.; VianaG., S. B. Antinociceptive Properties in Mice of a Lectin Isolated from the Marine Alga Amansia Multifida Lamouroux. Braz. J. Med. Biol. Res. 2007, 40(1), 127–134. DOI: 10.1590/S0100-879X2007000100016.
  • Kurotani, K.; Kochi, T.; Nanri, A.; Eguchi, M.; Kuwahara, K.; Tsuruoka, H.; Akter, S.; Ito, R.; Pham, N. M.; Kabe, I.;; et al. Dietary Patterns and Sleep Symptoms in Japanese Workers: The Furukawa Nutrition and Health Study. Sleep Medicine. 2015, 16(2), 298–304.
  • Yoshizaki, T.; Komatsu, T.; Tada, Y.; Hida, A.; Kawano, Y.; Togo, F. Association of Habitual Dietary Intake with Morningness-eveningness and Rotating Shift Work in Japanese Female Nurses. Chronobiology International. 2018, 35(3), 392–404. DOI: 10.1080/07420528.2017.1410169.
  • Wang, Z.; Li, H.; Dong, M.; Zhu, P.; Cai, Y. The Anticancer Effects and Mechanisms of Fucoxanthin Combined with Other Drugs. J. Cancer Res. Clin. Oncol. 2019, 145(2), 293–301. DOI: 10.1007/s00432-019-02841-2.
  • Schepers, M.; Martens, N.; Tiane, A.; Vanbrabant, K.; Liu, H. B.; Lutjohann, D.; Mulder, M.; Vanmierlo, T. Edible Seaweed-derived Constituents: An Undisclosed Source of Neuroprotective Compounds. Neural Regeneration Research. 2020, 15(5), 790–795. DOI: 10.4103/1673-5374.268894.
  • Jung, H. A.; Oh, S. H.; Choi, J. S. Molecular Docking Studies of Phlorotannins from Eisenia Bicyclis with BACE1 Inhibitory Activity. Bioorg. Med. Chem. Lett. 2010, 20(11), 3211–3215. DOI: 10.1016/j.bmcl.2010.04.093.
  • Lubeek, S. F.; Van Der Geer, E. R.; Van Gelder, M. M.; Van De Kerkhof, P. C.; Gerritsen, M. J. Improving Dermatological Care for Elderly People Living in Permanent Healthcare Institutions: Suggestions from Dutch Dermatologists. Acta Dermato Venereologica. 2016, 96(2), 253–254. DOI: 10.2340/00015555-2217.
  • Ana, L. S.; Isaac, A. C.; Martin, J. P. Epidemiology of Dementias and Alzheimer’s Disease. Arch. Med. Res. 2012, 43(8), 600–608. DOI: 10.1016/j.arcmed.2012.11.003.
  • Yoon, N. Y.; Chung, H. Y.; Kim, H. R.; Choi, J. S. Acetyl-and Butyrylcholinesterase Inhibitory Activities of Sterols and Phlorotannins from Ecklonia Stolonifera. Fish. Sci. (Tokyo, Jpn.). 2008, 74, 200–207.
  • Jung, H. A.; Yoon, N. Y.; Woo, M. H.; Choi, J. S. Inhibitory Activities of Extracts from Several Kinds of Seaweeds and Phlorotannins from the Brown Alga Ecklonia Stolonifera on Glucose-mediated Protein Damage and Rat Lens Aldose Reductase. Fish. Sci. (Tokyo, Jpn.). 2008, 74, 1363–1365.
  • Shibata, T.; Fujimoto, K.; Nagayama, K.; Yamaguchi, K.; Nakayama, T. Inhibitory Activity of Brown Algal Phlorotannins against Hyaluronidase. Int. J. Food Sci. Technol. 2002, 37(6), 703–709. DOI: 10.1046/j.1365-2621.2002.00603.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.