600
Views
0
CrossRef citations to date
0
Altmetric
Review

Improvement of the Quality of Solid Ingredients of Instant Soups: A Review

, , ORCID Icon &

References

  • Leelaphiwat, P.; Harte, J. B.; Auras, R. A.; Ong, P. K. C.; Chonhenchob, V. Effects of Packaging Materials on the Aroma Stability of Thai “Tom Yam’ Seasoning Powder as Determined by Descriptive Sensory Analysis and Gas Chromatography-mass Spectrometry. J. Sci. Food Agric. 2017, 97(6), 1854–1860. DOI: 10.1002/jsfa.7986.
  • Sirisomboon, P.; Nawayon, J. Evaluation of Total Solids of Curry Soup Containing Coconut Milk by near Infrared Spectroscopy. J. Near Infrared Spectrosc. 2016, 24(2), 191–198. DOI: 10.1255/jnirs.1211.
  • Kondo, H.; Tomari, H. S.; Yamakawa, S.; Kitagawa, M.; Yamada, M.; Itou, S.; Yamamoto, T.; Uehara, Y. Long-term Intake of Miso Soup Decreases Nighttime Blood Pressure in Subjects with High-normal Blood Pressure or Stage I Hypertension. Hypertens. Res. 2019, 42(11), 1757–1767. DOI: 10.1038/s41440-019-0304-9.
  • Sunyoto, M.; Futiawati, R. The Influence of Full Cream Milk Powder Concentration on the Characteristics Of” Rasi” Instant Cream Soup. J Agric Sci Technol. A. 2012, 2(11A), 1218.
  • Ryndina, O. M.; Voropaeva, A. G. Traditional Food of the Tomsk Region Ukrainians: Dynamics in Time and Space. Vestnik Tomskogo Gosudarstvennogo Universiteta Istoriya-Tomsk State Univ J History. 2018, 55, 148–156.
  • Himaya, A.; Louis-Sylvestre, J. The Effect of Soup on Satiation. Appetite. 1998, 30(2), 199–210. DOI: 10.1006/appe.1997.0138.
  • Mattes, R.;. Soup and Satiety. Physiol. Behav. 2005, 83(5), 739–747. DOI: 10.1016/j.physbeh.2004.09.021.
  • Clegg, M. E.; Ranawana, V.; Shafat, A.; Henry, C. J. Soups Increase Satiety through Delayed Gastric Emptying yet Increased Glycaemic Response. Eur. J. Clin. Nutr. 2013, 67(1), 8–11. DOI: 10.1038/ejcn.2012.152.
  • Sanchez-Moreno, C.; Cano, M. P.; De Ancos, B.; Plaza, L.; Olmedilla, B. A.; Granado, F.; Martin, A. Consumption of High-pressurized Vegetable Soup Increases Plasma Vitamin C and Decreases Oxidative Stress and Inflammatory Biomarkers in Healthy Humans. J. Nutr. 2004, 134(11), 3021–3025. DOI: 10.1093/jn/134.11.3021.
  • Li, Y.; Fan, D.; Zhao, Y.; Wang, M. Effects of Quercetin and Cinnamaldehyde on the Nutrient Release from Beef into Soup during Stewing Process. LWT.2020, 131109712.
  • Kuroda, M.; Ninomiya, K. Association between Soup Consumption and Obesity: A Systematic Review with Meta-analysis. Physiol. Behav. 2020, 225, 113103.
  • Kaushik, J. S.; Narang, M.; Parakh, A. Fast Food Consumption in Children. Indian Pediatr. 2011, 48(2), 97–101. DOI: 10.1007/s13312-011-0035-8.
  • R, T. A.;. Instant Soup Product and Method of Preparation. US3666491A, May 30, 1972.
  • Van Buren, L.; Grun, C. H.; Basendowski, S.; Spraul, M.; Newson, R.; Eilander, A. Nutritional Quality of Dry Vegetable Soups. Nutrients. 2019, 11(6). DOI: 10.3390/nu11061270.
  • Jingsheng, L.; Meihong, L.; Jiahan, X.; Hao, Z. Research Status and Development Trend of Convenience Food. J Jilin Agric Univ. 2018, 40(4), 511–516.
  • Duan, X.; Zhang, M.; Mujumdar, A. S.; Wang, R. Trends in Microwave-Assisted Freeze Drying of Foods. Drying Technol. 2010, 28(4), 444–453. DOI: 10.1080/07373931003609666.
  • Ozturk, F.; Kalkan, S.; Elmas, E.; Elmas, S.; Baris, P.; Demir, O. Some Quality Parameters of Powdered Soups Prepared from Different Fish Species. Braz. Arch. Biol. Technol. 2019, 62.
  • Wang, R.; Zhang, M.; Mujumdar, A. S. Effect of Food Ingredient on Microwave Freeze Drying of Instant Vegetable Soup. LWT - Food Sci. Technol. 2010, 43(7), 1144–1150.
  • Martinez-Tome, M.; Murcia, M. A.; Mariscal, M.; Lorenzo, M. L.; Gomez-Murcia, V.; Bibiloni, M.; Jimenez-Monreal, A. M. Evaluation of Antioxidant Activity and Nutritional Composition of Flavoured Dehydrated Soups Packaged in Different Formats. Reducing the Sodium Content. J. Food Sci. Technol. Mysore. 2015, 52(12), 7850–7860. DOI: 10.1007/s13197-015-1940-y.
  • Bruins, M. J.; Dotsch-Klerk, M.; Matthee, J.; Kearney, M.; Van Elk, K.; Weber, P.; Eggersdorfer, M. A Modelling Approach to Estimate the Impact of Sodium Reduction in Soups on Cardiovascular Health in the Netherlands. Nutrients. 2015, 7(9), 8010–8019. DOI: 10.3390/nu7095375.
  • Shishir, M. R. I.; Chen, W. Trends of Spray Drying: A Critical Review on Drying of Fruit and Vegetable Juices. Trends Food Sci. Technol. 2017, 65, 49–67.
  • Balaban, N.; Rasooly, A. Review: Staphylococcal Enterotoxins. Int. J. Food Microbiol. 2000, 61(1), 1–10.
  • Zhang, L.; Duan, W.; Huang, Y.; Zhang, Y.; Sun, B.; Pu, D.; Tang, Y.; Liu, C. Sensory Taste Properties of Chicken (Hy-line Brown) Soup as Prepared with Five Different Parts of the Chicken.
  • Qi, J.; Xu, Y.; Xie, X.-F.; Zhang, W.-W.; Wang, H.-H.; Xu, X.-L.; Xiong, G.-Y. Gelatin Enhances the Flavor of Chicken Broth: A Perspective on the Ability of Emulsions to Bind Volatile Compounds. Food Chem. 2020, 333, 127463.
  • Nishimura, T.; Goto, S.; Miura, K.; Takakura, Y.; Egusa, A. S.; Wakabayashi, H. Umami Compounds Enhance the Intensity of Retronasal Sensation of Aromas from Model Chicken Soups. Food Chem. 2016, 196577–196583.
  • Taladrid, D.; Laguna, L.; Bartolomé, B.; Moreno-Arribas, M. V. Plant-derived Seasonings as Sodium Salt Replacers in Food. Trends Food Sci. Technol. 2020, 99, 194–202.
  • Fernandez-Lopez, J.; Botella-Martinez, C.; Navarro-rodriguez De Vera, C.; Sayas-Barbera, M. E.; Viuda-Martos, M.; Sanchez-Zapata, E.; Perez-alvarez, J. A. Vegetable Soups and Creams: Raw Materials, Processing, Health Benefits, and Innovation Trends. Plants-Basel. 2020, 9(12), 1769. DOI: 10.3390/plants9121769.
  • Rizzo, G.; Soy, B. L.; Foods, S. Their Role in Vegetarian Diets. Nutrients. 2018, 10(1), 43. DOI: 10.3390/nu10010043.
  • Alamu, E. O.; Busie, M.-D. Effect of Textured Soy Protein (TSP) Inclusion on the Sensory Characteristics and Acceptability of Local Dishes in Nigeria. Cogent Food Agric. 2019, 5(1), 1. DOI: 10.1080/23311932.2019.1671749.
  • Aiking, H.; De Boer, J. The Next Protein Transition. Trends Food Sci. Technol. 2020, 105, 515–522.
  • Liu, C.-J.; Liu, W. Development of a Kind of Kelp Beef Soup Stock. China Condiment. 2019, 44(7), 112–114.
  • Xuesong, Z.; Mouming, Z.; Weifeng, L.; Hanming, R.; Tongxue, L. Study on Isolation and Protein Composition of Chicken Meat. Food Ferment. Ind. 2005, 31(10), 9–12.
  • Qi, J.; Wang, H.-H.; Zhang, W.-W.; Deng, S.-L.; Zhou, G.-H.; Xu, X.-L. Identification and Characterization of the Proteins in Broth of Stewed Traditional Chinese Yellow-feathered Chickens. Poultr. Sci. 2018, 97(5), 1852–1860. DOI: 10.3382/ps/pey003.
  • Ozturk, F.; Kalkan, S.; Elmas, E.; Elmas, S.; Baris, P.; Demir, O. Some Quality Parameters of Powdered Soups Prepared from Different Fish Species. Braz. Arch. Biol. Technol. 2019, 62, e19180365.
  • Yanar, Y.; Celik, M. Seasonal Amino Acid Profiles and Mineral Contents of Green Tiger Shrimp (Penaeus Semisulcatus De Haan, 1844) and Speckled Shrimp (Metapenaeus Monoceros Fabricus, 1789) from the Eastern Mediterranean. Food Chem. 2006, 94(1), 33–36. DOI: 10.1016/j.foodchem.2004.09.049.
  • Masic, U.; Yeomans, M. R. Umami Flavor Enhances Appetite but Also Increases Satiety. Am. J. Clin. Nutr. 2014, 100(2), 532–538. DOI: 10.3945/ajcn.113.080929.
  • Gillette, M.;. Flavor Effects of Sodium Chloride. Food Technol (USA). 1985, 39(6), 47–52.
  • Reddy, K. A.; Marth, E. H. Reducing the Sodium Content of Foods - a Review. J. Food Prot. 1991, 54(2), 138–150. DOI: 10.4315/0362-028X-54.2.138.
  • Yuasa, M.; Koe, M.; Maeda, A.; Eguchi, A.; Abe, H.; Tominaga, M. Characterization of Flavor Component in Japanese Instant Soup Stocks ‘Dashi’. Int. J. Gastronomy Food Sci. 2017, 9, 55–61.
  • Mouritsen, O. G.; Duelund, L.; Petersen, M. A.; Hartmann, A. L.; Frost, M. B. Umami Taste, Free Amino Acid Composition, and Volatile Compounds of Brown Seaweeds. J. Appl. Phycol. 2019, 31(2), 1213–1232. DOI: 10.1007/s10811-018-1632-x.
  • Jo, M. N.; Lee, Y. M. Analyzing the Sensory Characteristics and Taste‐Sensor Ions of MSG Substitutes. J. Food Sci. 2008, 73(5), S191–S198. DOI: 10.1111/j.1750-3841.2008.00769.x.
  • Wang, S. C.; Tonnis, B. D.; Wang, M. L.; Zhang, S. K.; Adhikari, K. Investigation of Monosodium Glutamate Alternatives for Content of Umami Substances and Their Enhancement Effects in Chicken Soup Compared to Monosodium Glutamate. J. Food Sci. 2019, 84(11), 3275–3283. DOI: 10.1111/1750-3841.14834.
  • McClements, D. J.;. Advances in the Application of Ultrasound in Food Analysis and Processing. Trends Food Sci. Technol. 1995, 6(9), 293–299. DOI: 10.1016/S0924-2244(00)89139-6.
  • Qin, Y. X.; Cal, D. D.; Zhang, D. N.; Liu, Y.; Lai, K. Q. Characteristics of Volatile Flavor Components in Stewed Meat and Meat Broths Prepared with Repeatedly Used Broths Containing Star Anise. J. Food Meas. Charact. 2019, 14, 557–572.
  • Valchar, P.;. Spice in Meat Products - Basil. Maso. 2013, 24(2), 26–29.
  • Liu, X.; Zhao, G.; Tian, W.; Liu, Y.; Sun, L.; Liu, Y. Effects of Cinnamon Additions on Volatile Flavor Compounds of Stewed Chicken. Food Ferment. Ind. 2013, 39(6), 34–40.
  • Teng, X. X.; Zhang, M.; Devahastin, S. New Developments on Ultrasound-assisted Processing and Flavor Detection of Spices: A Review. Ultrason. Sonochem. 2019, 55, 297–307.
  • Valchar, P.;. Spice in Meat Products - Thyme. Maso. 2013, 24(6), 32–35.
  • Boelens, M.; Valois, P. J. D.; Wobben, H. J.; Gen, A. V. D. Volatile Flavour Compounds from Onion. J. Agric. Food Chem. 1971, 19(5), 984–991. DOI: 10.1021/jf60177a031.
  • Liu, H.; Zheng, J.; Liu, P.; Zeng, F. Pulverizing Processes Affect the Chemical Quality and Thermal Property of Black, White, and Green Pepper (Piper Nigrum L.). J. Food Sci. Technol. Mysore. 2018, 55(6), 2130–2142. DOI: 10.1007/s13197-018-3128-8.
  • Scott, N. O.; Burgess, B.; Tepper, B. J. Perception and Liking of Soups Flavored with Chipotle Chili and Ginger Extracts: Effects of PROP Taster Status, Personality Traits and Emotions. Food Qual. Preference. 2019, 73, 192–201.
  • Gallo, M.; Ferrara, L.; Naviglio, D. Application of Ultrasound in Food Science and Technology: A Perspective. Foods. 2018, 7(10), 18. DOI: 10.3390/foods7100164.
  • Desai, K. G. H.; Jin Park, H. Recent Developments in Microencapsulation of Food Ingredients. Drying Technol. 2005, 23(7), 1361–1394. DOI: 10.1081/DRT-200063478.
  • Shishir, M. R. I.; Xie, L.; Sun, C.; Zheng, X.; Chen, W. Advances in Micro and Nano-encapsulation of Bioactive Compounds Using Biopolymer and Lipid-based Transporters. Trends Food Sci. Technol. 2018, 7834–7860.
  • Shishir, M. R. I.; Taip, F. S.; Ab Aziz, N.; Talib, R. A.; Sarker, M. S. H. Optimization of Spray Drying Parameters for Pink Guava Powder Using RSM. Food Sci. Biotechnol. 2016, 25(2), 461–468. DOI: 10.1007/s10068-016-0064-0.
  • Sanchez-Reinoso, Z.; Osorio, C.; Herrera, A. Effect of Microencapsulation by Spray Drying on Cocoa Aroma Compounds and Physicochemical Characterisation of Microencapsulates. Powder Technol. 2017, 318, 110–119.
  • Sultana, A.; Miyamoto, A.; Lan Hy, Q.; Tanaka, Y.; Fushimi, Y.; Yoshii, H. Microencapsulation of Flavors by Spray Drying Using Saccharomyces Cerevisiae. J. Food Eng. 2017, 199, 36–41.
  • Hecht, J. P.; King, C. J. Spray Drying: Influence of Developing Drop Morphology on Drying Rates and Retention of Volatile Substances. 2. Modeling. Ind. Eng. Chem. Res. 2000, 39(6), 1766–1774.
  • Reineccius, G. A.;. The Spray Drying of Food Flavors. Drying Technol. 2004, 22(6), 1289–1324. DOI: 10.1081/DRT-120038731.
  • Tadros, T.; Izquierdo, P.; Esquena, J.; Solans, C. Formation and Stability of Nano-emulsions. Adv. Colloid Interface Sci. 2004, 108–109, 303-318.
  • Mozafari, M. R.;. Bioactive Entrapment and Targeting Using Nanocarrier Technologies: An Introduction. In Nanocarrier Technologies: Frontiers of Nanotherapy; Mozafari, M.R., Dordrecht, Eds.; Springer: Netherlands, 2006; pp 1–16.
  • Chen, H.; Khemtong, C.; Yang, X.; Chang, X.; Gao, J. Nanonization Strategies for Poorly Water-soluble Drugs. Drug Discovery Today. 2011, 16(7), 354–360. DOI: 10.1016/j.drudis.2010.02.009.
  • McClements, D. J.;. Nanoemulsions versus Microemulsions: Terminology, Differences, and Similarities. Soft Matter. 2012, 8(6), 1719–1729. DOI: 10.1039/C2SM06903B.
  • He, X.; Hwang, H.-M. Nanotechnology in Food Science: Functionality, Applicability, and Safety Assessment. J. Food Drug Anal. 2016, 24(4), 671–681. DOI: 10.1016/j.jfda.2016.06.001.
  • Saifullah, M.; Ahsan, A.; Shishir, M. R. I. 12 - Production, Stability and Application of Micro- and Nanoemulsion in Food Production and the Food Processing Industry. In Emulsions; Grumezescu, A.M., Ed.; Academic Press: Salt Lake City, American, 2016; pp 405–442.
  • Salvia-Trujillo, L.; Martin-Belloso, O.; McClements, D. J. Excipient Nanoemulsions for Improving Oral Bioavailability of Bioactives. Nanomaterials. 2016, 6(1). DOI: 10.3390/nano6010017.
  • Patana-anake, P.; Barringer, S. Effect of Temperature, pH, and Food Additives on Tomato Product Volatile Levels. Int. Food Res. J. 2015, 22(2), 561–571.
  • Yuan, Z.;. Study on the Technology of Instant Food Clam and Egg Soup. master.Dissertation; Dalian University of Technology: DaLian, LiaoNing, China, 2017.
  • Li, H.; Yan, S.; Yang, L.; Xu, M.; Ji, J.; Liu, Y.; Wang, J.; Sun, B. High-pressure Homogenization Thinned Starch Paste and Its Application in Improving the Stickiness of Cooked Non-glutinous Rice. LWT Food Sci. Technol. 2020, 131, 109750.
  • Li, H.; Yan, S.; Yang, L.; Xu, M.; Ji, J.; Mao, H.; Song, Y.; Wang, J.; Sun, B. Starch Gelatinization in the Surface Layer of Rice Grains Is Crucial in Reducing the Stickiness of Parboiled Rice. Food Chem. 2020, 341(Pt 2), 128202-128202. DOI: 10.1016/j.foodchem.2020.128202.
  • Senanayake, S.; Ranaweera, K.; Gunaratne, A.; Bamunuarachchi, A. Formulation of Vegetable Soup Mixture Using Physically Modified Sweet Potato Starch as a Thickener. J. Food Process. Technol. 2014, 5(4), 1.
  • Wan, L.;. Study on Processing Technology of Instant Edible Fungus Compound Soup. Master.Dissertation; Jiangnan University: Wuxi, Jiangsu, China, 2013.
  • Lee, S.-J.; Yang, Y.-J.; Chung, H.-J.; Lim, S.-T. Effect of Dry Heating on Physicochemical Properties of Pregelatinized Rice Starch. Cereal Chem. %* ©AACC. 2017, 94(6), 928–933.
  • Yuan-pin, Y.; Guo-qing, X.; Ting, F. Research Reviews on Sweet Potato Cross-linked Starch. Food Ind. 2015, 36, 240–243.
  • Wongsagonsup, R.; Pujchakarn, T.; Jitrakbumrung, S.; Chaiwat, W.; Fuongfuchat, A.; Varavinit, S.; Dangtip, S.; Suphantharika, M. Effect of Cross-linking on Physicochemical Properties of Tapioca Starch and Its Application in Soup Product. Carbohydr. Polym. 2014, 101, 656–665.
  • Aijun, H.; Jie, Z.; Zhiping, Q.; Fei, Y. Properties of Modified Starches and Their Applications in Food Industry. Cereals&Oils. 2010, (6), 1–4. Chinese.
  • Liu, W.; He, S.; Cao, Y.; Yang, J.; Shi, Q.; Tian, Y. A Paste Features of Potato Starch and Its Seven Modified Starch. China Food Additiv. 2015, 12, 60–64.
  • Mitchell, M.; Brunton, N. P.; Wilkinson, M. G. Impact of Salt Reduction on the Instrumental and Sensory Flavor Profile of Vegetable Soup. Food Res. Int. 2011, 44(4), 1036–1043. DOI: 10.1016/j.foodres.2011.03.007.
  • Kim, M. K.; Lopetcharat, K.; Gerard, P. D.; Drake, M. A. Consumer Awareness of Salt and Sodium Reduction and Sodium Labeling. J. Food Sci. 2012, 77(9), S307–S313. DOI: 10.1111/j.1750-3841.2012.02843.x.
  • Nir, Z.; Hartal, D.; Zach, E. Use of Soluble Tomato Solids for Reducing the Salt Content of Food Products, US 2018/0360051 A1, 2018.
  • Gou, P.; Guerrero, L.; Gelabert, J.; Arnau, J. Potassium Chloride, Potassium Lactate and Glycine as Sodium Chloride Substitutes in Fermented Sausages and in Dry-cured Pork Loin. Meat Sci. 1996, 42(1), 37–48. DOI: 10.1016/0309-1740(95)00017-8.
  • Inguglia, E. S.; Zhang, Z.; Tiwari, B. K.; Kerry, J. P.; Burgess, C. M. Salt Reduction Strategies in Processed Meat Products – A Review. Trends Food Sci. Technol. 2017, 59, 70–78.
  • Smith, S. T.; Metzger, L.; Drake, M. A. Evaluation of Whey, Milk, and Delactosed Permeates as Salt Substitutes. J. Dairy Sci. 2016, 99(11), 8687–8698. DOI: 10.3168/jds.2016-10904.
  • Ghawi, S. K.; Rowland, I.; Methven, L. Enhancing Consumer Liking of Low Salt Tomato Soup over Repeated Exposure by Herb and Spice Seasonings. Appetite. 2014, 81, 20–29.
  • Dong, H.; Liu, J.; Zeng, X.; Bai, W.; Yu, L. Enzymatic Hydrolysis Pretreatment for Enhancing the Protein Solubility and Physicochemical Quality of Cordyceps Militaris Chicken Soup. Food Sci. Nutr. 2020, 8(5), 2436–2444. DOI: 10.1002/fsn3.1533.
  • Yao, Y.; Wang, M.; Liu, Y.; Han, L.; Liu, X. Insights into the Improvement of the Enzymatic Hydrolysis of Bovine Bone Protein Using Lipase Pretreatment. Food Chem. 2020, 302, 125199.
  • Li, Y.-X.; Zhu, Y.-C.; Wei, Y.; Ji, Y.-C. Optimization of Enzymatic Hydrolysis of Bovine Bone Broth and Analysis of Calcium Content by Response Surface Test. Food Res. Dev. 2020, 41(3), 92–96.
  • Zhao, D.; Xu, Y.; Gu, T.; Wang, H.; Yin, Y.; Sheng, B.; Li, Y.; Nian, Y.; Wang, C.; Li, C.;; et al. Peptidomic Investigation of the Interplay between Enzymatic Tenderization and the Digestibility of Beef Semimembranosus Proteins. J. Agric. Food Chem. 2020, 68(4), 1136–1146.
  • Donahue, E.; Crowe, K. M.; Lawrence, J. Protein-enhanced Soups: A Consumer-accepted Food for Increasing Dietary Protein Provision among Older Adults. Int. J. Food Sci. Nutr. 2015, 66(1), 104–107. DOI: 10.3109/09637486.2014.953451.
  • Liu, Y.; Chen, Y.; Xia, Y. Changes in the Protein and Amino Acid of Limited Enzymatic Hydrolysis Chicken Soup during Cooking. Sci. Technol. Food Ind. 2015, 36(24), 235–238.
  • Yuling, L.; Yayun, C.; Yangyi, X. Changes in the Protein and Amino Acid of Limited Enzymatic Hydrolysis Chicken Soup during Cooking. Sci. Technol. Food Ind. 2015, 36(24), 235–238.
  • Yin, Z.; Wei, W.; Xinhui, W.; Jiaming, Z. Bone Soup: Protein Nutrition and Enzymatic Hydrolysis Process Optimized by Response Surface Method. J. Food Nutr. Res. 2014, 53(1), 1–12.
  • Zhou, C.; Meiling, Z.; Tao, Y.; Shanbai, X.; Juan, Y.; Yang, H. Effects of Four Kinds of Proteases on Properties of Silver Carp Fish Bone Soup. J Huazhong Agric Univ. 2019, 38(6), 41–47.
  • Zou, J.; Xu, M.; Zou, Y.; Yang, B. Chemical Compositions and Sensory Characteristics of Pork Rib and Silkie Chicken Soups Prepared by Various Cooking Techniques. Food Chem. 2021, 345, 128755.
  • Jinzhuang, Z.; Mengzhou, Z.; Qunying, X. Progress in Fat Substitutes Used in Food. China Oils Fats. 2017, 42(11), 157–160.
  • Proserpio, C.; Lavelli, V.; Laureati, M.; Pagliarini, E. Effect of Pleurotus Ostreatus Powder Addition in Vegetable Soup on ß-glucan Content, Sensory Perception, and Acceptability. Food Sci. Nutr. 2019, 7(2), 730–737. DOI: 10.1002/fsn3.917.
  • Pal, S.; Bhattacharjee, P. Lutein-fortified Potato Soup and Freeze-dried Lutein Powder Designed with Supercritical Carbon Dioxide Extract of Yellow Corn Kernels are Promising Nutraceutical Foods. J. Food Process. Preserv. 2019, 43(8), 8. DOI: 10.1111/jfpp.14005.
  • Lafarga, T.; Gabriel Acien-Fernandez, F.; Castellari, M.; Villaro, S.; Bobo, G.; Aguilo-Aguayo, I. Effect of Microalgae Incorporation on the Physicochemical, Nutritional, and Sensorial Properties of an Innovative Broccoli Soup. LWT Food Sci. Technol. 2019, 111, 167–174.
  • Alvarez-Jubete, L.; Valverde, J.; Kehoe, K.; Reilly, K.; Rai, D. K.; Barry-Ryan, C. Development of a Novel Functional Soup Rich in Bioactive Sulforaphane Using Broccoli (Brassica Oleracea L. Ssp Italica) Florets and Byproducts. Food Bioprocess. Technol. 2014, 7(5), 1310–1321.
  • Ashfaq, F.; Butt, M. S.; Bilal, A.; Suleria, H. A. R. Impact of Solvent and Supercritical Fluid Extracts of Green Tea on Physicochemical and Sensorial Aspects of Chicken Soup. Aims Agric Food. 2019, 4(3), 794–806. DOI: 10.3934/agrfood.2019.3.794.
  • Rubilar, M.; Morales, E.; Contreras, K.; Ceballos, C.; Acevedo, F.; Villarroel, M.; Shene, C. Development of a Soup Powder Enriched with Microencapsulated Linseed Oil as a Source of Omega-3 Fatty Acids. Eur. J. Lipid Sci. Technol. 2012, 114(4), 423–433. DOI: 10.1002/ejlt.201100378.
  • Brown, G. D.; Gordon, S. Immune Recognition of Fungal β-glucans. Cell. Microbiol. 2005, 7(4), 471–479. DOI: 10.1111/j.1462-5822.2005.00505.x.
  • Bobov?ák, M.; Kuniaková, R.; Gabri, J.; Majtán, J. Effect of Pleuran (β-glucan from Pleurotus Ostreatus) Supplementation on Cellular Immune Response after Intensive Exercise in Elite Athletes. Appl. Physiol. Nutr. Metab. 2010, 35(6), 755–762. DOI: 10.1139/H10-070.
  • Zhang, Y.; Tang, L. Discovery and Development of Sulforaphane as a Cancer Chemopreventive Phytochemical. Acta Pharmacol. Sin. 2007, 28(9), 1343–1354. DOI: 10.1111/j.1745-7254.2007.00679.x.
  • Alvarez-Jubete, L.; Valverde, J.; Kehoe, K.; Reilly, K.; Rai, D. K.; Barry-Ryan, C. Development of a Novel Functional Soup Rich in Bioactive Sulforaphane Using Broccoli (Brassica Oleracea L. Ssp. Italica) Florets and Byproducts. Food Bioprocess. Technol. 2014, 7(5), 1310–1321.
  • Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutrit. 2018, 587. doi:10.3389/fnut.2018.00087.
  • Ma, L.; Lin, X.-M. Effects of Lutein and Zeaxanthin on Aspects of Eye Health. J. Sci. Food Agric. 2010, 90, 02–12.
  • Pal, S.; Bhattacharjee, P. Lutein‐fortified Potato Soup and Freeze‐dried Lutein Powder Designed with Supercritical Carbon Dioxide Extract of Yellow Corn Kernels are Promising Nutraceutical Foods. J. Food Process. Preserv. 2019, 43, e10445.
  • Qin, L.; Kexue, Z.; Huiming, Z. Electric Nose Analysis of the Effect of Cooking Time on the Flavor of Three Species of Edible Mushroom Soups. Food Sci. 2010, 31(16), 151–155.
  • Rotola‐Pukkila, M. K.; Pihlajaviita, S. T.; Kaimainen, M. T.; Hopia, A. I. Concentration of Umami Compounds in Pork Meat and Cooking Juice with Different Cooking Times and Temperatures. J. Food Sci. 2015. 80(12). C2711-C2716%* ©. 2015 Institute of Food Technologists®. . 10.1111/1750-3841.13127
  • Guo, W.; Zhang, J.; Jia, C.; Zhao, S.; Xiong, S.; Weng, W. Influence of Cooking Conditions of Induction Heating Pressure Cooker on the Quality of Chicken Soup. Food Ind. 2020, 41, 319–324.
  • Zhu, L.; Chen, L.-L.; Yuan, M.-I.; Bai, C.-Q.; Jiang, Y.; Zhao, L. Effect of Processing Methods on the Nutritional Components of Mullet Soup. China Condiment. 2017, 42(9), 61–72.
  • Pérez-Palacios, T.; Eusebio, J.; Ferro Palma, S.; Carvalho, M. J.; Mir-Bel, J.; Antequera, T. Taste Compounds and Consumer Acceptance of Chicken Soups as Affected by Cooking Conditions. Int. J. Food Prop. 2017, 20(sup1), S154–S165. DOI: 10.1080/10942912.2017.1291678.
  • Zhang, J.; Yao, Y.; Ye, X.; Fang, Z.; Chen, J.; Wu, D.; Liu, D.; Hu, Y. Effect of Cooking Temperatures on Protein Hydrolysates and Sensory Quality in Crucian Carp (Carassius Auratus) Soup. J. Food Sci. Technol. 2013, 50(3), 542–548. DOI: 10.1007/s13197-011-0376-2.
  • Qin, T.; Kejian, W.; Wenwen, X.; Dan, J.; Shanbai, X. Optimizing the Cooking Process of Silver Carp Head Soup and Effects of Cooking Modes on the Qualities of Soups. J Huazhong Agric Univ. 2014, 33(1), 103–111.
  • Krokida, M. K.; Maroulis, Z. B. Effect of Drying Method on Shrinkage and Porosity. Drying Technol. 1997, 15(10), 2441–2458. DOI: 10.1080/07373939708917369.
  • Krokida, M. K.; Karathanos, V. T.; Maroulis, Z. B. Compression Analysis of Dehydrated Agricultural Products. Drying Technol. 2000, 18(1–2), 395–408. DOI: 10.1080/07373930008917711.
  • Qiu, J.; Boom, R. M.; Schutyser, M. A. I. Agitated Thin-film Drying of Foods. Drying Technol. 2019, 37(6), 735–744. DOI: 10.1080/07373937.2018.1458037.
  • Moses, J. A.; Norton, T.; Alagusundaram, K.; Tiwari, B. K. Novel Drying Techniques for the Food Industry. Food Eng. Rev. 2014, 6(3), 43–55. DOI: 10.1007/s12393-014-9078-7.
  • Sambo Datsugwai, M. S.; Abdulkadir, A.; Vincent, B. T. Microbial Quality and Sensory Characteristics of Instant Nigerian Egusi Soups. Annals Food Sci. Technol. 2019, 20(3), 494–501.
  • Singh, V.; Kaur, K. Development, Formulation and Shelf Life Evaluation of Baby Corn Soup Mix from Industrial By-products. J. Food Sci. Technol. Mysore. 2020, 57(5), 1917–1925. DOI: 10.1007/s13197-019-04227-1.
  • Azizpour,Mehran,Mohebbi,Mohebbat,Khodaparast, H.; Hossein, M.; VaridiMehdi. Foam-mat Drying of Shrimp: Characterization and Drying Kinetics of Foam. Agric Eng Int CIGR J. 2013, 15, 159–165.
  • Krasaekoopt, W.; Bhatia, S. Production of Yogurt Powder Using Foam-mat Drying. AU J. Technol. 2012, 15, 166–171.
  • Sidhu, G. K.; Singh, M.; Kaur, P. Effect of Operational Parameters on Physicochemical Quality and Recovery of Spray‐dried Tomato Powder. J. Food Process. Preserv. 2019, 43, e14120.
  • Singh, S.; Ghosh, S.; Patil, G. R. Development of a Mushroom-whey Soup Powder. Int. J. Food Sci. Technol. 2003, 38(2), 217–224. DOI: 10.1046/j.1365-2621.2003.00661.x.
  • Zhang, Y.; Yu, Q.; Nie, Z.; Zheng, Y. Experimental Study on Technology of Vacuum Freeze-drying of Concentrated Soup of Yak Bone. Sci. Technol. Food Ind. 2014, 35(1), 259. Chinese.
  • Ran-jing, C.; Li, L.; Wei, L.; Xiao-qiang, G.; Xiao-jun, G. Process of Drying “Binaural Soup” Instant Food. Food Sci. Technol. 2014, 39(12), 133–136. Chinese.
  • Yan, L.; Jun, L. Method for Manufacturing Instant Egg/edible Bird’s Nest Soup with Fermented Glutinous Rice. US 2018/0103666A1, Apr 19, 2018.
  • Cheng-Yu, L.; Tong, L.; Ting-Ting, L.; Jia-Mei, Z.; Yan-Rong, Z. Optimization for Production Process of Convenient Edible Fungi Soup. J. Food Saf. Qual. 2016, 7(3), 1275–1282.
  • Wang, R.; Zhang, M.; Mujumdar, A. S.; Sun, J.-C. Microwave Freeze–Drying Characteristics and Sensory Quality of Instant Vegetable Soup. Drying Technol. 2009, 27(9), 962–968. DOI: 10.1080/07373930902902040.
  • Qiu, J.; Acharya, P.; Jacobs, D. M.; Boom, R. M.; Schutyser, M. A. I. A Systematic Analysis on Tomato Powder Quality Prepared by Four Conductive Drying Technologies. Innovative Food Sci. Emerg. Technol. 2019, 54, 103–112.
  • Pawar, S. B.; Patil, R.; Mujumdar, A. S.; Thorat, B. N. Mathematical Modeling of Agitated Thin-Film Dryer. Drying Technol. 2011, 29(6), 719–728. DOI: 10.1080/07373937.2010.526732.
  • Marques, L. G.; Ferreira, M. C. F.; J.T. Freeze-drying of Acerola (Malpighia Glabra L.). Chem. Eng. Process. 2007, 46(5), 451–457. DOI: 10.1016/j.cep.2006.04.011.
  • Tan, L. W.; Ibrahim, M. N.; Kamil, R.; Taip, F. S. Empirical Modeling for Spray Drying Process of Sticky and Non-sticky Products. Procedia Food Sci. 2011, 1, 690–697.
  • Koc, B.; Sakin-Yilmazer, M.; Kaymak-Ertekin, F.; Balkir, P. Physical Properties of Yoghurt Powder Produced by Spray Drying. J. Food Sci. Technol. Mysore. 2014, 51(7), 1377–1383. DOI: 10.1007/s13197-012-0653-8.
  • Dalmoro, A.; Barba, A. A.; Lamberti, G.; d’Amore, M. Intensifying the Microencapsulation Process: Ultrasonic Atomization as an Innovative Approach. Eur. J. Pharm. Biopharm. 2012, 80(3), 471–477. DOI: 10.1016/j.ejpb.2012.01.006.
  • Klaypradit, W.; Huang, Y.-W. Fish Oil Encapsulation with Chitosan Using Ultrasonic Atomizer. LWT - Food Sci. Technol. 2008, 41(6), 1133–1139. DOI: 10.1016/j.lwt.2007.06.014.
  • Goula, A. M.; Adamopoulos, K. G. Retention of Ascorbic Acid during Drying of Tomato Halves and Tomato Pulp. Drying Technol. 2006, 24(1), 57–64. DOI: 10.1080/07373930500538709.
  • Mousa, N.; Farid, M. Microwave Vacuum Drying of Banana Slices. Drying Technol. 2002, 20(10), 2055–2066. DOI: 10.1081/DRT-120015584.
  • Xu, Y. Y.; Zhang, M.; Tu, D. Y.; Sun, J. C.; Zhou, L. Q.; Mujumdar, A. S. A Two-stage Convective Air and Vacuum Freeze-drying Technique for Bamboo Shoots. Int. J. Food Sci. Technol. 2005, 40(6), 589–595. DOI: 10.1111/j.1365-2621.2005.00956.x.
  • Huang, L.-L.; Zhang, M.; Yan, W.-Q.; Mujumdar, A. S.; Sun, D.-F. Effect of Coating on Post-drying of Freeze-dried Strawberry Pieces. J. Food Eng. 2009, 92(1), 107–111. DOI: 10.1016/j.jfoodeng.2008.10.031.
  • Rui, W.;. Study on the Process and Mechanism of High-efficiency Microwave Freeze-drying of Typical Vegetable Products. doctor.Dissertation; Jiangnan University: Wuxi, Jiangsu, China, 2010.
  • Wang, Y.; Zhang, M.; Mujumdar, A. S.; Mothibe, K. J. Microwave-Assisted Pulse-Spouted Bed Freeze-Drying of Stem Lettuce Slices-Effect on Product Quality. Food Bioprocess. Technol. 2013, 6(12), 3530–3543. DOI: 10.1007/s11947-012-1017-0.
  • Bhatta, S.; Stevanovic Janezic, T.; Ratti, C. Freeze-Drying of Plant-Based Foods. Foods (Basel, Switzerland). 2020, 9(1), 1. DOI: 10.3390/foods9010087.
  • Ratti, C.;. Hot Air and Freeze-drying of High-value Foods: A Review. J. Food Eng. 2001, 49(4), 311–319. DOI: 10.1016/S0260-8774(00)00228-4.
  • Zhang, M.; Tang, J.; Mujumdar, A. S.; Wang, S. Trends in Microwave-related Drying of Fruits and Vegetables. Trends Food Sci. Technol. 2006, 17(10), 524–534. DOI: 10.1016/j.tifs.2006.04.011.
  • Wang, R.; Zhang, M.; Mujumdar, A. S. Effect of Osmotic Dehydration on Microwave Freeze-Drying Characteristics and Quality of Potato Chips. Drying Technol. 2010, 28(6), 798–806. DOI: 10.1080/07373937.2010.482700.
  • Jiang, H.; Zhang, M.; Mujumdar, A. S.; Lim, R.-X. Comparison of Drying Characteristic and Uniformity of Banana Cubes Dried by Pulse-spouted Microwave Vacuum Drying, Freeze Drying and Microwave Freeze Drying. J. Sci. Food Agric. 2014, 94(9), 1827–1834. DOI: 10.1002/jsfa.6501.
  • Kha, T. C.; Nguyen, M. H.; Roach, P. D. Effects of Spray Drying Conditions on the Physicochemical and Antioxidant Properties of the Gac (Momordica Cochinchinensis) Fruit Aril Powder. J. Food Eng. 2010, 98(3), 385–392. DOI: 10.1016/j.jfoodeng.2010.01.016.
  • Rajan, R.; Pandit, A. B. Correlations to Predict Droplet Size in Ultrasonic Atomisation. Ultrasonics. 2001, 39(4), 235–255. DOI: 10.1016/S0041-624X(01)00054-3.
  • Dalmoro, A.; Barba, A. A.; d’Amore, M. Analysis of Size Correlations for Microdroplets Produced by Ultrasonic Atomization. Sci. World J. 2013. DOI: 10.1155/2013/482910.
  • Gogate, P. R.;. 30 - the Use of Ultrasonic Atomization for Encapsulation and Other Processes in Food and Pharmaceutical Manufacturing. In Power Ultrasonics; Gallego-Juárez, J.A., Graff, K.F., Eds.; Publishing: Oxford, Woodhead, 2015; pp 911–935.
  • Yang, F. L.; Zhang, M.; Mujumdar, A. S.; Zhong, Q. F.; Wang, Z. S. Enhancing Drying Efficiency and Product Quality Using Advanced Pretreatments and Analytical tools-An Overview. Drying Technol. 2018, 36(15), 1824–1838. DOI: 10.1080/07373937.2018.1431658.
  • Guo, Q.; Sun, D.-W.; Cheng, J.-H.; Han, Z. Microwave Processing Techniques and Their Recent Applications in the Food Industry. Trends Food Sci. Technol. 2017, 67, 236–247.
  • Zhang, M.; Chen, H.; Mujumdar, A. S.; Tang, J.; Miao, S.; Wang, Y. Recent Developments in High-quality Drying of Vegetables, Fruits, and Aquatic Products. Crit. Rev. Food Sci. Nutr. 2017, 57(6), 1239–1255. DOI: 10.1080/10408398.2014.979280.
  • Gould, J.; Kenyon, E. Gas Discharge and Electric Field Strength in Microwave Freeze-drying. J Microwave Power. 1971, 6(2), 151–167. DOI: 10.1080/00222739.1971.11688794.
  • Arsem, H.; Ma, Y. Aerosol Formation during the Microwave Freeze Dehydration of Beef. Biotechnol. Prog. 1985, 1(2), 104–110. DOI: 10.1002/btpr.5420010207.
  • Wang, R.; Zhang, M.; Mujumdar, A. S. Effect of Food Ingredient on Microwave Freeze Drying of Instant Vegetable Soup. LWT Food Sci. Technol. 2010, 43(7), 1144–1150.
  • Venkatesh, M. S.; Raghavan, G. S. V. An Overview of Microwave Processing and Dielectric Properties of Agri-food Materials. Biosyst. Eng. 2004, 88(1), 1–18. DOI: 10.1016/j.biosystemseng.2004.01.007.
  • Heredia, A.; Barrera, C.; Andres, A. Drying of Cherry Tomato by a Combination of Different Dehydration Techniques. Comparison of Kinetics and Other Related Properties. J. Food Eng. 2007, 80(1), 111–118. DOI: 10.1016/j.jfoodeng.2006.04.056.
  • Coronel, P.; Simunovic, J.; Sandeep, K. P.; Cartwright, G. D.; Kumar, P. Sterilization Solutions for Aseptic Processing Using a Continuous Flow Microwave System. J. Food Eng. 2008, 85(4), 528–536. DOI: 10.1016/j.jfoodeng.2007.08.016.
  • Wang, R.; Zhang, M.; Mujumdar, A. S.; Jiang, H. Effect of Salt and Sucrose Content on Dielectric Properties and Microwave Freeze Drying Behavior of Re-structured Potato Slices. J. Food Eng. 2011, 106(4), 290–297. DOI: 10.1016/j.jfoodeng.2011.05.015.
  • Liu, W.; Zhang, M.; Devahastin, S.; Wang, W. Establishment of a Hybrid Drying Strategy for Instant Cream Mushroom Soup Based on Starch Retrogradation Behavior. Int. J. Biol. Macromol. 2020, 147, 463–472.
  • Wang, L.; Xu, B.; Wei, B.; Zeng, R. Low Frequency Ultrasound Pretreatment of Carrot Slices: Effect on the Moisture Migration and Quality Attributes by Intermediate-wave Infrared Radiation Drying. Ultrason. Sonochem. 2018, 40, 619–628.
  • Xu, B.; Yuan, J.; Wang, L.; Lu, F.; Wei, B.; Azam, R. S. M.; Ren, X.; Zhou, C.; Ma, H.; Bhandari, B. Effect of Multi-frequency Power Ultrasound (MFPU) Treatment on Enzyme Hydrolysis of Casein. Ultrason. Sonochem. 2020, 63, 104930.
  • Lagnika, C.; Zhang, M.; Mothibe, K. J. Effects of Ultrasound and High Pressure Argon on Physico-chemical Properties of White Mushrooms (Agaricus Bisporus) during Postharvest Storage. Postharvest. Biol. Technol. 2013, 82, 87–94.
  • Cheng, X. F.; Zhang, M.; Adhikari, B.; Islam, M. N. Effect of Power Ultrasound and Pulsed Vacuum Treatments on the Dehydration Kinetics, Distribution, and Status of Water in Osmotically Dehydrated Strawberry: A Combined NMR and DSC Study. Food Bioprocess. Technol. 2014, 7(10), 2782–2792. DOI: 10.1007/s11947-014-1355-1.
  • Hongsheng, Z.; Xiaofang, X.; Huan, W.; Hua, Z. Research Progress on Ultrasonic Sterilization Technique. Tech Acoust. 2010, 29(5), 498–502.
  • Gao, S.; Lewis, G. D.; Ashokkumar, M.; Hemar, Y. Inactivation of Microorganisms by Low-frequency High-power Ultrasound: 1. Effect of Growth Phase and Capsule Properties of the Bacteria. Ultrason. Sonochem. 2014, 21(1), 446–453. DOI: 10.1016/j.ultsonch.2013.06.006.
  • Izidoro, D. R.; Sierakowski, M.-R.; Isidoro Haminiuk, C. W.; De Souza, C. F.; Scheer, A. D. P. Physical and Chemical Properties of Ultrasonically, Spray-dried Green Banana (Musa Cavendish) Starch. J. Food Eng. 2011, 104(4), 639–648. DOI: 10.1016/j.jfoodeng.2011.02.002.
  • Turan, F. T.; Cengiz, A.; Kahyaoglu, T. Evaluation of Ultrasonic Nozzle with Spray-drying as a Novel Method for the Microencapsulation of Blueberry’s Bioactive Compounds. Innovative Food Sci. Emerg. Technol. 2015, 32, 136–145.
  • Turan, F. T.; Cengiz, A.; Sandikci, D.; Dervisoglu, M.; Kahyaoglu, T. Influence of an Ultrasonic Nozzle in Spray-drying and Storage on the Properties of Blueberry Powder and Microcapsules. J. Sci. Food Agric. 2016, 96(12), 4062–4076. DOI: 10.1002/jsfa.7605.
  • Janjatovic, D.; Benkovic, M.; Srecec, S.; Jezek, D.; Spoljaric, I.; Bauman, I. Assessment of Powder Flow Characteristics in Incoherent Soup Concentrates. Adv. Powder Tech. 2012, 23(5), 620–631. DOI: 10.1016/j.apt.2011.07.003.
  • Xu, H.; Zhang, X.; Xie, X.; Kong, W.; Ma, H.; Liu, D. Effects of Different Drying Methods on Moisture Changes in Wolfberry Powder during Moisture Absorption. Food Ferment. Ind. 2019, 45(5), 151–156.
  • Cheigh, C.-I.; Wee, H.-W.; Chung, M.-S. Caking Characteristics and Sensory Attributes of Ramen Soup Powder Evaluated Using a Low-resolution Proton NMR Technique. Food Res. Int. 2011, 44(4), 1102–1107. DOI: 10.1016/j.foodres.2011.03.026.
  • Yanhua, L.; Weijun, W.; Liang, G.; Shao Zhipengtingting, Z. Research Progress on the Interactions and Caking Behavior of Food Powder Particles. Chin Cereals Oils Assoc. 2019, 34(3), 126–132. Chinese.
  • Zafar, U.; Vivacqua, V.; Calvert, G.; Ghadiri, M.; Cleaver, J. A. S. A Review of Bulk Powder Caking. Powder Technol. 2017, 313, 389–401.
  • Li, L.;. Analysis and Research in the Production Process of Soup Buns. Guangdong Chem Indus. 2017, 44(24), 71+93. Chinese.
  • Hye-Won, W.; Young-Jin, C.; Myong-Soo, C. Effect of Modified Starches on Caking Inhibition in Ramen Soup. Food Sci. Biotechnol. 2007, 16(4), 646–649.
  • Chang, L. S.; Karim, R.; Mohammed, A. S.; Chai, K. F.; Ghazali, H. M. Moisture Sorption Isotherm and Shelf-life Prediction of Anticaking Agent Incorporated Spray-dried Soursop (Annona Muricata L.) Powder. J. Food Process Eng. 2019, 42(5). DOI: 10.1111/jfpe.13134.
  • Fan, J.;. Using Packaging to Improve the Caking and Flavor Escape of Instant Tea Powder during Its Shelf Life. China Packaging. 2014, 34(7), 31/33. Chinese.
  • Ghorban, Z.; Yasaman, E.; Reza Valipour, A.; Masoumeh, R.; Fereshteh, K.; Afshin, F. Production of a Semi Ready-to-eat Shrimp Soup Powder and Assessment of Its Shelf Life. Nutr Food Sci Res. 2019, 6(1), 41–50. DOI: 10.29252/nfsr.6.1.41.
  • Beigh, M. A.; Hussain, S. Z.; Naseer, B.; Rouf, A.; Raja, T. A. Storage Studies of Water Chestnut Flour. J. Food Process. Preserv. 2019, 44, e14321.
  • Shivani, P.; Amarjeet, K.; Poonam, A. S. Chickpea Flour Supplemented High Protein Composite Formulation for Flatbreads: Effect of Packaging Materials and Storage Temperature on the Ready Mix. Food Pack. Shelf Life. 2017, 11, 125–132.
  • Singh, U.; Sagar, V. R. Quality Characteristics of Dehydrated Leafy Vegetables Influenced by Packaging Materials and Storage Temperature. J Sci Indus Res. 2010, 69(10), 785–789.
  • Wong, C. W.; Lim, W. T. Storage Stability of Spray-dried Papaya (Carica Papaya L.) Powder Packaged in Aluminium Laminated Polyethylene (ALP) and Polyethylene Terephthalate (PET). Int. Food Res. J. 2016, 23(5), 1887–1894.
  • Sagar, V. R.;. Effect of Pre-treatment and Packaging on Quality of Beta-carotene Rich Mango Powder. Indian J Hortic. 2018, 75(2), 283–288. DOI: 10.5958/0974-0112.2018.00048.8.
  • Muzaffar, K.; Kumar, P. Quality Assessment and Shelf Life Prediction of Spray Dried Tamarind Pulp Powder in Accelerated Environment Using Two Different Packaging Materials. J. Food Meas. Charact. 2017, 11(1), 265–271. DOI: 10.1007/s11694-016-9393-1.
  • Saengerlaub, S.; Kucukpinar, E.; Kiese, S.; Bauer, K. D.; Mueller, K. Desiccant Films Made of Low-density Polyethylene with Dispersed Calcium Oxide: Water Vapor Absorption, Permeation and Mechanical Properties. J. Appl. Polym. Sci. 2019, 136(16), 47460.
  • Aubee, N. D. J.; Checknita, D.; Chisholm, P. S.; Lam, P.; Marshall, S.; Sauvageau, D. P.; Tikuisis, T.; Chuang, T. Y. Barrier Film for Food Packaging. US20080118749A1, May 22, 2008.
  • Muralidharan, N.; Soottawat, B.; Thummanoon, P.; Ponusa, S. Effects of Bio-nanocomposite Films from Tilapia and Squid Skin Gelatins Incorporated with Ethanolic Extract from Coconut Husk on Storage Stability of Mackerel Meat Powder. Food Pack. Shelf Life. 2015, 6, 42–52.
  • Dominguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F. J.; Zhang, W.; Lorenzo, J. M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants. 2019, 8(10), 429. DOI: 10.3390/antiox8100429.
  • Yang, J.; Xiong, Y. L. Inhibition of Lipid Oxidation in Oil-in-Water Emulsions by Interface-Adsorbed Myofibrillar Protein. J. Agric. Food Chem. 2015, 63(40), 8896–8904. DOI: 10.1021/acs.jafc.5b03377.
  • Peipei, Z.; Xueyan, W.; Miao, W.; Yan, W.; Chengye, G.; Min, W.; Mingliang, G.; Mangang, W.; Qingfeng, G.; Hai, Y. The Interaction of Lipid and Protein Oxidation of Meat Products. Food Ferment. Ind. 2013, 39(5), 143–148.
  • Butterfield, D. A.; Stadtman, E. R. Chapter 7 Protein Oxidation Processes in Aging Brain. In Advances in Cell Aging and Gerontology; Timiras, P.S., Bittar, E.E., Eds.; Elsevier, 1997: London, England; pp 161–191.
  • Gómez-Estaca, J.; López-de-dicastillo, C.; Hernández-Muñoz, P.; Catalá, R.; Gavara, R. Advances in Antioxidant Active Food Packaging. Trends Food Sci. Technol. 2014, 35(1), 42–51. DOI: 10.1016/j.tifs.2013.10.008.
  • Chen, A.; Preparation Method for Food Desiccant. 2015.
  • Hara, Y.; Shobu, T.; Ito, H.; Kadowaki, Y.; Shimizu, K. Ethanol Vapor Generation Type Deoxidizer, and Food Product Preservation Method. 2016.
  • Zhen, Y.; Fu-min, Y. Study on Antioxidation Activity of Inulin to Plant Oil. Sci. Technol. Food Ind. 2009, 30(6), 119–121.
  • Brewer, M. S.;. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10(4), 221–247. DOI: 10.1111/j.1541-4337.2011.00156.x.
  • Taghvaei, M.; Jafari, S. M. Application and Stability of Natural Antioxidants in Edible Oils in order to Substitute Synthetic Additives. J. Food Sci. Technol. Mysore. 2015, 52(3), 1272–1282. DOI: 10.1007/s13197-013-1080-1.
  • Giuffrida, F.; Destaillats, F.; Egart, M. H.; Hug, B.; Golay, P.-A.; Skibsted, L. H.; Dionisi, F. Activity and Thermal Stability of Antioxidants by Differential Scanning Calorimetry and Electron Spin Resonance Spectroscopy. Food Chem. 2007, 101(3), 1108–1114. DOI: 10.1016/j.foodchem.2006.03.010.
  • Estevez, M.; Heinonen, M. Effect of Phenolic Compounds on the Formation of alpha-Aminoadipic and gamma-Glutamic Semialdehydes from Myofibrillar Proteins Oxidized by Copper, Iron, and Myoglobin. J. Agric. Food Chem. 2010, 58(7), 4448–4455. DOI: 10.1021/jf903757h.
  • Muchuweti, M.; Kativu, E.; Mupure, C. H. et al. Phenolic Composition and Antioxidant Properties of Some Spices. Am. J. Food Technol. 2007, 2, 414–420.
  • Juliani, H. R.; Simon, J. E. Antioxidant Activity of Basil. In Trends in New Crops and New Uses, Janick J, Whipkey A, ASHS press, Alexandria, VA, (Eds.), 2002, 575–579.
  • Frankel, E. N.;. Review. Recent Advances in Lipid Oxidation. J. Sci. Food Agric. 1991, 54(4), 495–511. DOI: 10.1002/jsfa.2740540402.
  • McHugh, T.;. Recognizing the Role of Processing in Food Safety. Food Technol. 2019, 72(10), 80–82.
  • Balaban, N.; Rasooly, A. Staphylococcal Enterotoxins. Int. J. Food Microbiol. 2000, 61(1), 1–10.
  • Oomes, S. J. C. M.; Zuijlen, A. C. M.; Hehenkamp, J. O.; Witsenboer, H.; Van Der Vossen, J. M. B. M.; Brul, S. The Characterisation of Bacillus Spores Occurring in the Manufacturing of (Low Acid) Canned Products. Int. J. Food Microbiol. 2007, 120(1–2), 85–94. DOI: 10.1016/j.ijfoodmicro.2007.06.013.
  • De Souza, E. L.; Montenegro Stamford, T. L.; Lima, E. D. O. Sensitivity of Spoiling and Pathogen Food-related Bacteria to Origanum Vulgare L. (Lamiaceae) Essential Oil. Braz. J. Microbiol. 2006, 37(4), 527–532. DOI: 10.1590/S1517-83822006000400023.
  • Kumar Anal, A.; Giorgia, P.; Awanwee, P.; Tan, R.; Avallone, S.; Tofalo, R.; Hai Van, N.; Son, C.-K.; Phu Ha, H.; Thanh Tam, P.;, et al. Food Safety Risks in Traditional Fermented Food from South-East Asia. Food Control. 2020, 109, 106922.
  • Shan, B.; Cai, Y.-Z.; Brooks, J. D.; Corke, H. Antibacterial Properties and Major Bioactive Components of Cinnamon Stick (Cinnamomum Burmannii): Activity against Foodborne Pathogenic Bacteria. J. Agric. Food Chem. 2007, 55(14), 5484–5490. DOI: 10.1021/jf070424d.
  • D.n.a, T.; H.d; N.r, A. A Comparison of the Antifungal Properties of Onion (Allium Cepa), Ginger (Zingiber Officinale) and Garlic (Allium Sativum) against Aspergillus Flavus, Aspergillus Niger and Cladosporium Herbarum.
  • Diao, W.-R.; Hu, Q.-P.; Feng, -S.-S.; Li, W.-Q.; Xu, J.-G. Chemical Composition and Antibacterial Activity of the Essential Oil from Green Huajiao (Zanthoxylum Schinifolium) against Selected Foodborne Pathogens. J. Agric. Food Chem. 2013, 61(25)), 6044–6049. DOI: 10.1021/jf4007856.
  • Moradi; S.Sadeghi, E. Study of the Antimicrobial Effects of Essential Oil of Satureja Edmondi and Nisin on Staphylococcus Aureus in Commercial Soup. J. Food Process. Preserv. 2017. 41(4). e13337 %* ©12017 Wiley Periodicals, Inc. . 10.1111/jfpp.13337
  • Cox, S. D.; Mann, C. M.; Markham, J. L. Interactions between Components of the Essential Oil of Melaleuca Alternifolia. J. Appl. Microbiol. 2001, 91(3), 492–497. DOI: 10.1046/j.1365-2672.2001.01406.x.
  • Castro-Rosas, J.; Ferreira-Grosso, C. R.; Gomez-Aldapa, C. A.; Rangel-Vargas, E.; Rodriguez-Marin, M. L.; Guzman-Ortiz, F. A.; Falfan-Cortes, R. N. Recent Advances in Microencapsulation of Natural Sources of Antimicrobial Compounds Used in Food - A Review. Food Res. Int. 2017, 102, 575–587.
  • Apaydin, H.; Gumus, T. Inhibitory Effect of Propolis (Bee Gum) against Staphylococcus Aureus Bacteria Isolated from Instant Soups. J Tekirdag Agric Fac-Tekirdag Ziraat Fakultesi Dergisi. 2018, 15(1), 67–75.
  • Lekshmi, R. G. K.; Jayathilakan, K.; Sarika, K.; Priya, E. R.; Greeshma, S. S.; Sultana, K.; Tejpal, C. S.; Mathew, S. Effect of Plectranthus Amboinicus Leaf Extract on the Quality Attributes of Microencapsulated Fish Oil Fortified Soup Powder. Fishery Technol. 2019, 56(4), 268–276.
  • Tometri, S. S.; Ahmady, M.; Ariaii, P.; Soltani, M. S. Extraction and Encapsulation of Laurus Nobilis Leaf Extract with Nano-liposome and Its Effect on Oxidative, Microbial, Bacterial and Sensory Properties of Minced Beef. J. Food Meas. Charact. 2020, 14(6), 3333–3344. DOI: 10.1007/s11694-020-00578-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.