361
Views
5
CrossRef citations to date
0
Altmetric
Review

New Accelerating Techniques Applied to the Ageing of Oenological Products

, &

References

  • Del Álamo, M.; Nevares, I.; Cárcel, L. M. Redox Potential Evolution during Red Wine Aging in Alternative Systems. Analytica Chimica Acta. 2006, 563(1–2), 223–228. DOI: 10.1016/J.ACA.2005.11.017.
  • Cacho Palomar, J.;. Evolución Del Perfil Volátil Del Vino Tinto Durante La Crianza En Barricas De Roble. ACE Rev. Enol. 2006, 72.
  • Hevia, K.; Castro, R.; Natera, R.; González-García, J. A.; Barroso, C. G.; Durán-Guerrero, E. Optimization of Head Space Sorptive Extraction to Determine Volatile Compounds from Oak Wood in Fortified Wines. Chromatographia. 2016, 79(11–12), 11–12. DOI: 10.1007/s10337-016-3088-y.
  • The, B. R.;. Copigmentation of Anthocyanins and Its Role in the Color of Red Wine: A Critical Review. Am. J. Enol. Vitic. 2001, 52(2), 67–87.
  • Robichaud, J. L.; Noble, A. C. Astringency and Bitterness of Selected Phenolics in Wine. J. Sci. Food Agric. 1990, 53(3), 343–353. DOI: 10.1002/jsfa.2740530307.
  • Li, H.; Wang, X.; Li, Y.; Li, P.; Polyphenolic Compounds, W. H. Antioxidant Properties of Selected China Wines. Food Chem. 2009, 112(2), 454–460. DOI: 10.1016/j.foodchem.2008.05.111.
  • Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Dietary, J. L. Polyphenols and the Prevention of Diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. DOI: 10.1080/1040869059096.
  • Eiro, M. J.; Heinonen, M. Anthocyanin Color Behavior and Stability during Storage: Effect of Intermolecular Copigmentation. J. Agric. Food Chem. 2002, 50(25), 7461–7466. DOI: 10.1021/jf0258306.
  • Pisarnitskii, A. F.;. Formation of Wine Aroma: Tones and Imperfections Caused by Minor Components (Review). Appl. Biochem. Microbiol. 2001, 37(6), 552–560. DOI: 10.1023/10.123/90731145.
  • Hashizume, K.; Samuta, T. Green Odorants of Grape Cluster Stem and Their Ability to Cause a Wine Stemmy Flavor. J. Agric. Food Chem. 1997, 45(4), 1333–1337. DOI: 10.1021/jf960635a.
  • Martin, B.; Etievant, P. X.; Le Quere, J. L.; Schlich, P. More Clues about Sensory Impact of Sotolon in Some Flor Sherry Wines. J. Agric. Food Chem. 1992, 40(3), 475–478. DOI: 10.1021/jf00015a023.
  • Ruiz-Bejarano, M. J.; Castro-Mejías, R.; Rodríguez-Dodero, M. D. C.; García-Barroso, C. Study of the Content in Volatile Compounds during the Aging of Sweet Sherry Wines Obtained from Grapes Cv. Muscat and Fermented under Different Conditions. Eur. Food Res. Technol. 2013, 237(6), 905–922. DOI: 10.1007/s00217-013-2061-3.
  • Corsini, L.; Castro, R. ;. G.; Barroso, C.; Durán-Guerrero, E. Characterization by Gas Chromatography-Olfactometry of the Most Odour-Active Compounds in Italian Balsamic Vinegars with Geographical Indication. Food Chem. 2019, 272(November 2017), 702–708. DOI: 10.1016/j.foodchem.2018.08.100.
  • Ruiz-Bejarano, M. J.; Castro-Mejías, R.; Rodríguez-Dodero, M. C.; Volatile, G.-B. C. Composition of Pedro Ximénez and Muscat Sweet Sherry Wines from Sun and Chamber Dried Grapes: A Feasible Alternative to the Traditional Sun-Drying. J. Food Sci. Technol. 2016, 53(6), 2519–2531. DOI: 10.1007/s13197-016-2192-1.
  • Durán-Guerrero, E.; Castro-Mejías, R.; Natera-Marín, R.; Palma-Lovillo, M.; Barroso, C. G.; New, A. FT-IR Method Combined with Multivariate Analysis for the Classification of Vinegars from Different Raw Materials and Production Processes. J. Sci. Food Agric. 2010, 90(4), 712–718. DOI: 10.1002/jsfa.3873.
  • Natera, R.; Castro, R.; García-Moreno, M. V.; Hernández, M. J.; Chemometric, G.-B. C. Studies of Vinegars from Different Raw Materials and Processes of Production. J. Agric. Food Chem. 2003, 51(11), 3345–3351. DOI: 10.1021/jf021180u.
  • Suárez, R.; Suárez-Lepe, J. A.; Morata, A.; The, C. F. Production of Ethylphenols in Wine by Yeasts of the Genera Brettanomyces and Dekkera: A Review. Food Chem. 2007, 102(1), 10–21. DOI: 10.1016/j.foodchem.2006.03.030.
  • Ruiz, D. A.; López, M.; Sala, L. M.; Fickian, J. M. A. Model for Calculating Wine Losses from Oak Casks Depending on Conditions in Ageing Facilities. Appl. Therm. Eng. 2005, 25(5), 709–718. DOI: 10.1016/j.applthermaleng.2004.07.021.
  • Valls, J.; Lampreave, M.; Nadal, M.; Arola, L. Importancia de Los Compuestos Fenólicos En La Calidad de Los Vinos Tintos de Crianza. Aliment. equipos y Tecnol. 2000, 19, 119–124.
  • Sims, C. A.; Morris, J. R. Effects of PH, Sulfur Dioxide, Storage Time, and Temperature on the Color and Stability of Red Muscadine Grape Wine. Am. J. Enol. Vitic. 1984, 35(1), 35–39.
  • Del Alamo-Sanza, M.; Nevares, I.; Cárcel, L.; Alvarez, L.; Crespo Merino, R. Evolución Del Potencial Redox Durante El Envejecimiento de Vinos En Sistemas Alternativos y En Barricas. ACE Rev. Enol. 2010, 116.
  • Mckay, M.; Villiers, A.; Toit, W. Investigación sobre los factores que afectan al envejecimiento de los vinos. Infowine. 2008, 10(2)
  • McKay, M.; Villiers, A. D.; Toit, W. D. Élevage Des Vins: PremiersConstats Sur l’incidence de Certain Facteurs. Rev. Des Oenologues Des Tech. Vitivinic. Oenologiques. 2009, 36(131), 30–33.
  • Danilewicz, J. C.;. Review of Reaction Mechanisms of Oxygen and Proposed Intermediate Reduction Products in Wine: Central Role of Iron and Copper. Am. J. Enol. Vitic. 2003, 54(2), 73–85.
  • Roussey, C.; Colin, J.; Teissier Du Cros, R.; Casalinho, J.; Perré, P. In-Situ Monitoring of Wine Volume, Barrel Mass, Ullage Pressure and Dissolved Oxygen for a Better Understanding of Wine-Barrel-Cellar Interactions. J. Food Eng. 2021, 291(December 2019), 8–10. DOI: 10.1016/j.jfoodeng.2020.110233.
  • Prat-García, S.; Nevares, I.; Martínez-Martínez, V.; Del Alamo-sanza, M. Customized Oxygenation Barrels as a New Strategy for Controlled Wine Aging. Food Res. Int. 2020, 131(June 2019), 108982. DOI: 10.1016/j.foodres.2020.108982.
  • Sánchez-Gómez, R.; Del Álamo-Sanza, M.; Nevares, I. Volatile Composition of Oak Wood from Different Customised Oxygenation Wine Barrels: Effect on Red Wine. Food Chem. 2020, 329(May). DOI: 10.1016/j.foodchem.2020.127181.
  • Werner, M.; Rauhut. D. Control de La Temperatura. In Código de Buenas Prácticas Vitivinícolas Ecológicas; Hofmann, U. ECOVIN- Asociación Federal de productores de vino ecológico, Eds. Finidr S.R.O: Lipová, Czech Republic, 2009;  pp 171–173
  • Rodopoulo, A. K.;. Phenomenes d’oxydoréduction Au Cours de La Maturation et Du Viellissement Du Vin et Precedes Pour Ies Modifier. Bull. l’Office Int. Du Vin. 1965, 415, 959–969.
  • Lago-Vanzela, E. S.; Procópio, D. P.; Fontes, E. A. F.; Ramos, A. M.; Stringheta, P. C.; Da-Silva, R.; Castillo-Muñoz, N.; Hermosín-Gutiérrez, I. Aging of Red Wines Made from Hybrid Grape Cv. BRS Violeta: Effects of Accelerated Aging Conditions on Phenolic Composition, Color and Antioxidant Activity. Food Res. Int. 2014, 56, 182–189. DOI: 10.1016/J.FOODRES.2013.12.030.
  • Escudero, A.; Charpentier, M.; Etievant, P. Characterization of Aged Champagne Wine Aroma by GC-O and Descriptive Profile Analyses. Sci. Des Aliment. - SCI Aliment. 2000, 20, 331–346. DOI: 10.3166/sda.20.331-346.
  • Ortega, A. F.; Lopez-Toledano, A.; Mayen, M.; Merida, J.; Medina, M. Changes in Color and Phenolic Compounds during Oxidative Aging of Sherry White Wine. J. Food Sci. 2003, 68(8), 2461–2468. DOI: 10.1111/j.1365-2621.2003.tb07046.x.
  • Navarro, M.; Kontoudakis, N.; Gómez-Alonso, S.; García-Romero, E.; Canals, J. M.; Hermosín-Gutíerrez, I.; Zamora, F. Influence of the Volatile Substances Released by Oak Barrels into a Cabernet Sauvignon Red Wine and a Discolored Macabeo White Wine on Sensory Appreciation by a Trained Panel. Eur. Food Res. Technol. 2018, 244(2), 245–258. DOI: 10.1007/s00217-017-2951-x.
  • Dumitriu, G. D.; Teodosiu, C.; Gabur, I.; Cotea, V. V.; Peinado, R. A.; López De Lerma, N. Evaluation of Aroma Compounds in the Process of Wine Ageing with Oak Chips. Foods. 2019, 8(12), 662. DOI: 10.3390/foods8120662.
  • Martínez, J.; Ojeda, S.; Rubio, P.; Cadahía, E.; Fernández De Simon, B. El Roble Español: Una Alternativa Para La Crianza En Barrica de Vinos de Calidad. La Prensa del Rioja. 2007, 171(January), 14–15.
  • Chanivet, M.; Durán-Guerrero, E.; Barroso, C. G.; Castro, R. Suitability of Alternative Wood Types Other than American Oak Wood for the Ageing of Sherry Vinegar. Food Chem. 2020, 316, 126386. DOI: 10.1016/j.foodchem.2020.126386.
  • Herrera, P.; Durán-Guerrero, E.; Sánchez-Guillén, M. M.; García-Moreno, M. V.; Guillén, D. A.; Barroso, C. G.; Castro, R. Effect of the Type of Wood Used for Ageing on the Volatile Composition of Pedro Ximénez Sweet Wine. J. Sci. Food Agric. 2020, 100(6), 2512–2521. DOI: 10.1002/jsfa.10276.
  • Brajnikoff, I.; Cruess, W. V. Observations of Spanish Sherry Process. J. Food Sci. 1948, 13(2), 128–135.
  • Barroso, C. G.; Rodríguez, M. C.; Guillén, D. A.; Pérez-Bustamante, J. A. Analysis of Low Molecular Mass Phenolic Compounds, Furfural and 5-Hydroxymethylfurfural in Brandy De Jerez by High-Performance Liquid Chromatography-Diode Array Detection with Direct Injection. J. Chromatogr. A. 1996, 724(1–2), 125–129. DOI: 10.1016/0021-9673(95)00985-X.
  • Gómez-Cordovés, C.; Bartolomé, B. Application of Principal Component Analysis to Simple Determinations of Brandies as a Means of Verifying Quality. Z. Lebensm. Unters. Forsch. 1993, 197(3), 260–263. DOI: 10.1007/BF01185282.
  • García Parrilla, M. C.; Heredia, F. J.; Troncoso, A. M. Sherry Wine Vinegars: Phenolic Composition Changes during Aging. Food Res. Int. 1999, 32(6), 433–440. DOI: 10.1016/S0963-9969(99)00105-2.
  • Van Der Schee, H. A.; Bouwknegt, J. P.; Tas, A. C.; Maarse, H.; Sarneel, M. M. The Authentication of Sherry Wines Using Pattern Recognition: An Inter Laboratory Study. Z. Lebensm. Unters. Forsch. 1989, 188(4), 324–329. DOI: 10.1007/BF01352390.
  • Barroso, C. G.; Torrijos, R. C.; Pérez-Bustamante, J. A. Evolution of Phenolic Acids and Aldehydes during the Different Production Process of “Fino” Sherry Wine. Z. Lebensm. Unters. Forsch. 1986, 182(5), 413–418. DOI: 10.1007/BF01844237.
  • Marrufo-Curtido, A.; Cejudo-Bastante, M. J.; Durán-Guerrero, E.; Castro-Mejías, R.; Natera-Marín, R.; Chinnici, F.; Characterization, G.-B. C. Differentiation of High Quality Vinegars by Stir Bar Sorptive Extraction Coupled to Gas Chromatography-Mass Spectrometry (SBSE-GC-MS). LWT - Food Sci. Technol. 2012, 47(2), 332–341. DOI: 10.1016/j.lwt.2012.01.028.
  • Chinnici, F.; Guerrero, E. D.; Sonni, F.; Natali, N.; Marín, R. N.; Gas Chromatography-Mass, R. C. Spectrometry (GC-MS) Characterization of Volatile Compounds in Quality Vinegars with Protected European Geographical Indication. J. Agric. Food Chem. 2009, 57(11), 4784–4792. DOI: 10.1021/jf804005w.
  • García-Moreno, M. V.; Sánchez-Guillén, M. M.; Ruiz De Mier, M.; Delgado-González, M. J.; Carmen Rodríguez-Dodero, M.; García-Barroso, C.; Guillén-Sánchez, D. A. Use of Alternative Wood for the Ageing of Brandy De Jerez. Foods. 2020, 9, 3. DOI: 10.3390/foods9030250.
  • Durán Guerrero, E.; Cejudo Bastante, M. J.; Castro Mejías, R.; Natera Marín, R.; García Barroso, C. Characterization and Differentiation of Sherry Brandies Using Their Aromatic Profile. J. Agric. Food Chem. 2011, 59(6), 2410–2415. DOI: 10.1021/jf104409n.
  • Del Álamo, M.; Nevares, I.; Gallego, L.; Fernández, D. S.; Cadahía, B.; Micro-Oxygenation Strategy, E. Depends on Origin and Size of Oak Chips or Staves during Accelerated Red Wine Aging. Anal. Chim. Acta. 2010, 660(1–2), 92–101. DOI: 10.1016/J.ACA.2009.11.044.
  • Espitia López, J.; Luna, H.; Escalona Buendía, H. B.; Verde Calvo, J. R.; Identification, Q. Sensory Profile of Esters and Alcohols of a Mexican Red Merlot Wine Comparing Barrel Ageing with Wood Chips, Using a Multivariable Analysis. J. Food Process. 2018, 42(2), 1–8.
  • Rubio-Bretón, P.; Garde-Cerdán, T.; Martínez, J. Use of Oak Fragments during the Aging of Red Wines. Effect on the Phenolic, Aromatic, and Sensory Composition of Wines as a Function of the Contact Time with the Wood. Beverages. 2018, 4(4), 102. DOI: 10.3390/beverages4040102.
  • Machado Alencar, N. M.; Ribeiro Godoy, T.; Barone, B.; Barros, A. P. A.; Marques, A. T. B.; Behrens, J. H.; Alencar, N. M. M.; Ribeiro, T. G.; Barone, B.; Barros, A. P. A.;, et al. Sensory Profile and Check-All-That-Apply (Cata) as Tools for Evaluating and Characterizing Syrah Wines Aged with Oak Chips. Food Res. Int. 2019, 124(July 2018), 156–164. DOI: 10.1016/j.foodres.2018.07.052.
  • Alañón, M. E.; Schumacher, R.; Castro-Vázquez, L.; Díaz-Maroto, M. C.; Hermosín-Gutiérrez, I.; Pérez-Coello, M. S. Enological Potential of Chestnut Wood for Aging Tempranillo Wines Part II: Phenolic Compounds and Chromatic Characteristics. Food Res. Int. 2013, 51(2), 536–543. DOI: 10.1016/J.FOODRES.2012.12.051.
  • Martínez-Gil, A. M.; Del Alamo-sanza, M.; Gutiérrez-Gamboa, G.; Moreno-Simunovic, Y.; Nevares, I. Volatile Composition and Sensory Characteristics of Carménère Wines Macerating with Colombian (Quercus Humboldtii) Oak Chips Compared to Wines Macerated with American (Q. Alba) and European (Q. Petraea) Oak Chips. Food Chem. 2018, 266, 90–100. DOI: 10.1016/j.foodchem.2018.05.123.
  • Rodríguez-Bencomo, J. J.; Ortega-Heras, M.; Pérez-MAGARIÑO, S.; Volatile, G.-H. C. Compounds of Red Wines Macerated with Spanish, American, and French Oak Chips. J. Agric. Food Chem. 2009, 57(14), 6383–6391. DOI: 10.1021/jf900739k.
  • Tavares, M.; Jordão, A. M.; Ricardo-da-silva, J. M. Impact of Cherry, Acacia and Oak Chips on Red Wine Phenolic Parameters and Sensory Profile. OENO One. 2017, 51(3), 329–342. DOI: 10.20870/oeno-one.2017.51.4.1832.
  • Del Alamo-Sanza, M.;. Sistemas Alternativos Al Envejecimiento En Barrica. ACE Rev. Enol. 2006, 76.
  • Del Álamo, M.; Nevares, I.; Gallego, L.; Martin, C.; Merino, S. Aging Markers from Bottled Red Wine Aged with Chips, Staves and Barrels. Anal. Chim. Acta. 2008, 621(1), 86–99. DOI: 10.1016/j.aca.2008.05.014.
  • Dumitriu, G. D.; López De Lerma, N.; Cotea, V. V.; Zamfir, C. I.; Peinado, R. A. Effect of Aging Time, Dosage and Toasting Level of Oak Chips on the Color Parameters, Phenolic Compounds and Antioxidant Activity of Red Wines (Var. Fetească Neagră). Eur. Food Res. Technol. 2016, 242(12), 2171–2180. DOI: 10.1007/s00217-016-2714-0.
  • Martínez-Gil, A. M.; Del Alamo-Sanza, M.; Nevares, I.; Sánchez-Gómez, R.; Gallego, L. Effect of Size, Seasoning and Toasting Level of Quercus Pyrenaica Willd. Wood on Wine Phenolic Composition during Maturation Process with Micro-Oxygenation. Food Res. Int. 2020, 128, 108703. DOI: 10.1016/j.foodres.2019.108703.
  • Alañón, M. E.; Schumacher, R.; Castro-Vázquez, L.; Díaz-Maroto, I. J.; Díaz-Maroto, M. C.; Pérez-Coello, M. S. Enological Potential of Chestnut Wood for Aging Tempranillo Wines Part I: Volatile Compounds and Sensorial Properties. Food Res. Int. 2013, 51(1), 325–334. DOI: 10.1016/J.FOODRES.2012.12.007.
  • Kanakaki, E.; Siderakou, D.; Kallithraka, S.; Kotseridis, Y.; Makris, D. P. Effect of the Degree of Toasting on the Extraction Pattern and Profile of Antioxidant Polyphenols Leached from Oak Chips in Model Wine Systems. Eur. Food Res. Technol. 2015, 240(5), 1065–1074. DOI: 10.1007/s00217-014-2410-x.
  • Tesfaye, W.; Morales, M.; Benı́tez, B.; Garcı́a-Parrilla, M.; Troncoso, A. Evolution of Wine Vinegar Composition during Accelerated Aging with Oak Chips. Anal. Chim. Acta. 2004, 513(1), 239–245. DOI: 10.1016/J.ACA.2003.11.079.
  • Cerezo, A. B.; Álvarez-Fernández, M. A.; Hornedo-Ortega, R.; Troncoso, A. M.; García-Parrilla, M. C. Phenolic Composition of Vinegars over an Accelerated Aging Process Using Different Wood Species (Acacia, Cherry, Chestnut, and Oak): Effect of Wood Toasting. J. Agric. Food Chem. 2014, 62(19), 4369–4376. DOI: 10.1021/jf500654d.
  • Morales, M.; Benitez, B.; Troncoso, A. Accelerated Aging of Wine Vinegars with Oak Chips: Evaluation of Wood Flavour Compounds. Food Chem. 2004, 88(2), 305–315. DOI: 10.1016/J.FOODCHEM.2004.04.004.
  • Benítez Bellido, B.; Elaboración y envejecimiento acelerado de vinagres obtenidos a partir de vinos de Jerez. Doctoral Thesis, University of Seville, Spain, 2005.
  • Morales Gómez, M. L.; Benítez Bellido, B.; Tesfaye, W.; Fernandez, R. M. C.; Valencia, D.; Fernandez-Pachón, M. S.; García-Parrilla, M. C.; González, A. M. T. Sensory Evaluation of Sherry Vinegar: Traditional Compared to Accelerated Aging with Oak Chips. J. Food Sci. 2006, 71(3), S238–S242. DOI: 10.1111/j.1365-2621.2006.tb15647.x.
  • Schwarz, M.; Rodríguez, M. C.; Sánchez, M.; Guillén, D. A.; Barroso, C. G. Development of an Accelerated Aging Method for Brandy. LWT - Food Sci. Technol. 2014, 59(1), 108–114. DOI: 10.1016/J.LWT.2014.05.060.
  • Caldeira, I.; Anjos, O.; Portal, V.; Belchior, A. P.; Sensory, C. S. And Chemical Modifications of Wine-Brandy Aged with Chestnut and Oak Wood Fragments in Comparison to Wooden Barrels. Anal. Chim. Acta. 2010, 660(1), 43–52. DOI: 10.1016/j.aca.2009.10.059.
  • Caldeira, I.; Belchior, P. A.; Canas, S. Effect of Alternative Ageing Systems on the Wine Brandy Sensory Profile. Ciência E Técnica Vitivinícola. 2013, 28(1), 9–18.
  • Canas, S.; Caldeira, I.; Belchior, A. Comparison of Alternative Systems for the Ageing of Wine Brandy. Wood Shape and Wood Botanical Species Effect. Ciência E Técnica Vitivinícola. 2009, 24, 90–99.
  • Canas, S.; Caldeira, I.; Belchior, A. P. Extraction/Oxidation Kinetics of Low Molecular Weight Compounds in Wine Brandy Resulting from Different Ageing Technologies. Food Chem. 2013, 138(4), 2460–2467. DOI: 10.1016/j.foodchem.2012.12.018.
  • Cruz, S.; Canas, S.; Belchior, A. Effect of Ageing System and Time on the Quality of Wine Brandy Aged at Industrial-Scale. Ciência E Técnica Vitivinícola. 2012, 27, 83–93.
  • Masa Vázquez, A.; Pomar, F. Marcadores Fenólicos Del Envejecimiento de Vinos Gallegos de La Variedad “Mencía” En Barrica y Por Procedimientos Alternativos. Agric. Rev. Agropecu. 2006, 886, 514–518.
  • Alañón, M. E.; Marchante, L.; Alarcón, M.; Díaz-Maroto, I. J.; Pérez-Coello, S.; Díaz-Maroto, M. C. Fingerprints of Acacia Aging Treatments by Barrels or Chips Based on Volatile Profile, Sensorial Properties, and Multivariate Analysis. J. Sci. Food Agric. 2018, 98(15), 5795–5806. DOI: 10.1002/jsfa.9129.
  • Apetrei, C.; Apetrei, I. M.; Nevares, I.; Del Alamo, M.; Parra, V.; Rodríguez-Méndez, M. L.; De Saja, J. A. Using an E-Tongue Based on Voltammetric Electrodes to Discriminate among Red Wines Aged in Oak Barrels or Aged Using Alternative Methods: Correlation between Electrochemical Signals and Analytical Parameters. Electrochim. Acta. 2007, 52(7), 2588–2594. DOI: 10.1016/j.electacta.2006.09.014.
  • Apetrei, I. M.; Rodríguez-Méndez, M. L.; Apetrei, C.; Nevares, I.; Del Alamo, M.; De Saja, J. A. Monitoring of Evolution during Red Wine Aging in Oak Barrels and Alternative Method by Means of an Electronic Panel Test. Food Res. Int. 2012, 45(1), 244–249. DOI: 10.1016/J.FOODRES.2011.10.034.
  • Nevares, I.; Del Alamo, M.; Gonzalez-Muñoz, C. Dissolved Oxygen Distribution during Micro-Oxygenation. Determination of Representative Measurement Points in Hydroalcoholic Solution and Wines. Anal. Chim. Acta. 2010, 660(1–2), 232–239. DOI: 10.1016/j.aca.2009.09.048.
  • González-Sáiz, J. M.; Esteban-Díez, I.; Rodríguez-Tecedor, S.; Pérez-del-notario, N.; Arenzana-Rámila, I.; Pizarro, C. Modulation of the Phenolic Composition and Colour of Red Wines Subjected to Accelerated Ageing by Controlling Process Variables. Food Chem. 2014, 165, 271–281. DOI: 10.1016/j.foodchem.2014.05.016.
  • Sánchez-Gómez, R.; Nevares, I.; Martínez-Gil, A.; Alamo-Sanza, M. Oxygen Consumption by Red Wines under Different Micro-Oxygenation Strategies and Q. Pyrenaica Chips. Effects on Color and Phenolic Characteristics. Beverages. 2018, 4. DOI: 10.3390/beverages4030069.
  • Oberholster, A.; Elmendorf, B. L.; Lerno, L. A.; King, E. S.; Heymann, H.; Brenneman, C. E.; Boulton, R. B.; Maturation, B.; Alternatives, O. And Micro-Oxygenation: Influence on Red Wine Aging and Quality. Food Chem. 2015, 173, 1250–1258. DOI: 10.1016/J.FOODCHEM.2014.10.043.
  • Del Álamo-Sanza, M.; Nevares, I.; Martínez-Gil, A.; Rubio-Bretón, P.; Garde-Cerdán, T. Impact of Long Bottle Aging (10 Years) on Volatile Composition of Red Wines Micro-Oxygenated with Oak Alternatives. LWT. 2019, 101, 395–403. DOI: 10.1016/J.LWT.2018.11.049.
  • Del Barrio-Galán, R.; Pérez-Magariño, S.; Ortega-Heras, M. Techniques for Improving or Replacing Ageing on Lees of Oak Aged Red Wines: The Effects on Polysaccharides and the Phenolic Composition. Food Chem. 2011, 127(2), 528–540. DOI: 10.1016/j.foodchem.2011.01.035.
  • Del Barrio-Galán, R.; Pérez-Magariño, S.; Ortega-Heras, M. Effect of the Aging on Lees and Other Alternative Techniques on the Low Molecular Weight Phenols of Tempranillo Red Wine Aged in Oak Barrels. Anal. Chim. Acta. 2012, 732, 53–63. DOI: 10.1016/J.ACA.2011.12.040.
  • Durán Guerrero, E.; Castro Mejías, R.; Natera Marín, R.; Ruiz Bejarano, M. J.; Rodríguez Dodero, M. C.; García Barroso, C. Accelerated Aging of a Sherry Wine Vinegar on an Industrial Scale Employing Microoxygenation and Oak Chips. Eur. Food Res. Technol. 2011, 232(2), 241–254. DOI: 10.1007/s00217-010-1372-x.
  • Canas, S.; Caldeira, I.; Anjos, O.; Belchior, A. P.; Profile, P. Colour Acquired by the Wine Spirit in the Beginning of Ageing: Alternative Technology Using Micro-Oxygenation Vs Traditional Technology. LWT. 2019, 111, 260–269. DOI: 10.1016/J.LWT.2019.05.018.
  • Rodríguez Madrera, R.; García Hevia, A.; Suárez Valles, B. Comparative Study of Two Aging Systems for Cider Brandy Making. Changes in Chemical Composition. LWT - Food Sci. Technol. 2013, 54(2), 513–520. DOI: 10.1016/J.LWT.2013.05.037.
  • Gay, M.; Apetrei, C.; Nevares, I.; Del Alamo, M.; Zurro, J.; Prieto, N.; De Saja, J. A.; Rodríguez-Méndez, M. L. Application of an Electronic Tongue to Study the Effect of the Use of Pieces of Wood and Micro-Oxygenation in the Aging of Red Wine. Electrochim. Acta. 2010, 55(22), 6782–6788. DOI: 10.1016/j.electacta.2010.05.090.
  • Sánchez-Gómez, R.; Anjos, O.; Nevares, I.; Delgado, T.; Del Alamo-Sanza, M. Discrimination of Aging Wines with Alternative Oak Products and Micro-Oxygenation by FTIR-ATR. Vitis - J. Grapevine Res. 2019, 58(77), 77–82. DOI: 10.5073/vitis.2019.58.special-issue.77-82.
  • Capelo-Martínez, J.-L.;, Ed. Ultrasound in Chemistry: Analytical Applications; Wiley: Weinheim, Germany, 2009.
  • Kalkan, H.; Dündar, E. New Techniques for Wine Aging. BIO Web Conf. 2017, 9, 02012. DOI: 10.1051/bioconf/20170902012.
  • Tao, Y.; García Martín, J.; Sun, D. W. Advances in Wine Aging Technologies for Enhancing Wine Quality and Accelerating Wine Aging Process. Crit. Rev. Food Sci. Nutr. 2014, 54, 817–835. DOI: 10.1080/10408398.2011.609949.
  • Chang, A. C.; Chen, F. C. The Application of 20 KHz Ultrasonic Waves to Accelerate the Aging of Different Wines. Food Chem. 2002, 79(4), 501–506. DOI: 10.1016/S0308-8146(02)00226-1.
  • Chang, A. C.;. Study of Ultrasonic Wave Treatments for Accelerating the Aging Process in a Rice Alcoholic Beverage. Food Chem. 2005, 92(2), 337–342. DOI: 10.1016/J.FOODCHEM.2004.07.027.
  • Leonhardt, C. G.; Morabito, J. A. Wine Aging Method and System. US7220439B2, 2007.
  • Del Fresno Flórez, J. M.; Aplicación de Ultrasonidos En La Crianza Sobre Lías y Envejecimiento de Vinos Tintos, Universidad Politécnica de Madrid, 2019.
  • Kulkarni, P.; Loira, I.; Morata, A.; Tesfaye, W.; González, M. C.; Suárez-Lepe, J. A. Use of Non-Saccharomyces Yeast Strains Coupled with Ultrasound Treatment as a Novel Technique to Accelerate Ageing on Lees of Red Wines and Its Repercussion in Sensorial Parameters. LWT. 2015, 64(2), 1255e1262. DOI: 10.1016/j.lwt.2015.07.046.
  • Singleton, V. L.; Draper, D. E. Ultrasonic Treatment with Gas Purging as a Quick Aging Treatment for Wine. Am. J. Enol. Vitic. 1963, 14(1), 23–35.
  • Fu, X. Z.; Zhang, Q. A.; Zhang, B. S.; Liu, P. Effect of Ultrasound on the Production of Xanthylium Cation Pigments in a Model Wine. Food Chem. 2018, 268, 431–440. DOI: 10.1016/J.FOODCHEM.2018.06.120.
  • Sun, J.; Luo, H.; Li, X.; Li, X.; Lu, Y.; Bai, W. Effects of Low Power Ultrasonic Treatment on the Transformation of Cyanidin-3-O-Glucoside to Methylpyranocyanidin-3-O-Glucoside and Its Stability Evaluation. Food Chem. 2019, 276, 240–246. DOI: 10.1016/J.FOODCHEM.2018.10.038.
  • Ferraretto, P.; Celotti, E. Preliminary Study of the Effects of Ultrasound on Red Wine Polyphenols. CyTA - J. Food. 2016, 14(4), 529–535. DOI: 10.1080/19476337.2016.1149520.
  • Zhang, Q. A.; Xu, B. W.; Chen, B. Y.; Zhao, W. Q.; Xue, C. H. Ultrasound as an Effective Technique to Reduce Higher Alcohols of Wines and Its Influencing Mechanism Investigation by Employing a Model Wine. Ultrason. Sonochem. 2020, 61, 104813.
  • Cui, Y.; Lv, W.; Liu, J. F.; Wang, B. J. Effect of Different Ending Fermentation Technologies on Microbial-Stability of Italian Riesling Low Alcohol Sweet White Wine. Adv. Mat. Res. 2012, 363–365, 1165–1168.
  • Jiménez-Sánchez, M.; Durán-Guerrero, E.; Rodríguez-Dodero, M. C.; Barroso, C. G.; Castro, R. Use of Ultrasound at a Pilot Scale to Accelerate the Ageing of Sherry Vinegar. Ultrason. Sonochem. 2020, 69(June), 105244. DOI: 10.1016/j.ultsonch.2020.105244.
  • Balcerek, M.; Pielech-Przybylska, K.; Dziekońska-Kubczak, U.; Patelski, P.; Strak, E. Changes in the Chemical Composition of Plum Distillate during Maturation with Oak Chips under Different Conditions. Food Technol. Biotechnol. 2017, 55(3), 333–359. DOI: 10.17113/ftb.55.03.17.5145.
  • Delgado-González, M. J.; Sánchez-Guillén, M. M.; García-Moreno, M. V.; Rodríguez-Dodero, M. C.; García-Barroso, C.; Guillén- Sánchez, D. A. Study of a Laboratory-Scaled New Method for the Accelerated Continuous Ageing of Wine Spirits by Applying Ultrasound Energy. Ultrason. Sonochem. 2017, 36, 226–235. DOI: 10.1016/j.ultsonch.2016.11.031.
  • Nunes, C.; Santos, M. C.; Saraiva, J. A.; Rocha, S. M.; Coimbra, M. A. Influence of High Hydrostatic Pressure Technology on Wine Chemical and Sensorial Characteristics: Potentialities and Drawbacks. Adv. Food Nutr. Res. 2017, 82, 205–235. DOI: 10.1016/BS.AFNR.2017.01.003.
  • Téllez-Luis, S. J.; J.a., R.; Pérez-Lamela, C.; Simal-Gándara, J. Application of High Hydrostatic Pressure Technology in the Food Preservation. Cienc. Y Tecnol. Los Aliment. 2001, 3(2), 66–80.
  • Yang, N.; Huang, K.; Lyu, C.; Wang, J. Pulsed Electric Field Technology in the Manufacturing Processes of Wine, Beer, and Rice Wine: A Review. Food Control. 2016, 61, 28–38. DOI: 10.1016/j.foodcont.2015.09.022.
  • Bermúdez-Aguirre, D.; Barbosa-Cánovas, G. V. An Update on High Hydrostatic Pressure, from the Laboratory to Industrial Applications. Food Eng. Rev. 2011, 3, 44–61.
  • Lukic, K.; Curko, N.; Tomaševi, M.; Kovacevicˇ, K. Phenolic and Aroma Changes of Red and WhiteWines during Aging Induced by High Hydrostatic Pressure. Foods. 2020, 9, 1034.
  • Santos, M. C.; Nunes, C.; Ferreira, A. S.; Jourdes, M.; Teissedre, P.-L.; Rodrigues, A.; Amado, O.; Saraiva, J. A.; Coimbra, M. A. Comparison of High Pressure Treatment with Conventional Red Wine Aging Processes: Impact on Phenolic Composition. Food Res. Int. 2019, 116, 223–231. DOI: 10.1016/J.FOODRES.2018.08.018.
  • Liu, Y.; He, F.; Shi, Y.; Zhang, B.; Duan, C. Q. Effect of the High Pressure Treatments on the Physicochemical Properties of the Young Red Wines Supplemented with Pyruvic Acid. Innov. Food Sci. Emerg. Technol. 2018, 48(17), 56–65. DOI: 10.1016/j.ifset.2018.05.010.
  • Tao, Y.; Sun, D.-W.; Górecki, A.; Błaszczak, W.; Lamparski, G.; Amarowicz, R.; Fornal, J.; Jeliński, T. Effects of High Hydrostatic Pressure Processing on the Physicochemical and Sensorial Properties of a Red Wine. Innov. Food Sci. Emerg. Technol. 2012, 16, 409–416. DOI: 10.1016/J.IFSET.2012.09.005.
  • Sun, X.; Li, L.; Ma, T.; Zhao, F.; Yu, D.; Huang, W.; Zhan, J. High Hydrostatic Pressure Treatment: An Artificial Accelerating Aging Method Which Did Not Change the Region and Variety Non-Colored Phenolic Characteristic of Red Wine. Innov. Food Sci. Emerg. Technol. 2016, 33, 123–134. DOI: 10.1016/J.IFSET.2015.10.017.
  • Puértolas, E.; Saldaña, G.; Álvarez, I.; Raso, J. Effect of Pulsed Electric Field Processing of Red Grapes on Wine Chromatic and Phenolic Characteristics during Aging in Oak Barrels. J. Agric. Food Chem. 2010, 58(4), 2351–2357. DOI: 10.1021/jf904035v.
  • García Martín, J. F.; Sun, D.-W. Ultrasound and Electric Fields as Novel Techniques for Assisting the Wine Ageing Process: The State-of-the-Art Research. Trends Food Sci. Technol. 2013, 33(1), 40–53. DOI: 10.1016/J.TIFS.2013.06.005.
  • Maza, M. A.; Delso, C.; Álvarez, I.; Raso, J.; Martínez, J. M. Effect of Pulsed Electric Fields on Mannoproteins Release from Saccharomyces Cerevisiae during the Aging on Lees of Caladoc Red Wine. LWT. 2020, 118, 108788. DOI: 10.1016/J.LWT.2019.108788.
  • Martínez, J. M.; Delso, C.; Maza, M. A.; Álvarez, I.; Raso, J. Pulsed Electric Fields Accelerate Release of Mannoproteins from Saccharomyces Cerevisiae during Aging on the Lees of Chardonnay Wine. Food Res. Int. 2019, 116, 795–801. DOI: 10.1016/J.FOODRES.2018.09.013.
  • Puértolas, E.; López, N.; Condón, S.; Álvarez, I.; Raso, J. Potential Applications of PEF to Improve Red Wine Quality. Trends Food Sci. Technol. 2010, 21(5), 247–255. DOI: 10.1016/J.TIFS.2010.02.002.
  • Zhang, B.; Zeng, X. A.; Lin, W. T.; Sun, D. W.; Cai, J. L. Effects of Electric Field Treatments on Phenol Compounds of Brandy Aging in Oak Barrels. Innov. Food Sci. Emerg. Technol. 2013, 20, 106–114. DOI: 10.1016/j.ifset.2013.07.003.
  • Zhang, B.; Zeng, X. A.; Sun, D.-W.; Yu, S. J.; Yang, M. F.; Ma, S. Effect of Electric Field Treatments on Brandy Aging in Oak Barrels. Food Bioprocess Technol. 2013, 6(7), 1635–1643. DOI: 10.1007/s11947-012-0788-7.
  • Roodenburg, B.; Morren, J.; Berg, H. E.; De Haan, S. W. H. Metal Release in a Stainless Steel Pulsed Electric Field (PEF) System. Innov. Food Sci. Emerg. Technol. 2005, 6(3), 327–336.
  • Carew, A. L.; Sparrow, A. M.; Curtin, C. D.; Close, D. C.; Dambergs, R. G. Microwave Maceration of Pinot Noir Grape Must: Sanitation and Extraction Effects and Wine Phenolics Outcomes. Food Bioprocess Technol. 2014, 7(4), 954–963. DOI: 10.1007/s11947-013-1112-x.
  • Casassa, L. F.; Sari, S. E.; Bolcato, E. A.; Fanzone, M. L. Microwave-Assisted Extraction Applied to Merlot Grapes with Contrasting Maturity Levels: Effects on Phenolic Chemistry and Wine Color. Fermentation. 2019, 5, 1. DOI: 10.3390/fermentation5010015.
  • Liu, L.; Loira, I.; Morata, A.; Suárez-Lepe, J. A.; González, M. C.; Rauhut, D. Shortening the Ageing on Lees Process in Wines by Using Ultrasound and Microwave Treatments Both Combined with Stirring and Abrasion Techniques. Eur. Food Res. Technol. 2016, 242(4), 559–569. DOI: 10.1007/s00217-015-2566-z.
  • Zou, Y.; Gao, W.; Wu, W. H. Study on the Effects and Mechanism on Rum Aging by Microwaving Oak Barrels. In Electronics, Electrical Engineering and Information Science; WORLD SCIENTIFIC, 2015; pp 1037–1046. doi:10.1142/9789814740135_0108.
  • Yuan, J. F.; Wang, T. T.; Chen, Z. Y.; Wang, D. H.; Gong, M. G.; Li, P. Y. Microwave Irradiation: Impacts on Physicochemical Properties of Red Wine. CYTA - J. Food. 2020, 18(1), 281–290. DOI: 10.1080/19476337.2020.1746834.
  • Dong, Z. Y.; Liu, Y.; Xu, M.; Zhang, T. H.; Ren, H.; Liu, W.; Li, M. Y. Accelerated Aging of Grape Pomace Vinegar by Using Additives Combined with Physical Methods. J. Food Process Eng. 2020, n/a(n/a), e13398. DOI: 10.1111/jfpe.13398.
  • Harderm, M. N. C.; Silva, A. C. S.; Lucía, P. A., . J.; Scanholato, M.; Valter, A. Physical-Chemical Evaluation of Wines Subjected to Gamma Irradiation for Aging. Food Sci. Technol. 2013, 1(3), 62–65. DOI: 10.13189/fst.2013.010304.
  • The, C.-C. A.;. Effects of Different Accelerating Techniques on Maize Wine Maturation. Food Chem. 2004, 86(1), 61–68. DOI: 10.1016/J.FOODCHEM.2003.08.010.
  • Calado, T.; Fernández-Cruz, M. L.; Cabo Verde, S.; Venâncio, A.; Abrunhosa, L. Gamma Irradiation Effects on Ochratoxin A: Degradation, Cytotoxicity and Application in Food. Food Chem. 2018, 240(July 2017), 463–471. DOI: 10.1016/j.foodchem.2017.07.136.
  • Chingzu Chang, A.;. The Effects of Gamma Irradiation on Rice Wine Maturation. Food Chem. 2003, 83(3), 323–327. DOI: 10.1016/S0308-8146(03)00050-5.
  • Pires, J.; Harder, M.; Arthur, V.; Silva, L. Ionizing Radiation Effects in Brazilian Grape Tree Wine. Brazilian J. Radiat. Sci. 2019, 7. DOI: 10.15392/bjrs.v7i2A.630.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.