539
Views
2
CrossRef citations to date
0
Altmetric
Review

The Milpa as A Supplier of Bioactive Compounds: A Review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Terán, S.; Rasmussen, C. H. Genetic Diversity and Agricultural Strategy in 16th Century and Present-day Yucatecan Milpa Agriculture. Biodivers Conserv. 1995, 4(4), 363–381. DOI: 10.1007/BF00058422.
  • Drexler, K. A.;. Government Extension, Agroecology, and Sustainable Food Systems in Belize Milpa Farming Communities: A Socio-ecological Systems Approach. J Agric Food Syst Community Dev. 2020, 9(3), 85–97. DOI: 10.5304/jafscd.2020.093.001.
  • Zizumbo-Villarreal, D.; Flores-Silva, A.; Marin, P. C. G. The Archaic Diet in Mesoamerica: Incentive for Milpa Development and Species Domestication. Econ. Bot. 2012, 66(4), 328–343. DOI: 10.1007/s12231-012-9212-5.
  • Heindorf, C.; Reyes-Aguero, J. A.; Van’t Hooft, A.; Fortanelli-Martinez, J. Inter- and Intraspecific Edible Plant Diversity of the Tenek Milpa Fields in Mexico. Econ. Bot. 2019, 73(4), 489–504. DOI: 10.1007/s12231-019-09475-y.
  • Gurri, F. D.;. The Disruption of Subsistence Agricultural Systems in Rural Yucatan, Mexico May Have Contributed to the Coexistence of Stunting in Children with Adult Overweight and Obesity. Collegium Antropologicum. 2015, 39(4), 847–854.
  • Lara, P. E.; Caso, B. L.; Aliphat, F. M. El sistema roza, tumba y quema de los maya Itzá de san Andres y San José, Petén Guatemala. Ra Ximhai. 2012, 8, 69–90.
  • Drewnowski, A.; Popkin, B. M. The Nutrition Transition: New Trends in the Global Diet. Nutr. Rev. 1997, 55(2), 31–43. DOI: 10.1111/j.1753-4887.1997.tb01593.x.
  • Rivera, J. A.; Barquera, S.; González-Cossío, T.; Olaiz, G.; Sepúlveda, J. Nutrition Transition in Mexico and in Other Latin American Countries. Nutr. Rev. 2004, 62, S149–57. DOI: 10.1111/j.1753-4887.2004.tb00086.x. PMID: 15387482.
  • Moreno-Altamirano, L.; Hernández-Montoya, D.; Martín Silberman, M.; Capraro, S.; García-García, J. J.; Guadalupe Soto-Estrada, G.; Sandoval-Bosh, E. La transición alimentaria y la doble carga de malnutrición: Cambios en los patrones alimentarios de 1961 a 2009 en el contexto socioeconómico mexicano. ALAN. 2014, 64, 4.
  • Avelar, T. M.; Storch, A. S.; Castro, L. A.; Azevedo, G. V.; Ferraz, L.; Lopes, P. F. Oxidative Stress in the Pathophysiology of Metabolic Syndrome: Which Mechanisms are Involved? J Bras Patol Med Lab. 2015, 51(4), 231–239. DOI: 10.5935/1676-2444.20150039.
  • Petersen, K. S.; Flock, M. R.; Richter, C. K.; Mukherjea, R.; Slavin, J. L.; Kris-Etherton, P. M. Healthy Dietary Patterns for Preventing Cardiometabolic Disease: The Role of Plant-Based Foods and Animal Products. Current Develop.Nutr. 2017, 1(12), cdn.117.001289. DOI: 10.3945/cdn.117.001289.
  • Berni, R.; Cantini, C.; Romi, M.; Hausman, J. F.; Guerriero, G.; Cai, G. Agrobiotechnology Goes Wild: Ancient Local Varieties as Sources of Bioactives. Int. J. Mol. Sci. 2018, 19(8), 2248. DOI: 10.3390/ijms19082248.
  • Phan, M. A. T.; Paterson, J.; Bucknall, M.; Arcot, J. Interactions between Phytochemicals from Fruits and Vegetables: Effects on Bioactivities and Bioavailability. Crit. Rev. Food Sci. Nutr. 2018, 58(8), 1310–1329. DOI: 10.1080/10408398.2016.1254595.
  • Zhao, Q.; Luan, X.; Zheng, M.; Tian, X. H.; Zhao, J.; Zhang, W. D.; Ma, B. L. Synergistic Mechanisms of Constituents in Herbal Extracts during Intestinal Absorption: Focus on Natural Occurring Nanoparticles. Pharm. 2020, 12(2), 128. DOI: 10.3390/pharmaceutics12020128.
  • Chávez-Santoscoy, R. A.; Gutiérrez-Uribe, J. A.; Serna-Saldívar, S. O. Effect of Flavonoids and Saponins Extracted from Black Bean (Phaseolus Vulgaris L.) Seed Coats as Cholesterol Micelle Disruptors. Plant Foods Hum. Nutr. 2013, 68(4), 416–423. DOI: 10.1007/s11130-013-0384-7.
  • Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), México. https://www.biodiversidad.gob.mx/diversidad/alimentos/maices/razas-de-maiz. (accessed November 10, 2020)
  • Mapes, C.; Basurto, F. Biodiversity and Edible Plants of Mexico. In Ethnobotany of México, Interactions of People and Plants in Mesoamerica; Lira, R., Casas, A., Blancas, J., Eds.; Springer, 2016; pp 83–131. DOI:10.1007/978-1-4614-6669-7
  • Siyuan, S.; Tong, L.; Liu, R. Corn Phytochemicals and Their Health Benefits. Food Sci. Hum. Wellness. 2018, 7(3), 185–195. DOI: 10.1016/j.fshw.2018.09.003.
  • García-Lara, S.; Bergvinson, D. J. Phytochemical and Nutraceutical Changes during Recurrent Selection for Storage Pest Resistance in Tropical Maize. Crop Sci. 2014, 54(6), 2423–2432. DOI: 10.2135/cropsci2014.03.0223.
  • Rocha-Villarreal, V.; Hoffmann, J. F.; Vanier, N. L.; Serna-Saldivar, S. O.; García-Lara, S. Hydrothermal Treatment of Maize: Changes in Physical, Chemical, and Functional Properties. Food Chem. 2018, 263, 225–231. DOI: 10.1016/j.foodchem.2018.05.003.
  • Del Pozo-Insfran, D.; Brenes, C. H.; Serna Saldivar, S. O.; Talcott, S. T. Polyphenolic and Antioxidant Content of White and Blue Corn (Zea Mays L.) Products. Food Res. Int. 2006, 39(6), 696–703. DOI: 10.1016/j.foodres.2006.01.014.
  • Cuevas Montilla, E.; Hillebrand, S.; Antezana, A.; Winterhalter, P. Soluble and Bound Phenolic Compounds in Different Bolivian Purple Corn (Zea Mays L.) Cultivars. J. Agric. Food Chem. 2011, 59(13), 7068–7074. DOI: 10.1021/jf201061x.
  • Zhang, Q.; Gonzalez De Mejia, E.; Luna-Vital, D.; Tao, T.; Chandrasekaran, S.; Chatham, L.; Juvik, J.; Singh, V.; Kumar, D. Relationship of Phenolic Composition of Selected Purple Maize (Zea Mays L.) Genotypes with Their Anti-Inflammatory, Anti-Adipogenic and Anti-Diabetic Potential. Food Chem. 2019, 289, 739–750. DOI: 10.1016/j.foodchem.2019.03.116.
  • Urias-Peraldí, M.; Gutiérrez-Uribe, J. A.; Preciado-Ortiz, R. E.; Cruz-Morales, A. S.; Serna-Saldívar, S. O.; García-Lara, S. Nutraceutical Profiles of Improved Blue Maize (Zea Mays) Hybrids for Subtropical Regions. F Crop Res. 2013, 141, 69–76. DOI: 10.1016/j.fcr.2012.11.008.
  • Kwon, Y. I.; Apostolidis, E.; Kim, Y. C.; Shetty, K. Health Benefits of Traditional Corn, Beans, and Pumpkin: In Vitro Studies for Hyperglycemia and Hypertension Management. J. Med. Food. 2007, 10(2), 266–275. DOI: 10.1089/jmf.2006.234.
  • Wacher, C.; Nixtamalization, a Mesoamerican Technology to Process Maize at Small-scale with Great Potential for Improving the Nutritional Quality of Maize Based Foods. Food-based approaches for a healthy nutrition. 2003. 735–743.
  • De La Parra, C.; Serna-Saldivar, S. O.; Liu, R. H. Effect of Processing on the Phytochemical Profiles and Antioxidant Activity of Corn for Production of Masa, Tortillas, and Tortilla Chips. J. Agric. Food Chem. 2007, 55(10), 4177–4183. DOI: 10.1021/jf063487p.
  • Salinas-Moreno, Y.; Hernández-Martínez, V.; Trejo-Téllez, L. I.; Ramírez-Díaz, J. L.; Iñiguez-Gómez, O. Nutritional Composition and Bioactive Compounds in Tortillas of Native Populations of Corn with Blue/purple Grain. Rev Mex Cienc Agríc. 2017, 8(7), 1483–1496.
  • Mora-Rochin, S.; Gutiérrez-Uribe, J.; Serna-Saldivar, S.; Peña, P.; Reyes Moreno, C.; Milán-Carrillo, J. Phenolic Content and Antioxidant Activity of Tortillas Produced from Pigmented Corns Processed by Conventional Nixtamalization or Extrusion Cooking. J. Cereal Sci. 2010, 52(3), 502–508. DOI: 10.1016/j.jcs.2010.08.010.
  • Salinas-Moreno, Y.; Martínez-Bustos, F.; Soto-Hernández, M.; Ortega-Paczka, R.; Arellano-Vázquez, J. L. Efecto de la nixtamalización sobre las antocianinas del grano de maíces pigmentados. Agrociencia. 2003, 37(6), 617–628.
  • Zhang, J.; Wu, J.; Liu, F.; Tong, L.; Chen, Z.; Chen, J.; He, H.; Xu, R.; Ma, Y.; Huang, C. Neuroprotective Effects of Anthocyanins and Its Major Component cyanidin-3-O-glucoside (C3G) in the Central Nervous System: An Outlined Review. Eur. J. Pharmacol. 2019, 858, 172500. DOI: 10.1016/j.ejphar.2019.172500.
  • Gaxiola-Cuevas, N.; Mora-Rochín, S.; Cuevas-Rodriguez, E. O.; León-López, L.; Reyes-Moreno, C.; Montoya-Rodríguez, A.; Milán-Carrillo, J. Phenolic Acids Profiles and Cellular Antioxidant Activity in Tortillas Produced from Mexican Maize Landrace Processed by Nixtamalization and Lime Extrusion Cooking. Plant Foods Hum. Nutr. 2017, 72(3), 314–320. DOI: 10.1007/s11130-017-0624-3.
  • Herrera‑Sotero, M. Y.; Cruz‑Hernández, C. D.; Trujillo‑Carretero, C.; Rodríguez‑Dorantes, M.; García‑Galindo, H. S.; Chávez‑Servia, J. L.; Oliart‑Ros, R. M.; Guzmán-Gerónimo, R. I. Antioxidant and Antiproliferative Activity of Blue Corn and Tortilla from Native Maize. Chem. Cent. J. 2017, 11(1), 110. DOI: 10.1186/s13065-017-0341-x.
  • Mo, S.; Dong, L.; Hurst, W. J.; Van Breemen, R. B. Quantitative Analysis of Phytosterols in Edible Oils Using APCI Liquid Chromatography-Tandem Mass Spectrometry. Lipids. 2013, 48(9), 949–956. DOI: 10.1007/s11745-013-3813-3.
  • Li, Y. C.; Li, C. L.; Li, R.; Chen, Y.; Zhang, M.; Guo, P. P.; Shi, D.; Ji, X. N.; Feng, R. N.; Sun, C. H. Associations of Dietary Phytosterols with Blood Lipid Profiles and Prevalence of Obesity in Chinese Adults, a Cross-Sectional Study. Lipids Health Dis. 2018, 17(54), 1–9. DOI: 10.1186/s12944-018-0703-y.
  • Jin, D. X.; Liu, X. L.; Zheng, X. Q.; Wang, X. J.; He, J. F. Preparation of Antioxidative Corn Protein Hydrolysates, Purification and Evaluation of Three Novel Corn Antioxidant Peptides. Food Chem. 2016, 204, 427–436. DOI: 10.1016/j.foodchem.2016.02.119.
  • De Almeida Costa, G. E.; Da Silva Queiroz-Monici, K.; Pissini Machado Reis, S. M.; De Oliveira, A. C. Chemical Composition, Dietary Fibre and Resistant Starch Contents of Raw and Cooked Pea, Common Bean, Chickpea and Lentil Legumes. Food Chem. 2006, 94(3), 327–330. DOI: 10.1016/j.foodchem.2004.11.020.
  • Chávez-Mendoza, C.; Hernández-Figueroa, K. I.; Sánchez, E. Antioxidant Capacity and Phytonutrient Content in the Seed Coat and Cotyledon of Common Beans (Phaseolus Vulgaris L.) From Various Regions in Mexico. Antioxidants. 2019, 8(1), 1–19. DOI: 10.3390/antiox8010005.
  • Alvarado-López, A. N.; Gómez-Oliván, L. M.; Heredia, J. B.; Baeza-Jiménez, R.; Garcia-Galindo, H. S.; Lopez-Martinez, L. X. Nutritional and Bioactive Characteristics of Ayocote Bean (Phaseolus Coccienus L.): An Underutilized Legume Harvested in Mexico. CyTA-J. Food. 2019, 17(1), 199–206. DOI: 10.1080/19476337.2019.1571530.
  • Alcázar-Valle, M.; Lugo-Cervantes, E.; Mojica, L.; Morales-Hernández, N.; Reyes-Ramírez, H.; Enríquez-Vara, J. N.; García-Morales, S. Bioactive Compounds, Antioxidant Activity, and Antinutritional Content of Legumes: A Comparison between Four Phaseolus Species. Mol. 2020, 25(15), 3528. DOI: 10.3390/molecules25153528.
  • Xu, B.; Chang, S. K. C. Comparative Study on Antiproliferation Properties and Cellular Antioxidant Activities of Commonly Consumed Food Legumes against Nine Human Cancer Cell Lines. Food Chem. 2012, 134(3), 1287–1296. DOI: 10.1016/j.foodchem.2012.02.212.
  • Moreno-Celis, U.; López-Martínez, J.; Blanco-Labra, A.; Cervantes-Jiménez, R.; Estrada-Martínez, L. E.; García-Pascalin, A. E.; Guerrero-Carrillo, M. J.; Rodríguez-Méndez, A. J.; Mejía, C.; Ferríz-Martínez, R. A.; et al. Phaseolus Acutifolius Lectin Fractions Exhibit Apoptotic Effects on Colon Cancer: Preclinical Studies Using Dimethilhydrazine or Azoxi-Methane as Cancer Induction Agents. Mol. 2017, 22(10), 1670. DOI: 10.3390/molecules22101670.
  • Moreno-Celis, U.; López-Martínez, F. J.; Cervantes-Jiménez, R.; Ferríz-Martínez, R. A.; Blanco-Labra, A.; García-Gasca, T. Tepary Bean (Phaseolus Acutifolius) Lectins Induce Apoptosis and Cell Arrest in G0/G1 by P53(Ser46) Phosphorylation in Colon Cancer Cells. Mol. 2020, 25(5), 1021. DOI: 10.3390/molecules25051021.
  • De Lacerda, R. R.; Do Nascimento, E. S.; De Lacerda, J. T. J. G.; Da Silva Pinto, L.; Rizzi, C.; Bezerra, M. M.; De Almeida Gadelha, C. A. Lectin from Seeds of a Brazilian Lima Bean Variety (Phaseolus Lunatus L. Var. Cascavel) Presents Antioxidant, Antitumour and Gastroprotective Activities. Int. J. Biol. Macromol. 2017, 95, 1072–1081. DOI: 10.1016/j.ijbiomac.2016.10.097.
  • Wu, J.; Wang, J.; Wang, S.; Rao, P. Lunatin, a Novel Lectin with Antifungal and Antiproliferative Bioactivities from Phaseolus Lunatus Billb. Int. J. Biol. Macromol. 2016, 89, 717–724. DOI: 10.1016/j.ijbiomac.2016.04.092.
  • Pan, W. L.; Ng, T. B. A Dimeric Phaseolus Coccineus Lectin with Anti-oxidative, Anti-proliferative and Cytokine-inducing Activities. Int. J. Biol. Macromol. 2015, 81, 960–966. DOI: 10.1016/j.ijbiomac.2015.09.034.
  • García-Gasca, T.; García-Cruz, M.; Hernandez-Rivera, E.; López-Matínez, J.; Castañeda-Cuevas, A. L.; Yllescas-Gasca, L.; Rodríguez-Méndez, A. J.; Mendiola-Olaya, E.; Castro-Guillén, J. L.; Blanco-Labra, A. Effects of Tepary Bean (Phaseolus Acutifolius) Protease Inhibitor and Semipure Lectin Fractions on Cancer Cells. Nutr Can. 2012, 64(8), 1269–1278. DOI: 10.1080/01635581.2012.722246.
  • Bawadi, H. A.; Bansode, R. R.; Trappey, A.; Truax, R. E.; Losso, J. N. Inhibition of Caco-2 Colon, MCF-7 and Hs578T Breast, and DU 145 Prostatic Cancer Cell Proliferation by Water-Soluble Black Bean Condensed Tannins. Cancer Lett. 2005, 218(2), 153–162. DOI: 10.1016/j.canlet.2004.06.021.
  • Dong, M.; He, X.; Rui, H. L. Phytochemicals of Black Bean Seed Coats: Isolation, Structure Elucidation, and Their Antiproliferative and Antioxidative Activities. J. Agric. Food Chem. 2007, 55(15), 6044–6051. DOI: 10.1021/jf070706d.
  • Zhang, C.; Monk, J. M.; Lu, J. T.; Zarepoor, L.; Wu, W.; Liu, R.; Pails, P. K.; Wood, G.; Robison, L.; Tsao, R.; et al. Cooked Navy and Black Bean Diets Improve Biomarkers of Colon Health and Reduce Inflammation during Colitis. Br. J. Nutr. 2014, 111(9), 1549–1563. DOI: 10.1017/s0007114513004352.
  • Haydé, V. C.; Ramón, G. G.; Lorenzo, G.-O.-O.; Dave, O. B.; Rosalía, R.-C.-C.; Paul, W.; Guadalupe, L.-P.-P.; Vergara-Castañeda, H.; Guevara-González, R.; Lorenzo, G.-O.-O. Non-Digestible Fraction of Beans (Phaseolus Vulgaris L.) Modulates Signalling Pathway Genes at an Early Stage of Colon Cancer in Sprague-Dawley Rats. Br. J. Nutr. 2012, 108(S1), S145–S154. DOI: 10.1017/S0007114512000785.
  • Campos-Vega, R.; Guevara-Gonzalez, R. G.; Guevara-Olvera, B. L.; Dave Oomah, B.; Loarca-Piña, G. Bean (Phaseolus Vulgaris L.) Polysaccharides Modulate Gene Expression in Human Colon Cancer Cells (HT-29). Food Res. Int. 2010, 43(4), 1057–1064. DOI: 10.1016/j.foodres.2010.01.017.
  • Thompson, M. D.; Mensack, M. M.; Jiang, W.; Zhu, Z.; Lewis, M. R.; McGinley, J. N.; Brick, M. A.; Thompson, H. J. Cell Signaling Pathways Associated with a Reduction in Mammary Cancer Burden by Dietary Common Bean (Phaseolus Vulgaris L.). Carcinogenesis. 2012, 33(1), 226–232. DOI: 10.1093/carcin/bgr247.
  • Altieri, M. A.; Agroecología: Bases Científicas Para Una Agricultura Sustentable; Ed. Nordan–Comunidad: Montevideo, 1999. DOI:10.1007/BF02345332.
  • Eguiarte, L. E.; Hernández-Rosales, H. S.; Barrera-Redondo, J.; Castellanos-Morales, G.; Paredes-Torres, L. M.; Sánchez-de La Vega, G.; Ruiz-Mondragón, K. Y.; Vázquez-Lobo, A.; Montes-Hernández, S.; Aguirre-Planter, E. Domesticación, Diversidad y Recursos Genéticos y Genómicos de México: El Caso de Las Calabazas. TIP Rev. Espec. en Ciencias Químico-Biológicas. 2018, 21(2), 85–101. DOI: 10.22201/fesz.23958723e.2018.0.159.
  • Miranda, M. E.; Escobar, M. C.; Ortega, C.; Sanchez, F.; Almanz, J. C.; Alarcon, F. J. Cucurbita Ficifolia Bouchéfruit Acts as an Insulin Secretagogue in RINm5F Cells. Int. Biotech. Color J. 2013, 3, 8–14. DOI: 10.1016/j.jep.2016.04.061.
  • Jin, H.; Zhang, Y.-J.-J.; Jiang, J.-X.-X.; Zhu, L.-Y.-Y.; Chen, P.; Li, J.; Yao, H.-Y.-Y. Studies on the Extraction of Pumpkin Components and Their Biological Effects on Blood Glucose of Diabetic Mice. J. Food Drug Anal. 2013, 21(2), 184–189. DOI: 10.1016/j.jfda.2013.05.009.
  • Quanhong, L.; Caili, F.; Yukui, R.; Guanghui, H.; Tongyi, C. Effects of Protein-Bound Polysaccharide Isolated from Pumpkin on Insulin in Diabetic Rats. Plant Foods Hum. Nutr. 2005, 60(1), 13–16. DOI: 10.1007/s11130-005-2536-x.
  • Patel, S.;. Pumpkin (Cucurbita Sp.) Seeds as Nutraceutic: A Review on Status Quo and Scopes. Med. J. Nutr. Metab. 2013, 6(3), 183–189. DOI: 10.1007/s12349-013-0131-5.
  • Wensveen, F. M.; Valentić, S.; Šestan, M.; Turk Wensveen, T.; Polić, B. The “Big Bang” in Obese Fat: Events Initiating Obesity-induced Adipose Tissue Inflammation. Eur. J. Immunol. 2015, 45(9), 2446–2456. DOI: 10.1002/eji.201545502.
  • Fortis-Barrera, Á.; García-Macedo, R.; Almanza-Perez, J. C.; Blancas-Flores, G.; Zamilpa-Alvarez, A.; Flores-Sáenz, J. L.; Cruz, M.; Román-Ramos, R.; Alarcón-Aguilar, F. J. Cucurbita Ficifolia (Cucurbitaceae) Modulates Inflammatory Cytokines and IFN-γ in Obese Mice. Can. J. Physiol. Pharmacol. 2017, 95(2), 170–177. DOI: 10.1139/cjpp-2015-0475.
  • Miranda-Perez, M. E.; Ortega-Camarillo, C.; Del Carmen Escobar-Villanueva, M.; Blancas-Flores, G.; Alarcon-Aguilar, F. J. Cucurbita Ficifolia Bouché Increases Insulin Secretion in RINm5F Cells through an Influx of Ca(2+) from the Endoplasmic Reticulum. J. Ethnopharmacol. 2016, 21(188), 159–166. DOI: 10.1016/j.jep.2016.04.061.
  • Alshammari, G. M.; Balakrishnan, A. Pumpkin (Cucurbita Ficifolia Bouché) Extract Attenuate the Adipogenesis in Human Mesenchymal Stem Cells by Controlling Adipogenic Gene Expression. Saudi J. Biol. Sci. 2019, 26(4), 744–751. DOI: 10.1016/j.sjbs.2018.10.002.
  • Fortis-Barrera, Á.; Alarcón-Aguilar, F. J.; Banderas-Dorantes, T.; Díaz-Flores, M.; Román-Ramos, R.; Cruz, M.; García-Macedo, R. Cucurbita ficifolia Bouché (Cucurbitaceae) and D-chiro-inositol Modulate the Redox State and Inflammation in 3T3-L1 Adipocytes. J. Pharm. Pharmacol. 2013, 65(10), 1563–1576. DOI: 10.1111/jphp.12119.
  • Bergantin, C.; Maietti, A.; Tedeschi, P.; Font, G.; Manyes, L.; Marchetti, N. HPLC-UV/Vis-APCI-MS/MS Determination of Major Carotenoids and Their Bioaccessibility from “Delica” (Cucurbita Maxima) and “Violina” (Cucurbita Moschata) Pumpkins as Food Traceability Markers. Mol. 2018 27, 23(11), 2791. DOI: 10.3390/molecules23112791.
  • Kulczyński, B.; Gramza-Michałowska, A. The Profile of Secondary Metabolites and Other Bioactive Compounds in Cucurbita Pepo L. And Cucurbita Moschata Pumpkin Cultivars. Mol. 2019, 24(16), 2945. DOI: 10.3390/molecules24162945.
  • Biesiada, A.; Nawirska, A.; Kucharska, A.; Sokół-Łętowska, A. Chemical Composition of Pumpkin Fruit Depending on Cultivar and Storage. Ecol. Chem. Eng. A. 2011, 18, 9–18.
  • Jessica, G. G.; Mario, G. L.; Alejandro, Z.; Cesar, A.; Ivan, J.; Ruben, R. R.; Javier, A. F. Chemical Characterization of a Hypoglycemic Extract from Cucurbita Ficifolia Bouche that Induces Liver Glycogen Accumulation in Diabetic Mice. Afr. J. Tradit. Complement. Altern. Med. 2017, 14(3), 218–230. DOI: 10.21010/ajtcam.v14i3.24.
  • Fan, C.; Liang, W.; Wei, M.; Gou, X.; Han, S.; Bai, J. Effects of D-Chiro-Inositol on Glucose Metabolism in Db/db Mice and the Associated Underlying Mechanisms. Front. Pharmacol. 2020, 11, 354. DOI: 10.3389/fphar.2020.00354.
  • Grzybek, M.; Kukula-Koch, W.; Strachecka, A.; Jaworska, A.; Phiri, A. M.; Paleolog, J.; Tomczuk, K. Evaluation of Anthelmintic Activity and Composition of Pumpkin (Cucurbita Pepo L.) Seed Extracts-In Vitro and in Vivo Studies. Int. J. Mol. Sci. 2016, 17(9), 1456. DOI: 10.3390/ijms17091456.
  • Alhawiti, A. O.; Toulah, F. H.; Wakid, M. H. Anthelmintic Potential of Cucurbita Pepo Seeds on Hymenolepis Nana. Acta Parasitol. 2019, 64(2), 276–281. DOI: 10.2478/s11686-019-00033-z.
  • Bardaa, S.; Ben Halima, N.; Aloui, F.; Ben Mansour, R.; Jabeur, H.; Bouaziz, M.; Sahnoun, Z. Oil from Pumpkin (Cucurbita Pepo L.) Seeds: Evaluation of Its Functional Properties on Wound Healing in Rats. Lipids Health Dis. 2016, 15(1), 73. DOI: 10.1186/s12944-016-0237-0.
  • Estrella-Mendoza, M. F.; Jiménez-Gómez, F.; López-Ornelas, A.; Pérez-Gutiérrez, R. M.; Flores-Estrada, J. Cucurbita Argyrosperma Seed Extracts Attenuate Angiogenesis in a Corneal Chemical Burn Model. Nutr. 2019, 11(5), 1184. DOI: 10.3390/nu11051184.
  • Can-Cauich, C. A.; Sauri-Duch, E.; Moo-Huchin, V. M.; Betancur-Ancona, D.; Cuevas-Glory, L. F. Effect of Extraction Method and Specie on the Content of Bioactive Compounds and Antioxidant Activity of Pumpkin Oil from Yucatan, Mexico. Food Chem. 2019, 285, 186–193. DOI: 10.1016/j.foodchem.2019.01.153.
  • Zhao, X. J.; Chen, Y. L.; Fu, B.; Zhang, W.; Liu, Z.; Zhuo, H. Intervention of Pumpkin Seed Oil on Metabolic Disease Revealed by Metabonomics and Transcript Profile. J. Sci. Food Agric. 2017, 97(4), 1158–1163. DOI: 10.1002/jsfa.7842.
  • Nkosi, C. Z.; Opoku, A. R.; Terblanche, S. E. Effect of Pumpkin Seed (Cucurbita Pepo) Protein Isolate on the Activity Levels of Certain Plasma Enzymes in CCl4-Induced Liver Injury in Low-Protein Fed Rats. Phyther. Res. 2005, 19(4), 341–345. DOI: 10.1002/ptr.1685.
  • Dash, P.; Ghosh, G. Amino Acid Profiling and Antimicrobial Activity of Cucurbita Moschata and Lagenaria Siceraria Seed Protein Hydrolysates. Nat. Prod. Res. 2018, 32(17), 2050–2053. DOI: 10.1080/14786419.2017.1359174.
  • Olatunji, T. L.; Afolayan, A. J. The Suitability of Chili Pepper (Capsicum Annuum L.) For Alleviating Human Micronutrient Dietary Deficiencies: A Review. Food Sci. Nutr. 2018, 6(8), 2239–2251. DOI: 10.1002/fsn3.790.
  • Chaiyasit, K.; Khovidhunkit, W.; Wittayalertpanya, S. Pharmacokinetic and the Effect of Capsaicin in Capsicum Frutescens on Decreasing Plasma Glucose Level. J. Med. Assoc. Thail. 2009, 92(1), 108–113.
  • Panchal, S. K.; Bliss, E.; Brown, L. Capsaicin in Metabolic Syndrome. Nutr. 2018, 10(5), 1–21. DOI: 10.3390/nu10050630.
  • Kang, C.; Zhang, Y.; Zhu, X.; Liu, K.; Wang, X.; Chen, M.; Wang, J.; Chen, H.; Hui, S.; Huang, L.;, et al. Healthy Subjects Differentially Respond to Dietary Capsaicin Correlating with Specific Gut Enterotypes. J. Clin. Endocrinol. Metab. 2016, 101(12), 4681–4689. DOI: 10.1210/jc.2016-2786.
  • Baboota, R. K.; Murtaza, N.; Jagtap, S.; Singh, D. P.; Karmase, A.; Kaur, J.; Bhitani, K. K.; Boparai, R. K.; Premkumar, L. S.; Kondepudi, K. K.; et al. Capsaicin-induced Transcriptional Changes in Hypothalamus and Alterations in Gut Microbial Count in High Fat Diet Fed Mice. J. Nutr Biochem. 2014, 25(9), 893–902. DOI: 10.1016/j.jnutbio.2014.04.004.
  • Baskaran, P.; Krishnan, V.; Ren, J.; Thyagarajan, B. Capsaicin Induces Browning of White Adipose Tissue and Counters Obesity by Activating TRPV1 Channel-Dependent Mechanisms. Br. J. Pharmacol. 2016, 173(15), 2369–2389. DOI: 10.1111/bph.13514.
  • Zheng, J.; Zheng, S.; Feng, Q.; Zhang, Q.; Xiao, X. Dietary Capsaicin and Its Anti-obesity Potency: From Mechanism to Clinical Implications. Biosci. Rep. 2017. DOI: 10.1042/bsr20170286.
  • Lavorgna, M.; Orlo, E.; Nugnes, R.; Piscitelli, C.; Russo, C.; Isidori, M. Capsaicin in Hot Chili Peppers: In Vitro Evaluation of Its Antiradical, Antiproliferative and Apoptotic Activities. Plant Foods Hum. Nutr. 2019, 74(2), 164–170. DOI: 10.1007/s11130-019-00722-0.
  • Moriguchi, M.; Watanabe, T.; Kadota, A.; Fujimuro, M. Capsaicin Induces Apoptosis in KSHV-Positive Primary Effusion Lymphoma by Suppressing ERK and P38 MAPK Signaling and IL-6 Expression. Front. Oncol. 2019, 9. DOI: 10.3389/fonc.2019.00083.
  • Sánchez, B. G.; Bort, A.; Mateos-Gómez, P. A.; Rodríguez-Henche, N.; Díaz-Laviada, I. Combination of the Natural Product Capsaicin and Docetaxel Synergistically Kills Human Prostate Cancer Cells through the Metabolic Regulator AMP-activated Kinases. Cancer Cell International. 2019, 19(1). DOI: 10.1186/s12935-019-0769-2.
  • Perveen, R.; Suleria, H. A.; Anjum, F. M.; Butt, M. S.; Pasha, I.; Ahmad, S. Tomato (Solanum Lycopersicum) Carotenoids and Lycopenes Chemistry; Metabolism, Absorption, Nutrition, and Allied Health Claims-A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2015, 55(7), 919–929. DOI: 10.1080/10408398.2012.657809.
  • Khachik, F.; Carvalho, L.; Bernstein, P. S.; Muir, G. J.; Zhao, D. Y.; Katz, N. B. Chemistry, Distribution, and Metabolism of Tomato Carotenoids and Their Impact on Human Health. Exp. Biol. Med. (Maywood). 2002, 227(10), 845–851. DOI: 10.1177/153537020222701002.
  • Agarwal, S.; Rao, A. V. Tomato Lycopene and Its Role in Human Health and Chronic Diseases. Can. Med. Assoc. J. 2000, 163(6), 739–744.
  • Kamiloglu, S.; Demirci, M.; Selen, S.; Toydemir, G.; Boyacioglu, D.; Capanoglu, E. Home Processing of Tomatoes (Solanum Lycopersicum): Effects on in Vitro Bioaccessibility of Total Lycopene, Phenolics, Flavonoids, and Antioxidant Capacity. J of Sci Food Agric. 2014, 94(11), 2225–2233. DOI: 10.1002/jsfa.6546.
  • Yi, B.; Hu, L.; Mei, W.; Zhou, K.; Wang, H.; Luo, Y.; Dai, H. Antioxidant Phenolic Compounds of Cassava (Manihot Esculenta) from Hainan. Mol. 2011, 16(12), 10157–10167. DOI: 10.3390/molecules161210157.
  • Güçlü-Ustündağ, O.; Mazza, G. Saponins: Properties, Applications and Processing. Crit. Rev. Food Sci. Nutr. 2007, 47(3), 231–258. DOI: 10.1080/10408390600698197.
  • Muzquiz, M.; Varela, A.; Burbano, C.; Cuadrado, C.; Guillamón, E.; Pedrosa, M. M. Compuestos bioactivos en leguminosas: Acciones pronutritivas y antinutritivas. Implicaciones para la nutrición y la salud. Phytochem. Rev. 2012, 11, 227–244. DOI: 10.1007/s11101-012-9233-9.
  • Latif, S.; Zimmermann, S.; Barati, Z.; Müller, J. Detoxification of Cassava Leaves by Thermal, Sodium Bicarbonate, Enzymatic, and Ultrasonic Treatments. J. Food Sci. 2019, 84(7), 1986–1991. DOI: 10.1111/1750-3841.14658.
  • Ramos De Robles, S. L.; Garibay-Chávez, G.; Curiel-Ballesteros, A. Identification, Collection and Consumption of Weeds and Wild Vegetables in Mexican Communities: Institutionalized Local Ancestral Indigenous Knowledge as Ecological Literacy, Place and Identity. Cult. Stud. Sci. Educ. 2019, 14(4), 1011–1030. DOI: 10.1007/s11422-017-9852-y.
  • Jácomo, A. C.; De Andrade Velozo, K.; Lotti, R. G.; Neves, L. M.; De Gaspari De Gaspi, F. O.; Esquisatto, M. A.; Do Amaral, M. E.; Mendonça, F. A.; Dos Santos, G. M. Activity of Porophyllum Ruderale Leaf Extract and 670-nm InGaP Laser during Burns Repair in Rats. BMC Complement Altern Med. 2015, 15(1), 274. DOI: 10.1186/s12906-015-0805-2.
  • Takahashi, H. T.; Novello, C. R.; Ueda-Nakamura, T.; Filho, B. P.; Palazzo De Mello, J. C.; Nakamura, C. V. Thiophene Derivatives with Antileishmanial Activity Isolated from Aerial Parts of Porophyllum Ruderale (Jacq.) Cass. Molecules. 2011, 16(5), 3469–3478. DOI: 10.3390/molecules16053469.
  • Conde-Hernández, L. A.; Guerrero-Beltrán, J. Á. Total Phenolics and Antioxidant Activity of Piper Auritum and Porophyllum Ruderale. Food Chem. 2014, 142, 455–460. DOI: 10.1016/j.foodchem.2013.07.078.
  • Erkan, N.;. Antioxidant Activity and Phenolic Compounds of Fractions from Portulaca Oleracea L. Food Chem. 2012, 133(3), 775–781. DOI: 10.1016/j.foodchem.2012.01.091.
  • Ramadan, B. K.; Schaalan, M. F.; Tolba, A. M. Hypoglycemic and Pancreatic Protective Effects of Portulaca Oleracea Extract in Alloxan Induced Diabetic Rats. BMC Complement. Altern. Med. 2017, 17(1), 1–37. DOI: 10.1186/s12906-016-1530-1.
  • Gu, J. F.; Zheng, Z. Y.; Yuan, J. R.; Zhao, B. J.; Wang, C. F.; Zhang, L.; Xu, Q. Y.; Yin, G. W.; Feng, L.; Jia, X. B. Comparison on Hypoglycemic and Antioxidant Activities of the Fresh and Dried Portulaca Oleracea L. In Insulin-Resistant HepG2 Cells and Streptozotocin-Induced C57BL/6J Diabetic Mice. J. Ethnopharmacol. 2015, 161, 214–223. DOI: 10.1016/j.jep.2014.12.002.
  • Hu, Q.; Niu, Q.; Song, H.; Wei, S.; Wang, S.; Yao, L.; Li, Y. P. Polysaccharides from Portulaca Oleracea L. Regulated Insulin Secretion in INS-1 Cells through Voltage-Gated Na+ Channel. Biomed. Pharmacother. 2019, 109, 876–885. DOI: 10.1016/j.biopha.2018.10.113.
  • Wang, C.-Q.; Yang, G.-Q. Betacyanins from Portulaca Oleracea L. Ameliorate Cognition Deficits and Attenuate Oxidative Damage Induced by D-Galactose in the Brains of Senescent Mice. Phytomedicine. 2010, 17(7), 527–532. DOI: 10.1016/j.phymed.2009.09.006.
  • Zhao, C.; Zhang, C.; He, F.; Zhang, W.; Leng, A.; Ying, X. Two New Alkaloids from Portulaca Oleracea L. And Their Bioactivities. Fitoterapia. 2019, 136, 1–5. DOI: 10.1016/j.fitote.2019.05.005.
  • Maiyo, Z. C.; Ngure, R. M.; Matasyoh, J. C.; Chepkorir, R. Phytochemical Constituents and Antimicrobial Activity of Leaf Extracts of Three Amaranthus Plant Species. Afr. J. Biotechnol. 2010, 9(21), 3178–3182.
  • Tang, Y.; Li, X.; Chen, P. X.; Zhang, B.; Hernandez, M.; Zhang, H.; Tsao, R.; Liu, R.; Tsao, R. Lipids, Tocopherols, and Carotenoids in Leaves of Amaranth and Quinoa Cultivars and a New Approach to Overall Evaluation of Nutritional Quality Traits. J. Agric. Food Chem. 2014, 62(52), 12610–12619. DOI: 10.1021/jf5046377.
  • Perales-Sánchez, J. X.; Reyes-Moreno, C.; Gómez-Favela, M. A.; Milán-Carrillo, J.; Cuevas-Rodríguez, E. O.; Valdez-Ortiz, A.; Gutiérrez-Dorado, R. Increasing the Antioxidant Activity Total Phenolic and Flavonoid Contents by Optimizing the Germination Conditions of Amaranth Seeds. Plant Foods Hum. Nutr. 2014, 69(3), 196–202. DOI: 10.1007/s11130-014-0430-0.
  • Padalia, H.; Chanda, S. Comparative Phytochemical Analysis of Aerial Parts of A. Procumbeans, F. Dichotoma, S. Sponteneum, S. Nigra and T. Angustifolia. J. Pharmacogn. Phytochem. 2015, 4(2), 11–16.
  • Román-Cortés, N. R.; García-Mateos, R. M.; Castillo-González, A. M.; Sahagún-Castellanos, J.; Jiménez-Arellanes, M. A. Características nutricionales y nutracéuticas de hortalizas de uso ancestral en México. Rev. Fitotec. Mex. 2018, 41, 245–253.
  • Miranda-Granados, J.; Chacón, C.; Ruiz-Lau, N.; Vargas-Díaz, M. E.; Zepeda, L. G.; Alvarez-Gutiérrez, P.; Meza-Gordillo, R.; Lagunas-Rivera, S. Alternative Use of Extracts of Chipilín Leaves (Crotalaria Longirostrata Hook. & Arn) as Antimicrobial. Sustainability. 2018, 10(3), 883. DOI: 10.3390/su10030883.
  • Barros, L.; Pereira, E.; Calhelha, R. C.; Dueñas, M.; Carvalho, A. M.; Santos-Buelga, C.; Ferreira, I. C. Bioactivity and Chemical Characterization in Hydrophilic and Lipophilic Compounds of Chenopodium Ambrosioides L. J. Funct. Foods. 2013, 5(4), 1732–1740. DOI: 10.1016/j.jff.2013.07.019.
  • Santiago-Saenz, Y. O.; Hernández-Fuentes, A. D.; Monroy-Torres, R.; Cariño-Cortés, R.; Jiménez-Alvarado, R. Physicochemical, Nutritional and Antioxidant Characterization of Three Vegetables (Amaranthus Hybridus L., Chenopodium Berlandieri L., Portulaca Oleracea L.) As Potential Sources of Phytochemicals and Bioactive Compounds. J. Food Meas. Charact. 2018, 12(4), 2855–2864. DOI: 10.1007/s11694-018-9900-7.
  • Jia-liang, W.; Dan-wei, M.; Ya-nan, W.; Hong, Z.; Bing, H.; Qun, L.; Zhi-yan, Z.; Jing, F. Cytotoxicity of Essential Oil of Chenopodium Ambrosioides L. Against Human Breast Cancer MCF-7 Cells. Trop. J. Pharm. Res. 2013, 12, 929–933. DOI: 10.4314/tjpr.v12i6.10.
  • Degenhardt, R. T.; Farias, I. V.; Grassi, L. T.; Franchi, G. C., Jr.; Nowill, A. E.; Bittencourt, C. M. D. S.; Wagner, T. M.; De Souza, M. M.; Cruza, A. B.; Malheiros, A. Characterization and Evaluation of the Cytotoxic Potential of the Essential Oil of Chenopodium Ambrosioides. Rev. Bras. Farmacogn. 2016, 26(1), 56–61. DOI: 10.1016/j.bjp.2015.08.012.
  • Azo-vélez, M. A.; Guajardo-Flores, D.; Mata-Ramírez, D.; Gutiérrez-Uribe, J. A.; Serna-Saldivar, S. O. Characterization and Quantitation of Triterpenoid Saponins in Raw and Sprouted Chenopodium Berlandieri Spp. (Huauzontle) Grains Subjected to Germination with or without Selenium Stress Conditions. J. Food Sci. 2016, 81(1), C19–C26. DOI: 10.1111/1750-3841.13174.
  • Mateos-Maces, L.; Chávez-Servia, J. L.; Vera-Guzmán, A. M.; Aquino-Bolaños, E. N.; Alba-Jiménez, J. E.; Villagómez-González, B. B. Edible Leafy Plants from Mexico as Sources of Antioxidant Compounds, and Their Nutritional, Nutraceutical and Antimicrobial Potential: A Review. Antioxidants. 2020, 9(6), 541. DOI: 10.3390/antiox9060541.
  • Barrón-Yánez, M. R.; Villanueva-Verduzco, C.; García-Mateos, M. R.; Colinas-León, M. T. Nutrient Value and Saponi Content of Huauzontle (Chenopodium Nuttalliae Saff.), Zucchini (Cucurbita Pepo L.), Canola (Brassica Napus L.) And Amaranto (Amaranthus Leucocarpus S. Watson Syn. Hypochondriacus L.) Sprouts. Rev. Chapingo Ser. Hort. 2009, 15, 237–243.
  • Ibarra-Alvarado, C.; Rojas, A.; Mendoza, S.; Bah, M.; Gutiérrez, D. M.; Hernández-Sandoval, L.; Martínez, M. Vasoactive and Antioxidant Activities of Plants Used in Mexican Traditional Medicine for the Treatment of Cardiovascular Diseases. Pharm. Biol. 2010, 48(7), 732–739. DOI: 10.3109/13880200903271280.
  • Gomez-Chang, E.; Uribe-Estanislao, G. V.; Martinez-Martinez, M.; Gálvez-Mariscal, A.; Romero, I. Anti-Helicobacter Pylori Potential of Three Edible Plants Known as Quelites in Mexico. J. Med. Food. 2018, 21(11), 1150–1157. DOI: 10.1089/jmf.2017.0137.
  • Jiménez-Aguilar, D. M.; Grusak, M. A. Evaluation of Minerals, Phytochemical Compounds and Antioxidant Activity of Mexican, Central American, and African Green Leafy Vegetables. Plant Foods Hum. Nutr. 2015, 70(4), 357–364. DOI: 10.1007/s11130-015-0512-7.
  • Reyes-Becerril, M.; Angulo, C.; Sanchez, V.; Vázquez-Martínez, J.; López, M. G. Antioxidant, Intestinal Immune Status and Anti-inflammatory Potential of Chenopodium Ambrosioides L. In Fish: In Vitro and in Vivo Studies. Fish Shellfish Immunol. 2019, 86, 420–428. DOI: 10.1016/j.fsi.2018.11.059.
  • Assaidi, A.; Dib, I.; Tits, M.; Angenot, L.; Bellahcen, S.; Bouanani, N.; Legssyer, A.; Aziz, M.; Mekhfi, H.; Bnouham, M.; et al. Chenopodium Ambrosioides Induces an Endothelium-dependent Relaxation of Rat Isolated Aorta. Journal of Integrative Medicine. 2019, 17(2), 115–124. DOI: 10.1016/j.joim.2019.01.006.
  • Zhu, H.; Wang, Y.; Liu, Y.; Xia, Y.; Tang, T. Analysis of Flavonoids in Portulaca Oleracea L. By UV–Vis Spectrophotometry with Comparative Study on Different Extraction Technologies. Food Anal. Methods. 2010, 3(2), 90–97. DOI: 10.1007/s12161-009-9091-2.
  • El-Sayed, M. I. K.;. Effects of Portulaca Oleracea L. Seeds in Treatment of Type-2 Diabetes Mellitus Patients as Adjunctive and Alternative Therapy. J. Ethnopharmacol. 2011, 137(1), 643–651. DOI: 10.1016/j.jep.2011.06.020.
  • Zamilpa, A.; García-Alanís, C.; López-Arellano, M. E.; Hernández-Velázquez, V. M.; Valladares-Cisneros, M. G.; Salinas-Sánchez, D. O.; Mendoza-De Gives, P. In Vitro Nematicidal Effect of Chenopodium Ambrosioides and Castela Tortuosa N-Hexane Extracts against Haemonchus Contortus (Nematoda) and Their Anthelmintic Effect in Gerbils. J. Helminthol. 2019, 93(4), 434–439. DOI: 10.1017/S0022149X18000433.
  • Pereira, W. S.; Da Silva, G. P.; Vigliano, M. V.; Leal, N. R. F.; Pinto, F. A.; Fernandes, D. C.; Santos, S. V. M.; Martino, T.; Nascimento, J. R.; De Azevedo, A. P. S.;, et al. Anti-Arthritic Properties of Crude Extract from Chenopodium Ambrosioides L. Leaves. J. Pharm. Pharmacol. 2018, 70(8), 1078–1091. DOI: 10.1111/jphp.12926.
  • Alvar, J.; Vélez, I. D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; De Boer, M. Leishmaniasis Worldwide and Global Estimates of Its Incidence. PLoS ONE. 2012, 1–12. DOI: 10.1371/journal.pone.0035671.
  • Monzote, L.; García, M.; Montalvo, A. M.; Scull, R.; Miranda, M. Chemistry, Cytotoxicity and Antileishmanial Activity of the Essential Oil from Piper Auritum. Mem. Inst. Oswaldo Cruz. 2010, 105(2), 168–173. DOI: 10.1590/S0074-02762010000200010.
  • Dominguez-Uscanga, A.; Loarca-Piña, G.; De Mejia, E. G. Baked Corn (Zea Mays L.) And Bean (Phaseolus Vulgaris L.) Snack Consumption Lowered Serum Lipids and Differentiated Liver Gene Expression in C57BL/6 Mice Fed a High-fat Diet by Inhibiting PPARγ and SREBF2. J. Nutr. Biochem. 2017, 50, 1–15. DOI: 10.1016/j.jnutbio.2017.08.011.
  • Avila‐Nava, A.; Noriega, L. G.; Tovar, A. R.; Granados, O.; Perez‐Cruz, C.; Pedraza‐Chaverri, J.; Torres, N. Food Combination Based on a Pre‐hispanic Mexican Diet Decreases Metabolic and Cognitive Abnormalities and Gut Microbiota Dysbiosis Caused by a Sucrose‐enriched High‐fat Diet in Rats. Mol. Nutr. Food Res. 2017, 61(1), 1501023. DOI: 10.1002/mnfr.201501023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.