2,147
Views
11
CrossRef citations to date
0
Altmetric
Review

Impact of Fermentation on Antinutritional Factors and Protein Degradation of Legume Seeds: A Review

ORCID Icon, , , , &

References

  • Zhang, J.; Zhu, X.; Xu, R.; Gao, Q.; Wang, D.; Zhang, Y. Isolation and Identification of Histamine-producing Enterobacteriaceae from Qu Fermentation Starter for Chinese Rice Wine Brewing. Int. J. Food Microbiol. 2018, 281, 1–9. DOI: 10.1016/j.ijfoodmicro.2018.05.014.
  • Wu, Q.; Chen, B.; Xu, Y. Regulating Yeast Flavor Metabolism by Controlling Saccharification Reaction Rate in Simultaneous Saccharification and Fermentation of Chinese Maotai-flavor Liquor. Int. J. Food Microbiol. 2015, 200, 39–46. DOI: 10.1016/j.ijfoodmicro.2015.01.012.
  • Sakandar, H. A.; Huang, W.; Kubow, S.; Sadiq, F. A.; Imran, M. Comparison of Bacterial Communities in Gliadin-degraded Sourdough (Khamir) Sample and Non-degraded Sample. J. Food Sci. Technol. 2020, 57(1), 375–380. DOI: 10.1007/s13197-019-04030-y.
  • Sakandar, H. A.; Kubow, S.; Azadi, B.; Faryal, R.; Ali, B.; Ghazanfar, S.; Quraishi, U. M.; Imran, M. Wheat Fermentation with Enterococcus Mundtii QAUSD01 and Wickerhamomyces Anomalus QAUWA03 Consortia Induces Concurrent Gliadin and Phytic Acid Degradation and Inhibits Gliadin Toxicity in Caco-2 Monolayers. Front Microbiol. 2018, 9, 3312. DOI: 10.3389/fmicb.2018.03312.
  • Wu, Q.; Chen, L.; Xu, Y. Yeast Community Associated with the Solid State Fermentation of Traditional Chinese Maotai-flavor Liquor. Int. J. Food Microbiol. 2013, 166(2), 323–330. DOI: 10.1016/j.ijfoodmicro.2013.07.003.
  • Chen, B.; Wu, Q.; Xu, Y. Filamentous Fungal Diversity and Community Structure Associated with the Solid State Fermentation of Chinese Maotai-flavor Liquor. Int. J. Food Microbiol. 2014, 179, 80–84. DOI: 10.1016/j.ijfoodmicro.2014.03.011.
  • Wu, D.; Li, X.; Shen, C.; Lu, J.; Chen, J.; Xie, G. Decreased Ethyl Carbamate Generation during Chinese Rice Wine Fermentation by Disruption of CAR1 in an Industrial Yeast Strain. Int. J. Food Microbiol. 2014, 180, 19–23. DOI: 10.1016/j.ijfoodmicro.2014.04.007.
  • Microbiology of Foods Produced in Tropical Asia. Proceedings of the Proceedings of International Symposium on Microbiological Aspects of Food Storage, Processing and Fermentation in Tropical Asia, 1979. Bogor, Indonesia.
  • Kumar, S.; Pandey, G. Biofortification of Pulses and Legumes to Enhance Nutrition. Heliyon. 2020, 6(3), e03682. DOI: 10.1016/j.heliyon.2020.e03682.
  • Stat, F.;, in Statistics Division, Food and Agriculture Organization of the United Nations, 2018.
  • 2019.
  • Rizzello, C. G.; Calasso, M.; Campanella, D.; De Angelis, M.; Gobbetti, M. Use of Sourdough Fermentation and Mixture of Wheat, Chickpea, Lentil and Bean Flours for Enhancing the Nutritional, Texture and Sensory Characteristics of White Bread. Int. J. Food Microbiol. 2014, 180, 78–87. DOI: 10.1016/j.ijfoodmicro.2014.04.005.
  • Coda, R.; Melama, L.; Rizzello, C. G.; Curiel, J. A.; Sibakov, J.; Holopainen, U.; Pulkkinen, M.; Sozer, N. Effect of Air Classification and Fermentation by Lactobacillus Plantarum VTT E-133328 on Faba Bean (Vicia Faba L.) Flour Nutritional Properties. Int. J. Food Microbiol. 2015, 193, 34–42. DOI: 10.1016/j.ijfoodmicro.2014.10.012.
  • Duranti, M.;. Grain Legume Proteins and Nutraceutical Properties. Fitoterapia. 2006, 77(2), 67–82. DOI: 10.1016/j.fitote.2005.11.008.
  • Fischer, E.; Cachon, R.; Cayot, N. Pisum Sativum Vs Glycine Max, a Comparative Review of Nutritional, Physicochemical, and Sensory Properties for Food Uses. Trends Food Sci. Technol. 2020, 95, 196–204. DOI: 10.1016/j.tifs.2019.11.021.
  • Roy, F.; Boye, J. I.; Simpson, B. K. Bioactive Proteins and Peptides in Pulse Crops: Pea, Chickpea and Lentil. Food Res. Int. 2010, 43(2), 432–442. DOI: 10.1016/j.foodres.2009.09.002.
  • Wu, G.-J.; Liu, D.; Wan, Y.-J.; Huang, X.-J.; Nie, S.-P. Comparison of Hypoglycemic Effects of Polysaccharides from Four Legume Species. Food Hydrocolloids. 2019, 90, 299–304. DOI: 10.1016/j.foodhyd.2018.12.035.
  • Maphosa, Y.; Jideani, V. A. Dietary Fiber Extraction for Human nutrition—A Review. Food Rev. Int. 2016, 32(1), 98–115. DOI: 10.1080/87559129.2015.1057840.
  • Mollard, R. C.; Luhovyy, B. L.; Panahi, S.; Nunez, M.; Hanley, A.; Anderson, G. H. Regular Consumption of Pulses for 8 Weeks Reduces Metabolic Syndrome Risk Factors in Overweight and Obese Adults. Br. J. Nutr. 2012, 108(S1), S111–S122. DOI: 10.1017/S0007114512000712.
  • Paul, A. A.; Kumar, S.; Kumar, V.; Sharma, R. Milk Analog: Plant Based Alternatives to Conventional Milk, Production, Potential and Health Concerns. Crit. Rev. Food Sci. Nutr. 2020, 60(18), 3005–3023. DOI: 10.1080/10408398.2019.1674243.
  • Muzquiz, M.; Varela, A.; Burbano, C.; Cuadrado, C.; Guillamón, E.; Pedrosa, M. M. Bioactive Compounds in Legumes: Pronutritive and Antinutritive Actions. Implications for Nutrition and Health. Phytochem. Rev. 2012, 11(2–3), 227–244. DOI: 10.1007/s11101-012-9233-9.
  • Rizzello, C. G.; Coda, R.; Wang, Y.; Verni, M.; Kajala, I.; Katina, K.; Laitila, A. Characterization of Indigenous Pediococcus Pentosaceus, Leuconostoc Kimchii, Weissella Cibaria and Weissella Confusa for Faba Bean Bioprocessing. Int. J. Food Microbiol. 2018.
  • Granito, M.; Álvarez, G. Lactic Acid Fermentation of Black Beans (Phaseolus Vulgaris): Microbiological and Chemical Characterization. J. Sci. Food Agric. 2006, 86(8), 1164–1171. DOI: 10.1002/jsfa.2490.
  • Venkidasamy, B.; Selvaraj, D.; Nile, A. S.; Ramalingam, S.; Kai, G.; Nile, S. H. Indian Pulses: A Review on Nutritional, Functional and Biochemical Properties with Future Perspectives. Trends Food Sci. Technol. 2019, 88, 228–242. DOI: 10.1016/j.tifs.2019.03.012.
  • Gänzle, M. G.;. From Gene to Function: Metabolic Traits of Starter Cultures for Improved Quality of Cereal Foods. Int. J. Food Microbiol. 2009, 134(1–2), 29–36. DOI: 10.1016/j.ijfoodmicro.2009.05.018.
  • Sakandar, H. A.; Hussain, R.; Farid Khan, Q.; Zhang, H. Functional Microbiota in Chinese Traditional Baijiu and Mijiu Qu (Starters): A Review. Food Res. Int. 2020, 138, 109830. DOI: 10.1016/j.foodres.2020.109830.
  • Caplice, E.; Fitzgerald, G. F. Food Fermentations: Role of Microorganisms in Food Production and Preservation. Int. J. Food Microbiol. 1999, 50(1–2), 131–149. DOI: 10.1016/S0168-1605(99)00082-3.
  • Ouattara, H. D.; Ouattara, H. G.; Droux, M.; Reverchon, S.; Nasser, W.; Niamke, S. L. Lactic Acid Bacteria Involved in Cocoa Beans Fermentation from Ivory Coast: Species Diversity and Citrate Lyase Production. Int. J. Food Microbiol. 2017, 256, 11–19. DOI: 10.1016/j.ijfoodmicro.2017.05.008.
  • Guarrasi, V.; Sannino, C.; Moschetti, M.; Bonanno, A.; Di Grigoli, A.; Settanni, L. The Individual Contribution of Starter and Non-starter Lactic Acid Bacteria to the Volatile Organic Compound Composition of Caciocavallo Palermitano Cheese. Int. J. Food Microbiol. 2017, 259, 35–42. DOI: 10.1016/j.ijfoodmicro.2017.07.022.
  • Sakandar, H. A.; Usman, K.; Imran, M. Isolation and Characterization of Gluten-degrading Enterococcus Mundtii and Wickerhamomyces Anomalus, Potential Probiotic Strains from Indigenously Fermented Sourdough (Khamir). LWT Food Sci. Technol. 2018, 91, 271–277. DOI: 10.1016/j.lwt.2018.01.023.
  • Ahlberg, S. H.; Joutsjoki, V.; Korhonen, H. J. Potential of Lactic Acid Bacteria in Aflatoxin Risk Mitigation. Int. J. Food Microbiol. 2015, 207, 87–102. DOI: 10.1016/j.ijfoodmicro.2015.04.042.
  • Jeske, S.; Zannini, E.; Lynch, K. M.; Coffey, A.; Arendt, E. K. Polyol-producing Lactic Acid Bacteria Isolated from Sourdough and Their Application to Reduce Sugar in a Quinoa-based Milk Substitute. Int. J. Food Microbiol. 2018, 286, 31–36. DOI: 10.1016/j.ijfoodmicro.2018.07.013.
  • Montemurro, M.; Pontonio, E.; Gobbetti, M.; Rizzello, C. G. Investigation of the Nutritional, Functional and Technological Effects of the Sourdough Fermentation of Sprouted Flours. Int. J. Food Microbiol. 2019, 302, 47–58. DOI: 10.1016/j.ijfoodmicro.2018.08.005.
  • Maga, J. A.;. Food Utilization of Cereal‐based Fermentation Fiber/protein By‐products. Food Rev. Int. 1988, 4(3), 331–349. DOI: 10.1080/87559128809540836.
  • Bartowsky, E. J.; Henschke, P. A. The ‘Buttery’attribute of Wine—diacetyl—desirability, Spoilage and Beyond. Int. J. Food Microbiol. 2004, 96(3), 235–252. DOI: 10.1016/j.ijfoodmicro.2004.05.013.
  • Capece, A.; Romaniello, R.; Pietrafesa, A.; Siesto, G.; Pietrafesa, R.; Zambuto, M.; Romano, P. Use of Saccharomyces Cerevisiae Var. Boulardii in Co-fermentations with S. Cerevisiae for the Production of Craft Beers with Potential Healthy Value-added. Int. J. Food Microbiol. 2018, 284, 22–30. DOI: 10.1016/j.ijfoodmicro.2018.06.028.
  • Shi, A.-H.; Guan, J.; Zhang, W.; Xu, E.-R.; Xu, C.-X.; Analysis of Microbial Species in Xufang Daqu & Determination of the Dominant Microbes. Liquor Making Sci. Technol. 2001, 108(6), 26–28.
  • Marshall, V. M.;. Lactic Acid Bacteria: Starters for Flavour. FEMS Microbiol. Lett. 1987, 46(3), 327–336. DOI: 10.1111/j.1574-6968.1987.tb02469.x.
  • Zhang, X.; Kong, B.; Xiong, Y. L. Production of Cured Meat Color in Nitrite-free Harbin Red Sausage by Lactobacillus Fermentum Fermentation. Meat Sci. 2007, 77(4), 593–598. DOI: 10.1016/j.meatsci.2007.05.010.
  • Bonatsou, S.; Karamouza, M.; Zoumpopoulou, G.; Mavrogonatou, E.; Kletsas, D.; Papadimitriou, K.; Tsakalidou, E.; Nychas, G.-J. E.; Panagou, E. Ζ. Evaluating the Probiotic Potential and Technological Characteristics of Yeasts Implicated in Cv. Kalamata Natural Black Olive Fermentation. Int. J. Food Microbiol. 2018, 271, 48–59. DOI: 10.1016/j.ijfoodmicro.2018.02.018.
  • Bourdichon, F.; Casaregola, S.; Farrokh, C.; Frisvad, J. C.; Gerds, M. L.; Hammes, W. P.; Harnett, J.; Huys, G.; Laulund, S.; Ouwehand, A.; et al. Food Fermentations: Microorganisms with Technological Beneficial Use. Int. J. Food Microbiol. 2012, 154(3), 87–97.
  • Steensels, J.; Daenen, L.; Malcorps, P.; Derdelinckx, G.; Verachtert, H.; Verstrepen, K. J. Brettanomyces Yeasts — From Spoilage Organisms to Valuable Contributors to Industrial Fermentations. Int. J. Food Microbiol. 2015, 206, 24–38. DOI: 10.1016/j.ijfoodmicro.2015.04.005.
  • Valdés-Varela, L.; Ruas-Madiedo, P.; Gueimonde, M. In Vitro Fermentation of Different Fructo-oligosaccharides by Bifidobacterium Strains for the Selection of Synbiotic Combinations. Int. J. Food Microbiol. 2017, 242, 19–23. DOI: 10.1016/j.ijfoodmicro.2016.11.011.
  • Gu, R.-X.; Yang, Z.-Q.; Li, Z.-H.; Chen, S.-L.; Luo, Z.-L. Probiotic Properties of Lactic Acid Bacteria Isolated from Stool Samples of Longevous People in Regions of Hotan, Xinjiang and Bama, Guangxi, China. Anaerobe. 2008, 14(6), 313–317. DOI: 10.1016/j.anaerobe.2008.06.001.
  • Rai, A. K.; Pandey, A.; Sahoo, D. Biotechnological Potential of Yeasts in Functional Food Industry. Trends Food Sci. Technol. 2019, 83, 129–137. DOI: 10.1016/j.tifs.2018.11.016.
  • Salminen, S.; Von Wright, A. Lactic Acid Bacteria: Microbiological and Functional Aspects; CRC Press, 2004.
  • Li, H.; Cao, Y. Lactic Acid Bacterial Cell Factories for Gamma-aminobutyric Acid. Amino Acids. 2010, 39(5), 1107–1116. DOI: 10.1007/s00726-010-0582-7.
  • Nionelli, L.; Montemurro, M.; Pontonio, E.; Verni, M.; Gobbetti, M.; Rizzello, C. G. Pro-technological and Functional Characterization of Lactic Acid Bacteria to Be Used as Starters for Hemp (Cannabis Sativa L.) Sourdough Fermentation and Wheat Bread Fortification. Int. J. Food Microbiol. 2018, 279, 14–25. DOI: 10.1016/j.ijfoodmicro.2018.04.036.
  • Xu, Y.; Wang, Y.; Coda, R.; Säde, E.; Tuomainen, P.; Tenkanen, M.; Katina, K. In Situ Synthesis of Exopolysaccharides by Leuconostoc Spp. And Weissella Spp. And Their Rheological Impacts in Fava Bean Flour. Int. J. Food Microbiol. 2017, 248, 63–71. DOI: 10.1016/j.ijfoodmicro.2017.02.012.
  • Fardiaz, D.; Markakis, P. Oligosaccharides and Protein Efficiency Ratio of Oncom (Fermented Peanut Press Cake). J. Food Sci. 1981, 46(6), 1970–1971. DOI: 10.1111/j.1365-2621.1981.tb04538.x.
  • Cao, Z.-H.; Green-Johnson, J. M.; Buckley, N. D.; Lin, Q.-Y. Bioactivity of Soy-based Fermented Foods: A Review. Biotechnol. Adv. 2019, 37(1), 223–238. DOI: 10.1016/j.biotechadv.2018.12.001.
  • Gu, J.; Liu, T.; Hou, J.; Pan, L.; Sadiq, F. A.; Yuan, L.; Yang, H.; He, G. Analysis of Bacterial Diversity and Biogenic Amines Content during the Fermentation Processing of Stinky Tofu. Food Res. Int. 2018, 111, 689–698. DOI: 10.1016/j.foodres.2018.05.065.
  • Shin, D.; Jeong, D. Korean Traditional Fermented Soybean Products: Jang. J. Ethnic Foods. 2015, 2(1), 2–7. DOI: 10.1016/j.jef.2015.02.002.
  • Yue, X.; Li, M.; Liu, Y.; Zhang, X.; Zheng, Y. Microbial Diversity and Function of Soybean Paste in East Asia: What We Know and What We Don’t. Curr. Opin. Food Sci. 2021, 37, 145–152. DOI: 10.1016/j.cofs.2020.10.012.
  • Saha, J.; Biswas, A.; Chhetri, A.; Sarkar, P. K. Response Surface Optimisation of Antioxidant Extraction from Kinema, a Bacillus-fermented Soybean Food. Food Chem. 2011, 129(2), 507–513. DOI: 10.1016/j.foodchem.2011.04.108.
  • Tamang, J. P.;. Naturally Fermented Ethnic Soybean Foods of India. J. Ethnic Foods. 2015, 2(1), 8–17. DOI: 10.1016/j.jef.2015.02.003.
  • Kumari, S.; Bhinder, S.; Singh, B.; Kaur, A.; Singh, N. Effect of Buckwheat Incorporation on Batter Fermentation, Rheology, Phenolic, Amino Acid Composition and Textural Properties of Idli. LWT. 2020, 122, 109042. DOI: 10.1016/j.lwt.2020.109042.
  • Roy, A.; Moktan, B.; Sarkar, P. K. Microbiological Quality of Legume-based Traditional Fermented Foods Marketed in West Bengal, India. Food Control. 2007, 18(11), 1405–1411. DOI: 10.1016/j.foodcont.2006.10.001.
  • Adebiyi, J. A.; Njobeh, P. B.; Kayitesi, E. Assessment of Nutritional and Phytochemical Quality of Dawadawa (An African Fermented Condiment) Produced from Bambara Groundnut (Vigna Subterranea). Microchem. J. 2019, 149, 104034. DOI: 10.1016/j.microc.2019.104034.
  • Iacovou, M.; Tan, V.; Muir, J. G.; Gibson, P. R. The Low FODMAP Diet and Its Application in East and Southeast Asia. J. neurogastroenterol. motil. 2015, 21(4), 459–470. DOI: 10.5056/jnm15111.
  • Curiel, J. A.; Coda, R.; Limitone, A.; Katina, K.; Raulio, M.; Giuliani, G.; Giuseppe Rizzello, C.; Gobbetti, M. Manufacture and Characterization of Pasta Made with Wheat Flour Rendered Gluten-free Using Fungal Proteases and Selected Sourdough Lactic Acid Bacteria. J. Cereal Sci. 2014, 59(1), 79–87. DOI: 10.1016/j.jcs.2013.09.011.
  • Limón, R. I.; Peñas, E.; Torino, M. I.; Martínez-Villaluenga, C.; Dueñas, M.; Frias, J. Fermentation Enhances the Content of Bioactive Compounds in Kidney Bean Extracts. Food Chem. 2015, 172, 343–352. DOI: 10.1016/j.foodchem.2014.09.084.
  • Torino, M. I.; Limón, R. I.; Martínez-Villaluenga, C.; Mäkinen, S.; Pihlanto, A.; Vidal-Valverde, C.; Frias, J. Antioxidant and Antihypertensive Properties of Liquid and Solid State Fermented Lentils. Food Chem. 2013, 136(2), 1030–1037. DOI: 10.1016/j.foodchem.2012.09.015.
  • Biesiekierski, J. R.; Rosella, O.; Rose, R.; Liels, K.; Barrett, J. S.; Shepherd, S. J.; Gibson, P. R.; Muir, J. G. Quantification of Fructans, Galacto-oligosacharides and Other Short-chain Carbohydrates in Processed Grains and Cereals. J. Human Nutr. Diet. 2011, 24(2), 154–176. DOI: 10.1111/j.1365-277X.2010.01139.x.
  • Leuschner, R. G. K.; Robinson, T. P.; Hugas, M.; Cocconcelli, P. S.; Richard-Forget, F.; Klein, G.; Licht, T. R.; Nguyen-The, C.; Querol, A.; Richardson, M.; et al. Qualified Presumption of Safety (QPS): A Generic Risk Assessment Approach for Biological Agents Notified to the European Food Safety Authority (EFSA). Trends Food Sci. Technol. 2010, 21(9), 425–435.
  • Xu, Y.; Coda, R.; Holopainen-Mantila, U.; Laitila, A.; Katina, K.; Tenkanen, M. Impact of in Situ Produced Exopolysaccharides on Rheology and Texture of Fava Bean Protein Concentrate. Food Res. Int. 2019, 115, 191–199. DOI: 10.1016/j.foodres.2018.08.054.
  • Nawaz, M. A.; Tan, M.; Øiseth, S.; Buckow, R. An Emerging Segment of Functional Legume-Based Beverages: A Review. Food Rev. Int. 2020, 1–39. DOI: 10.1080/87559129.2020.1762641.
  • Kumar, S.; Kumar, V.; Sharma, R.; Paul, A. A.; P, S.; R., A. S. IntechOpen Princes Gate Court; London, UK, 2020.
  • Çalışkantürk Karataş, S.; Günay, D.; Sayar, S. In Vitro Evaluation of Whole Faba Bean and Its Seed Coat as a Potential Source of Functional Food Components. Food Chem. 2017, 230, 182–188. DOI: 10.1016/j.foodchem.2017.03.037.
  • Wang, Y.; Sorvali, P.; Laitila, A.; Maina, N. H.; Coda, R.; Katina, K. Dextran Produced in Situ as a Tool to Improve the Quality of Wheat-faba Bean Composite Bread. Food Hydrocolloids. 2018, 84, 396–405. DOI: 10.1016/j.foodhyd.2018.05.042.
  • Coda, R.; Varis, J.; Verni, M.; Rizzello, C. G.; Katina, K. Improvement of the Protein Quality of Wheat Bread through Faba Bean Sourdough Addition. LWT - Food Sci. Technol. 2017, 82, 296–302. DOI: 10.1016/j.lwt.2017.04.062.
  • Sanjukta, S.; Rai, A. K. Production of Bioactive Peptides during Soybean Fermentation and Their Potential Health Benefits. Trends Food Sci. Technol. 2016, 50, 1–10. DOI: 10.1016/j.tifs.2016.01.010.
  • Khattab, R.; Arntfield, S. Nutritional Quality of Legume Seeds as Affected by Some Physical Treatments 2. Antinutritional Factors. LWT Food Sci. Technol. 2009, 42(6), 1113–1118. DOI: 10.1016/j.lwt.2009.02.004.
  • Coda, R.; Rizzello, C.; G.;Gobbetti, M. Use of Sourdough Fermentation and Pseudo-cereals and Leguminous Flours for the Making of a Functional Bread Enriched of γ-aminobutyric Acid (GABA). Int. J. Food Microbiol. 2010, 137(2–3), 236–245. DOI: 10.1016/j.ijfoodmicro.2009.12.010.
  • Onwurafor, E. U.; Onweluzo, J. C.; Ezeoke, A. M. Effect of Fermentation Methods on Chemical and Microbial Properties of Mung Bean (Vigna Radiata) Flour. Niger. Food J. 2014, 32(1), 89–96. DOI: 10.1016/S0189-7241(15)30100-4.
  • Joshi, V.; Kumar, S. Meat Analogues: Plant Based Alternatives to Meat Products- A Review. Int.J. Food Ferment. Technol. 2015, 5(2), 107–119. DOI: 10.5958/2277-9396.2016.00001.5.
  • Shekib, L. A.;. Nutritional Improvement of Lentils, Chick Pea, Rice and Wheat by Natural Fermentation. Plant Foods Human Nutr. 1994, 46(3), 201–205. DOI: 10.1007/BF01088991.
  • Xiao, Y.; Xing, G.; Rui, X.; Li, W.; Chen, X.; Jiang, M.; Dong, M. Effect of Solid-state Fermentation with Cordyceps Militaris SN-18 on Physicochemical and Functional Properties of Chickpea (Cicer Arietinum L.) Flour. LWT - Food Sci. Technol. 2015, 63(2), 1317–1324. DOI: 10.1016/j.lwt.2015.04.046.
  • Diez-Gutiérrez, L.; San Vicente, L.; R. Barrón, L. J.; Villarán, M. D. C.; Chávarri, M. Gamma-aminobutyric Acid and Probiotics: Multiple Health Benefits and Their Future in the Global Functional Food and Nutraceuticals Market. J. Funct. Foods. 2020, 64, 103669. DOI: 10.1016/j.jff.2019.103669.
  • Goodarzi Boroojeni, F.; Kozłowski, K.; Jankowski, J.; Senz, M.; Wiśniewska, M.; Boros, D.; Drażbo, A.; Zentek, J. Fermentation and Enzymatic Treatment of Pea for Turkey Nutrition. Anim. Feed Sci. Technol. 2018, 237, 78–88. DOI: 10.1016/j.anifeedsci.2018.01.008.
  • Adeola, O.; Cowieson, A. J. BOARD-INVITED REVIEW: Opportunities and Challenges in Using Exogenous Enzymes to Improve Nonruminant Animal Production. J. Anim. Sci. 2011, 89(10), 3189–3218. DOI: 10.2527/jas.2010-3715.
  • Riciputi, Y.; Serrazanetti, D. I.; Verardo, V.; Vannini, L.; Caboni, M. F.; Lanciotti, R. Effect of Fermentation on the Content of Bioactive Compounds in Tofu-type Products. J. Funct. Foods. 2016, 27, 131–139. DOI: 10.1016/j.jff.2016.08.041.
  • Daliri, E. B.-M.; Lee, B. H.; Park, M. H.; Kim, J.-H.; Oh, D.-H. Novel Angiotensin I-converting Enzyme Inhibitory Peptides from Soybean Protein Isolates Fermented by Pediococcus Pentosaceus SDL1409. LWT. 2018, 93, 88–93. DOI: 10.1016/j.lwt.2018.03.026.
  • Kumar, S.; Verma, A. K.; Das, M.; Dwivedi, P. D. Allergenic Diversity among Plant and Animal Food Proteins. Food Rev. Int. 2012, 28(3), 277–298. DOI: 10.1080/87559129.2011.635391.
  • De La Hera, E.; Ruiz-París, E.; Oliete, B.; Gómez, M. Studies of the Quality of Cakes Made with Wheat-lentil Composite Flours. LWT - Food Sci. Technol. 2012, 49(1), 48–54. DOI: 10.1016/j.lwt.2012.05.009.
  • Kim, -Y.-Y.; Woo, K. S.; Chung, H.-J. Starch Characteristics of Cowpea and Mungbean Cultivars Grown in Korea. Food Chem. 2018, 263, 104–111. DOI: 10.1016/j.foodchem.2018.04.114.
  • Owusu‐Ansah, Y. J.; McCurdy, S. M. Pea Proteins: A Review of Chemistry, Technology of Production, and Utilization. Food Rev. Int. 1991, 7(1), 103–134. DOI: 10.1080/87559129109540903.
  • Zhang, Y.; Su, D.; He, J.; Dai, Z.; Asad, R.; Ou, S.; Zeng, X. Effects of Ciceritol from Chickpeas on Human Colonic Microflora and the Production of Short Chain Fatty Acids by in Vitro Fermentation. LWT - Food Sci. Technol. 2017, 79, 294–299. DOI: 10.1016/j.lwt.2017.01.040.
  • Oladiran, D. A.; Emmambux, N. M. Locally Available African Complementary Foods: Nutritional Limitations and Processing Technologies to Improve Nutritional Quality—A Review. Food Rev. Int. 2020, 1–31. DOI: 10.1080/87559129.2020.1762640.
  • Tabilo-Munizaga, G.; Villalobos-Carvajal, R.; Herrera-Lavados, C.; Moreno-Osorio, L.; Jarpa-Parra, M.; Pérez-Won, M. Physicochemical Properties of High-pressure Treated Lentil Protein-based Nanoemulsions. LWT. 2019, 101, 590–598. DOI: 10.1016/j.lwt.2018.11.070.
  • Bautista-Expósito, S.; Peñas, E.; Silván, J. M.; Frias, J.; Martínez-Villaluenga, C. pH-controlled Fermentation in Mild Alkaline Conditions Enhances Bioactive Compounds and Functional Features of Lentil to Ameliorate Metabolic Disturbances. Food Chem. 2018, 248, 262–271. DOI: 10.1016/j.foodchem.2017.12.059.
  • Bautista-Expósito, S.; Peñas, E.; Dueñas, M.; Silván, J. M.; Frias, J.; Martínez-Villaluenga, C. Individual Contributions of Savinase and Lactobacillus Plantarum to Lentil Functionalization during Alkaline pH-controlled Fermentation. Food Chem. 2018, 257, 341–349. DOI: 10.1016/j.foodchem.2018.03.044.
  • Yousif, A. M.; Kato, J.; Deeth, H. C. Effect Of Storage On The Biochemical Structure And Processing Quality Of Adzuki Bean (Vigna angularis). Food Rev. Int. 2007, 23(1), 1–33. DOI: 10.1080/87559120600865172.
  • Anwar, F.; Latif, S.; Przybylski, R.; Sultana, B.; Ashraf, M. Chemical Composition and Antioxidant Activity of Seeds of Different Cultivars of Mungbean. J. Food Sci. 2007, 72(7), S503–S510. DOI: 10.1111/j.1750-3841.2007.00462.x.
  • Wu, H.; Rui, X.; Li, W.; Chen, X.; Jiang, M.; Dong, M. Mung Bean (Vigna Radiata) as Probiotic Food through Fermentation with Lactobacillus Plantarum B1-6. LWT - Food Sci. Technol. 2015, 63(1), 445–451. DOI: 10.1016/j.lwt.2015.03.011.
  • Shevkani, K.; Singh, N.; Kaur, A.; Rana, J. C. Structural and Functional Characterization of Kidney Bean and Field Pea Protein Isolates: A Comparative Study. Food Hydrocolloids. 2015, 43, 679–689. DOI: 10.1016/j.foodhyd.2014.07.024.
  • De Pasquale, I.; Pontonio, E.; Gobbetti, M.; Rizzello, C. G. Nutritional and Functional Effects of the Lactic Acid Bacteria Fermentation on Gelatinized Legume Flours. Int. J. Food Microbiol. 2020, 316, 108426. DOI: 10.1016/j.ijfoodmicro.2019.108426.
  • Sikora, M.; Świeca, M.; Gawlik-Dziki, U.; Złotek, U.; Baraniak, B. Nutritional Quality, Phenolics, and Antioxidant Capacity of Mung Bean Paste Obtained from Seeds Soaked in Sodium Bicarbonate. LWT. 2018, 97, 456–461. DOI: 10.1016/j.lwt.2018.07.034.
  • Tharanathan, R.; Mahadevamma, S. Grain Legumes—a Boon to Human Nutrition. Trends Food Sci. Technol. 2003, 14(12), 507–518. DOI: 10.1016/j.tifs.2003.07.002.
  • Handa, C. L.; De Lima, F. S.; Guelfi, M. F. G.; Fernandes, M. D. S.; Georgetti, S. R.; Ida, E. I. Parameters of the Fermentation of Soybean Flour by Monascus Purpureus or Aspergillus Oryzae on the Production of Bioactive Compounds and Antioxidant Activity. Food Chem. 2019, 271, 274–283. DOI: 10.1016/j.foodchem.2018.07.188.
  • Sanjukta, S.; Rai, A. K.; Muhammed, A.; Jeyaram, K.; Talukdar, N. C. Enhancement of Antioxidant Properties of Two Soybean Varieties of Sikkim Himalayan Region by Proteolytic Bacillus Subtilis Fermentation. J. Funct. Foods. 2015, 14, 650–658. DOI: 10.1016/j.jff.2015.02.033.
  • Dai, C.; Ma, H.; He, R.; Huang, L.; Zhu, S.; Ding, Q.; Luo, L. Improvement of Nutritional Value and Bioactivity of Soybean Meal by Solid-state Fermentation with Bacillus Subtilis. LWT. 2017, 86, 1–7. DOI: 10.1016/j.lwt.2017.07.041.
  • Jeon, H.-L.; Yang, S.-J.; Son, S.-H.; Kim, W.-S.; Lee, N.-K.; Paik, H.-D. Evaluation of Probiotic Bacillus Subtilis P229 Isolated from Cheonggukjang and Its Application in Soybean Fermentation. LWT. 2018, 97, 94–99. DOI: 10.1016/j.lwt.2018.06.054.
  • Seo, S.-H.; Cho, S.-J. Changes in Allergenic and Antinutritional Protein Profiles of Soybean Meal during Solid-state Fermentation with Bacillus Subtilis. LWT - Food Sci. Technol. 2016, 70, 208–212. DOI: 10.1016/j.lwt.2016.02.035.
  • Sirilun, S.; Sivamaruthi, B. S.; Kesika, P.; Peerajan, S.; Chaiyasut, C. Lactic Acid Bacteria Mediated Fermented Soybean as a Potent Nutraceutical Candidate. Asian Pac. J. Trop. Biomed. 2017, 7(10), 930–936. DOI: 10.1016/j.apjtb.2017.09.007.
  • Li, J.; Zhou, R.-L.; Ren, Z.-Q.; Fan, Y.-W.; Hu, S.-B.; Zhuo, C.-F.; Deng, Z.-Y. Improvement of Protein Quality and Degradation of Allergen in Soybean Meal Fermented by Neurospora Crassa. LWT. 2019, 101, 220–228. DOI: 10.1016/j.lwt.2018.10.089.
  • Julianti, E.; Rusmarilin, H.; Ridwansyah,; Yusraini, E. Functional and Rheological Properties of Composite Flour from Sweet Potato, Maize, Soybean and Xanthan Gum. J. Saudi Soc. Agric. Sci. 2017, 16(2), 171–177. DOI: 10.1016/j.jssas.2015.05.005.
  • Dhingra, S.; Jood, S. Organoleptic and Nutritional Evaluation of Wheat Breads Supplemented with Soybean and Barley Flour. Food Chem. 2002, 77(4), 479–488. DOI: 10.1016/S0308-8146(01)00387-9.
  • Shittu, T. A.; Raji, A. O.; Sanni, L. O. Bread from Composite Cassava-wheat flour:I. Effect of Baking Time and Temperature on Some Physical Properties of Bread Loaf. Food Res. Int. 2007, 40(2), 280–290. DOI: 10.1016/j.foodres.2006.10.012.
  • Lam, A. C. Y.; Can Karaca, A.; Tyler, R. T.; Nickerson, M. T. Pea Protein Isolates: Structure, Extraction, and Functionality. Food Rev. Int. 2018, 34(2), 126–147. DOI: 10.1080/87559129.2016.1242135.
  • Di Cairano, M.; Galgano, F.; Tolve, R.; Caruso, M. C.; Condelli, N. Focus on Gluten Free Biscuits: Ingredients and Issues. Trends Food Sci. Technol. 2018, 81, 203–212. DOI: 10.1016/j.tifs.2018.09.006.
  • Coşkuner, Y.; Karababa, E. Leblebi: A Roasted Chickpea Product as a Traditional Turkish Snack Food. Food Rev. Int. 2004, 20(3), 257–274. DOI: 10.1081/FRI-200029424.
  • Schutyser, M. A. I.; Pelgrom, P. J. M.; Van Der Goot, A. J.; Boom, R. M. Dry Fractionation for Sustainable Production of Functional Legume Protein Concentrates. Trends Food Sci. Technol. 2015, 45(2), 327–335. DOI: 10.1016/j.tifs.2015.04.013.
  • Dahl, W. J.; Foster, L. M.; Tyler, R. T. Review Of The Health Benefits Of Peas (Pisum sativum L.). Br. J. Nutr. 2012, 108(S1), S3–S10. DOI: 10.1017/S0007114512000852.
  • Burger, T. G.; Zhang, Y. Recent Progress in the Utilization of Pea Protein as an Emulsifier for Food Applications. Trends Food Sci. Technol. 2019, 86, 25–33. DOI: 10.1016/j.tifs.2019.02.007.
  • Ma, Z.; Boye, J. I.; Hu, X. Nutritional Quality and Techno-functional Changes in Raw, Germinated and Fermented Yellow Field Pea (Pisum Sativum L.) Upon Pasteurization. LWT. 2018, 92, 147–154. DOI: 10.1016/j.lwt.2018.02.018.
  • Du, M.; Xie, J.; Gong, B.; Xu, X.; Tang, W.; Li, X.; Li, C.; Xie, M. Extraction, Physicochemical Characteristics and Functional Properties of Mung Bean Protein. Food Hydrocolloids. 2018, 76, 131–140. DOI: 10.1016/j.foodhyd.2017.01.003.
  • Galati, A.; Oguntoyinbo, F. A.; Moschetti, G.; Crescimanno, M.; Settanni, L. The Cereal Market and the Role of Fermentation in Cereal-Based Food Production in Africa. Food Rev. Int. 2014, 30(4), 317–337. DOI: 10.1080/87559129.2014.929143.
  • Gabaza, M.; Muchuweti, M.; Vandamme, P.; Raes, K. Can Fermentation Be Used as a Sustainable Strategy to Reduce Iron and Zinc Binders in Traditional African Fermented Cereal Porridges or Gruels? Food Rev. Int. 2017, 33, 561–586.
  • Zhang, J.; Shi, J.; Ilic, S.; Jun Xue, S.; Kakuda, Y. Biological Properties and Characterization of Lectin from Red Kidney Bean (Phaseolus Vulgaris). Food Rev. Int. 2008, 25(1), 12–27. DOI: 10.1080/87559120802458115.
  • Worku, A.; Sahu, O. Significance of Fermentation Process on Biochemical Properties of Phaseolus Vulgaris (Red Beans). Biotechnol. Rep. 2017, 16, 5–11. DOI: 10.1016/j.btre.2017.09.001.
  • Kan, L.; Nie, S.; Hu, J.; Wang, S.; Cui, S. W.; Li, Y.; Xu, S.; Wu, Y.; Wang, J.; Bai, Z.; et al. Nutrients, Phytochemicals and Antioxidant Activities of 26 Kidney Bean Cultivars. Food Chem. Toxicol. 2017, 108, 467–477. DOI: 10.1016/j.fct.2016.09.007.
  • Duodu, K. G.; Apea-Bah, F. B. Gluten-Free Ancient Grains; Taylor, J.R.N., Awika, J.M., Edited by; Woodhead Publishing, Cambridge. 2017; pp 223–269.
  • Saraphanchotiwitthaya, A.; Sripalakit, P. Production of γ-aminobutyric Acid from Red Kidney Bean and Barley Grain Fermentation by Lactobacillus Brevis TISTR 860. Biocatal. Agric. Biotechnol. 2018, 16, 49–53. DOI: 10.1016/j.bcab.2018.07.016.
  • Sáez, G. D.; Hébert, E. M.; Saavedra, L.; Zárate, G. Molecular Identification and Technological Characterization of Lactic Acid Bacteria Isolated from Fermented Kidney Beans Flours (Phaseolus Vulgaris L. And P. Coccineus) in Northwestern Argentina. Food Res. Int. 2017, 102, 605–615. DOI: 10.1016/j.foodres.2017.09.042.
  • Ghavidel, R. A.; Prakash, J. Effect of Germination and Dehulling on Functional Properties of Legume Flours. J. Sci. Food Agric. 2006, 86(8), 1189–1195. DOI: 10.1002/jsfa.2460.
  • Gharibzahedi, S. M. T.; Smith, B. The Functional Modification of Legume Proteins by Ultrasonication: A Review. Trends Food Sci. Technol. 2020, 98, 107–116. DOI: 10.1016/j.tifs.2020.02.002.
  • Lee, I. H.; Hung, Y.-H.; Chou, C.-C. Solid-state Fermentation with Fungi to Enhance the Antioxidative Activity, Total Phenolic and Anthocyanin Contents of Black Bean. Int. J. Food Microbiol. 2008, 121(2), 150–156. DOI: 10.1016/j.ijfoodmicro.2007.09.008.
  • Lee, I. H.; Hung, Y.-H.; Chou, -C.-C. Total Phenolic and Anthocyanin Contents, as Well as Antioxidant Activity, of Black Bean Koji Fermented by Aspergillus Awamori under Different Culture Conditions. Food Chem. 2007, 104(3), 936–942. DOI: 10.1016/j.foodchem.2006.12.049.
  • Shon, M.-Y.; Seo, K.-I.; Lee, S.-W.; Choi, S.-H.; Sung, N.-J. Biological Activities of Chungkugjang Prepared with Black Bean and Changes in Phytoestrogen Content during Fermentation. Korean J. Food Sci. Tech. 2000, 32.
  • Udeh, E. L.; Nyila, M. A.; Kanu, S. A. Nutraceutical and Antimicrobial Potentials of Bambara Groundnut (Vigna Subterranean): A Review. Heliyon. 2020, 6(10), e05205. DOI: 10.1016/j.heliyon.2020.e05205.
  • Mubaiwa, J.; Fogliano, V.; Chidewe, C.; Linnemann, A. R. Hard-to-cook Phenomenon In Bambara Groundnut (Vigna subterranea (L.) Verdc.) processing: Options to improve its role in providing food security. Food Rev. Int. 2017, 33(2), 167–194. DOI: 10.1080/87559129.2016.1149864.
  • Oyeyinka, S. A.; Tijani, T. S.; Oyeyinka, A. T.; Arise, A. K.; Balogun, M. A.; Kolawole, F. L.; Obalowu, M. A.; Joseph, J. K. Value Added Snacks Produced from Bambara Groundnut (Vigna Subterranea) Paste or Flour. LWT. 2018, 88, 126–131. DOI: 10.1016/j.lwt.2017.10.011.
  • Arise, A.; Alashi, A.; Nwachukwu, I.; Ijabadeniyi, O.; Aluko, R.; Amonsou, E. Antioxidant Activities of Bambara Groundnut (Vigna Subterranea) Protein Hydrolysates and Their Membrane Ultrafiltration Fractions. Food & Function. 2016, 7(5), 2431–2437. DOI: 10.1039/C6FO00057F.
  • Obizoba, I. C.; Egbuna, H. I. Effect of Germination and Fermentation on the Nutritional Quality of Bambara Nut (Voandzeia Subterranea L. Thouars) and Its Product (Milk). Plant Foods Hum. Nutr. 1992, 42(1), 13–23. DOI: 10.1007/BF02196068.
  • Ogodo, A.; Ugbogu, O.; Okereke, H. C.; Onyeagba, R. A. Change in Microbial Ecology of Bambara Flour by Lactic Acid Bacteria Consortium during Fermentation and Its Effect on Anti-nutritional Factors. J. Appl. Sci. 2018, 18(2), 71–78. DOI: 10.3923/jas.2018.71.78.
  • Mahala, A.; Adam, A.; Mohammed, A. A. Nutritive Evaluation of Bambara Groundnut (Vigna Subterranean) Pods, Seeds and Hull as Animal Feeds. J. Appl. Sci. Res. 2010, 6, 383–386.
  • Steve Ijarotimi, O.;. Comparison of Nutritional Composition and Anti-nutrient Status of Fermented, Germinated and Roasted Bambara Groundnut Seeds (Vigna Subterranea). Br. Food J. 2009, 111(4), 376–386. DOI: 10.1108/00070700910951515.
  • Chinma, C. E.; Anuonye, J. C.; Ocheme, O. B.; Abdullahi, S.; Oni, S.; Yakubu, C. M.; Azeez, S. O. Effect of Acha and Bambara Nut Sourdough Flour Addition on the Quality of Bread. LWT. 2016, 70, 223–228. DOI: 10.1016/j.lwt.2016.02.050.
  • Simwaka, J.; Madalitso, C.; Zhuo, H.; Masamba, K.; Luo. Effect of Fermentation on Physicochemical and Antinutritional Factors of Complementary Foods from Millet, Sorghum, Pumpkin and Amaranth Seed Flours. Int. Food Res. J. 2017, 25, 1869–1879.
  • Gibson, R. S.; Bailey, K. B.; Gibbs, M.; Ferguson, E. L. A Review of Phytate, Iron, Zinc, and Calcium Concentrations in Plant-based Complementary Foods Used in Low-income Countries and Implications for Bioavailability. Food Nutr. Bull. 2010, 31(2_suppl2), S134–46. DOI: 10.1177/15648265100312S206.
  • Tian, S.; Sun, Y.; Chen, Z.; Yang, Y.; Wang, Y. Functional Properties of Polyphenols in Grains and Effects of Physicochemical Processing on Polyphenols. J. Food Qual. 2019, 2019, 2793973. DOI: 10.1155/2019/2793973.
  • Tovar, L. E. R.; Gänzle, M. G., in Foods, 2021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.